
C H A P T E R 4

Drawing Conclusions

The computations that are done in multiple linear regression, including drawing
graphs, creation of terms, fitting models, and performing tests, will be similar in
most problems. Interpreting the results, however, may differ by problem, even if
the outline of the analysis is the same. Many issues play into drawing conclusions,
and some of them are discussed in this chapter.

4.1 UNDERSTANDING PARAMETER ESTIMATES

Parameters in mean functions have units attached to them. For example, the fitted
mean function for the fuel consumption data is

E(Fuel|X) = 154.19 − 4.23 Tax + 0.47 Dlic − 6.14 Income + 18.54 log(Miles)

Fuel is measured in gallons, and so all the quantities on the right of this equation
must also be in gallons. The intercept is 154.19 gallons. Since Income is measured
in thousands of dollars, the coefficient for Income must be in gallons per thousand
dollars of income. Similarly, the units for the coefficient for Tax is gallons per cent
of tax.

4.1.1 Rate of Change

The usual interpretation of an estimated coefficient is as a rate of change: increas-
ing Tax rate by one cent should decrease consumption, all other factors being
held constant, by about 4.23 gallons per person. This assumes that a predictor
can in fact be changed without affecting the other terms in the mean function
and that the available data will apply when the predictor is so changed. The
fuel data are observational since the assignment of values for the predictors was
not under the control of the analyst, so whether increasing taxes would cause
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a decrease in fuel consumption cannot be assessed from these data. From these
data, we can observe association but not cause: states with higher tax rates are
observed to have lower fuel consumption. To draw conclusions concerning the
effects of changing tax rates, the rates must in fact be changed and the results
observed.

The coefficient estimate of log(Miles) is 18.55, meaning that a change of one unit
in log(Miles) is associated with an 18.55 gallon per person increase in consumption.
States with more roads have higher per capita fuel consumption. Since we used
base-two logarithms in this problem, increasing log(Miles) by one unit means that
the value of Miles doubles. If we double the amount of road in a state, we expect
to increase fuel consumption by about 18.55 gallons per person. If we had used
base-ten logarithms, then the fitted mean function would be

E(Fuel|X) = 154.19 − 4.23 Tax + 0.47 Dlic − 6.14 Income + 61.61 log10(Miles)

The only change in the fitted model is for the coefficient for the log of Miles, which
is now interpreted as a change in expected Fuel consumption when log10(Miles)
increases by one unit, or when Miles is multiplied by 10.

4.1.2 Signs of Estimates

The sign of a parameter estimate indicates the direction of the relationship between
the term and the response. In multiple regression, if the terms are correlated, the sign
of a coefficient may change depending on the other terms in the model. While this
is mathematically possible and, occasionally, scientifically reasonable, it certainly
makes interpretation more difficult. Sometimes this problem can be removed by
redefining the terms into new linear combinations that are easier to interpret.

4.1.3 Interpretation Depends on Other Terms in the Mean Function

The value of a parameter estimate not only depends on the other terms in a mean
function but it can also change if the other terms are replaced by linear combinations
of the terms.

Berkeley Guidance Study
Data from the Berkeley Guidance Study on the growth of boys and girls are given
in Problem 3.1. As in Problem 3.1, we will view Soma as the response, but con-
sider the three predictors WT2, WT9, WT18 for the n = 70 girls in the study. The
scatterplot matrix for these four variables is given in Figure 4.1. First look at the
last row of this figure, giving the marginal response plots of Soma versus each of
the three potential predictors. For each of these plots, we see that Soma is increasing
with the potential predictor on the average, although the relationship is strongest
at the oldest age and weakest at the youngest age. The two-dimensional plots of
each pair of predictors suggest that the predictors are correlated among themselves.
Taken together, we have evidence that the regression on all three predictors cannot



UNDERSTANDING PARAMETER ESTIMATES 71

WT2

25 35 45 3 4 5 6 7

10
12

14
16

25
35

45

WT9

WT18

50
70

90

10 12 14 16

3
4

5
6

7

50 70 90

Soma

FIG. 4.1 Scatterplot matrix for the girls in the Berkeley Guidance Study.

be viewed as just the sum of the three separate simple regressions because we must
account for the correlations between the terms.

We will proceed with this example using the three original predictors as terms
and Soma as the response. We are encouraged to do this because of the appearance
of the scatterplot matrix. Since each of the two-dimensional plots appear to be well
summarized by a straight-line mean function, we will see later that this suggests
that the regression of the response on the original predictors without transformation
is likely to be appropriate.

The parameter estimates for the regression of Soma on WT2, WT9, and WT18
given in the column marked “Model 1” in Table 4.1 leads to the unexpected con-
clusion that heavier girls at age two may tend to be thinner, have lower expected
somatotype, at age 18. We reach this conclusion because the t-statistic for testing
the coefficient equal to zero, which is not shown in the table, has a significance level
of about 0.06. The sign, and the weak significance, may be due to the correlations
between the terms. In place of the preceding variables, consider the following:

WT2 = Weight at age 2

DW9 = WT9 − WT2 = Weight gain from age 2 to 9

DW18 = WT18 − WT9 = Weight gain from age 9 to 18
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TABLE 4.1 Regression of Soma on Different
Combinations of Three Weight Variables for the n = 70
Girls in the Berkeley Guidance Study

Term Model 1 Model 2 Model 3

(Intercept) 1.5921 1.5921 1.5921
WT2 −0.1156 −0.0111 −0.1156
WT9 0.0562 0.0562
WT18 0.0483 0.0483
DW9 0.1046 NA
DW18 0.0483 NA

Since all three original terms measure weight, combining them in this way is
reasonable. If the variables measured different quantities, then combining them
could lead to conclusions that are even less useful than those originally obtained.
The parameter estimates for Soma on WT2, DW9, and DW18 are given in the
column marked “Model 2” in Table 4.1. Although not shown in the table, summary
statistics for the regression like R2 and σ̂ 2 are identical for all the mean functions
in Table 4.1 but coefficient estimates and t-tests are not the same. For example,
the slope estimate for WT2 is about −0.12, with t = −1.87 in the column “Model
1,” while in Model 2, the estimate is about one-tenth the size, and the t-value is
−0.21. In the former case, the effect of WT2 appears plausible, while in the latter
it does not. Although the estimate is negative in each, we would be led in the latter
case to conclude that the effect of WT2 is negligible. Thus, interpretation of the
effect of a variable depends not only on the other variables in a model but also
upon which linear transformation of those variables is used.

Another interesting feature of Table 4.1 is that the estimate for WT18 in Model
1 is identical to the estimate for DW18 in Model 2. In Model 1, the estimate
for WT18 is the effect on Soma of changing WT18 by one unit, with all other
terms held fixed. In Model 2, the estimate for DW18 is the change in Soma when
DW18 changes by one unit, when all other terms are held fixed. But the only way
DW18 = WT18 − WT9 can be changed by one unit with the other variables includ-
ing WT9 = DW9 − WT2 held fixed is by changing WT18 by one unit. Conse-
quently, the terms WT18 in Model 1 and DW18 in Model 2 play identical roles
and therefore we get the same estimates.

The linear transformation of the three weight variables we have used so far
could be replaced by other linear combinations, and, depending on the context,
others might be preferred. For example, another set might be

AVE = (WT2 + WT9 + WT18)/3

LIN = WT18 − WT2

QUAD = WT2 − 2WT9 + WT18

This transformation focuses on the fact that WT2, WT9 and WT18 are ordered in
time and are more or less equally spaced. Pretending that the weight measurements
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are equally spaced, AVE, LIN and QUAD are, respectively, the average, linear, and
quadratic time trends in weight gain.

4.1.4 Rank Deficient and Over-Parameterized Mean Functions

In the last example, several combinations of the basic predictors WT2, WT9, and
WT18 were studied. One might naturally ask what would happen if more than three
combinations of these predictors were used in the same regression model. As long as
we use linear combinations of the predictors, as opposed to nonlinear combinations
or transformations of them, we cannot use more than three, the number of linearly
independent quantities.

To see why this is true, consider adding DW9 to the mean function including
WT2, WT9 and WT18. As in Chapter 3, we can learn about adding DW9 using an
added-variable plot of the residuals from the regression of Soma on WT2, WT9
and WT18 versus the residuals from the regression of DW9 on WT2, WT9 and
WT18. Since DW9 can be written as an exact linear combination of the other
predictors, DW9 = WT9 − WT2, the residuals from this second regression are all
exactly zero. A slope coefficient for DW9 is thus not defined after adjusting for the
other three terms. We would say that the four terms WT2, WT9, WT18, and DW9
are linearly dependent, since one can be determined exactly from the others. The
three variables WT2, WT9 and WT18 are linearly independent because one of them
cannot be determined exactly by a linear combination of the others. The maximum
number of linearly independent terms that could be included in a mean function is
called the rank of the data matrix X.

Model 3 in Table 4.1 gives the estimates produced in a computer package when
we tried to fit using an intercept and the five terms WT2, WT9, WT18, DW9, and
DW18. Most computer programs, including this one, will select the first three, and
the estimated coefficients for them. For the remaining terms, this program sets the
estimates to “NA,” a code for a missing value; the word aliased is sometimes
used to indicate a term that is a linear combination of terms already in the mean
function, and so a coefficient for it is not estimable.

Mean functions that are over-parameterized occur most often in designed experi-
ments. The simplest example is the one-way design. Suppose that a unit is assigned
to one of three treatment groups, and let X1 = 1 if the unit is in group one and
zero otherwise, X2 = 1 if the unit is in group two and zero otherwise, and X3 = 1
if the unit is in group three and zero otherwise. For each unit, we must have
X1 + X2 + X3 = 1 since each unit is in only one of the three groups. We therefore
cannot fit the model

E(Y |X) = β0 + β1X1 + β2X2 + β3X3

because the sum of the Xj is equal to the column of ones, and so, for example,
X3 = 1 − X1 − X2. To fit a model, we must do something else. The options are:
(1) place a constraint like β1 + β2 + β3 = 0 on the parameters; (2) exclude one of
the Xj from the model, or (3) leave out an explicit intercept. All of these options
will in some sense be equivalent, since the same R2, σ 2 and overall F -test and
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predictions will result. Of course, some care must be taken in using parameter
estimates, since these will surely depend on the parameterization used to get a full
rank model. For further reading on matrices and models of less than full rank, see,
for example, Searle (1971, 1982).

4.1.5 Tests

Even if the fitted model were correct and errors were normally distributed, tests and
confidence statements for parameters are difficult to interpret because correlations
among the terms lead to a multiplicity of possible tests. Sometimes, tests of effects
adjusted for other variables are clearly desirable, such as in assessing a treatment
effect after adjusting for other variables to reduce variability. At other times, the
order of fitting is not clear, and the analyst must expect ambiguous results. In most
situations, the only true test of significance is repeated experimentation.

4.1.6 Dropping Terms

Suppose we have a sample of n rectangles from which we want to model log(Area)

as a function of log(Length), perhaps through the simple regression mean function

E(log(Area)|log(Length)) = η0 + η1log(Length) (4.1)

From elementary geometry, we know that Area = Length × Width, and so the “true”
mean function for log(Area) is

E(log(Area)|log(Length), log(Width)) = β0 + β1log(Length) + β2log(Width)

(4.2)
with β0 = 0, and β1 = β2 = 1. The questions of interest are: (1) can the incorrect
mean function specified by (4.1) provide a useful approximation to the true mean
function (4.2), and if so, (2) what are the relationships between ηs, in (4.1) and the
βs in (4.2)?

The answers to these questions comes from Appendix A.2.4. Suppose that the
true mean function were

E(Y |X1 = x1, X2 = x2) = β0 + β ′
1x1 + β ′

2x2 (4.3)

but we want to fit a mean function with X1 only. The mean function for Y |X1 is
obtained by averaging (4.3) over X2,

E(Y |X1 = x1) = E [E(Y |X1 = x1, X2)|X1 = x1]

= β0 + β ′
1x1 + β ′

2E(X2|X1 = x1) (4.4)

We cannot, in general, simply drop a set of terms from a correct mean function,
but we need to substitute the conditional expectation of the terms dropped given
the terms that remain in the mean function.

In the context of the rectangles example, we get

E(log(Area)|log(Length)) = η0 + η1log(Length) + β2E(log(Width)|log(Length))

(4.5)
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The answers to the questions posed depend on the mean function for the regression
of log(Width) on log(Length). This conditional expectation has little to do with the
area of rectangles, but much to do with the way we obtain a sample of rectangles
to use in our study. We will consider three cases.

In the first case, imagine that each of the rectangles in the study is formed by
sampling a log(Length) and a log(Width) from independent distributions. If the
mean of the log(Width) distribution is W , then by independence

E(log(Width)|log(Length)) = E(log(Width)) = W

Substituting into (4.5),

E(log(Area)|log(Length)) = β0 + β1log(Length) + β2W

= (β0 + β2W) + β1log(Length)

= W + log(Length)

where the last equation follows by substituting β0 = 0, β1 = β2 = 1. For this case,
the mean function (4.1) would be appropriate for the regression of log(Area) on
log(Width). The intercept for the mean function (4.1) would be W , and so it depends
on the distribution of the widths in the data. The slope for log(Length) is the same
for fitting (4.1) or (4.2).

In the second case, suppose that

E(log(Width)|log(Length)) = γ0 + γ1log(Length)

so the mean function for the regression of log(Width) on log(Length) is a straight
line. This could occur, for example, if the rectangles in our study were obtained
by sampling from a family of similar rectangles, so the ratio Width/Length is
the same for all rectangles in the study. Substituting this into (4.5) and simplify-
ing gives

E(log(Area)|log(Length)) = β0 + β1log(Length) + β2(γ0 + γ1log(Length))

= (β0 + β2γ0) + (β1 + β2γ1)log(Length)

= γ0 + (1 + γ1)log(Length)

Once again fitting using (4.1) will be appropriate, but the values of η0 = γ0
and η1 = 1 + γ1 depend on the parameters of the regression of log(Width) on
log(Length). The γ s are a characteristic of the sampling plan, not of rectangles.
Two experimenters who sample rectangles of different shapes will end up estimating
different parameters.

For a final case, suppose that the mean function

E(log(Width)|log(Length)) = γ0 + γ1log(Length) + γ2log(Length)2
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is quadratic. Substituting into (4.5), setting β0 = 0, β1 = β2 = 1 and simplify-
ing gives

E(log(Area)|log(Length)) = β0 + β1log(Length)

+ β2

(
γ0 + γ1log(Length) + γ2log(Length)2

)

= γ0 + (1 + γ1)log(Length) + γ2log(Length)2

which is a quadratic function of log(Length). If the mean function is quadratic, or
any other function beyond a straight line, then fitting (4.1) is inappropriate.

From the above three cases, we see that both the mean function and the parame-
ters for the response depend on the mean function for the regression of the removed
terms on the remaining terms. If the mean function for the regression of the removed
terms on the retained terms is not linear, then a linear mean function will not be
appropriate for the regression problem with fewer terms.

Variances are also affected when terms are dropped. Returning to the true mean
function given by (4.3), the general result for the regression of Y on X1 alone is,
from Appendix A.2.4,

Var(Y |X1 = x1) = E [Var(Y |X1 = x1, X2)|X1 = x1]

+ Var [E(Y |X1 = x1, X2)|X1 = x1]

= σ 2 + β ′
2Var(X2|X1 = x1)β2 (4.6)

In the context of the rectangles example, β2 = 1 and we get

Var(log(Area)|log(Length)) = σ 2 + Var(log(Width)|log(Length))

Although fitting (4.1) can be appropriate if log(Width) and log(Length) are linearly
related, the errors for this mean function can be much larger than those for (4.2)
if Var(log(Width)|log(Length)) is large. If Var(log(Width)|log(Length)) is small
enough, then fitting (4.2) can actually give answers that are nearly as accurate as
fitting with the true mean function (4.2).

4.1.7 Logarithms

If we start with the simple regression mean function,

E(Y |X = x) = β0 + β1x

a useful way to interpret the coefficient β1 is as the first derivative of the mean
function with respect to x,

dE(Y |X = x)

dx
= β1

We recall from elementary geometry that the first derivative is the rate of change,
or the slope of the tangent to a curve, at a point. Since the mean function for
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simple regression is a straight line, the slope of the tangent is the same value β1
for any value of x, and β1 completely characterizes the change in the mean when
the predictor is changed for any value of x.

When the predictor is replaced by log(x), the mean function as a function of x

E(Y |X = x) = β0 + β1 log(x)

is no longer a straight line, but rather it is a curve. The tangent at the point x > 0 is

dE(Y |X = x)

dx
= β1

x

The slope of the tangent is different for each x and the effect of changing x on
E(Y |X = x) is largest for small values of x and gets smaller as x is increased.

When the response is in log scale, we can get similar approximate results by
exponentiating both sides of the equation:

E(log(Y )|X = x) = β0 + β1x

E(Y |X = x) ≈ eβ0eβ1x

Differentiating this second equation gives

dE(Y |X = x)

dx
= β1E(Y |X = x)

The rate of change at x is thus equal to β1 times the mean at x. We can also write

dE(Y |X = x)/dx

E(Y |X = x)
= β1

is constant, and so β1 can be interpreted as the constant rate of change in the
response per unit of response.

4.2 EXPERIMENTATION VERSUS OBSERVATION

There are fundamentally two types of predictors that are used in a regression
analysis, experimental and observational. Experimental predictors have values that
are under the control of the experimenter, while for observational predictors, the
values are observed rather than set. Consider, for example, a hypothetical study of
factors determining the yield of a certain crop. Experimental variables might include
the amount and type of fertilizers used, the spacing of plants, and the amount of
irrigation, since each of these can be assigned by the investigator to the units, which
are plots of land. Observational predictors might include characteristics of the plots
in the study, such as drainage, exposure, soil fertility, and weather variables. All of
these are beyond the control of the experimenter, yet may have important effects
on the observed yields.

The primary difference between experimental and observational predictors is in
the inferences we can make. From experimental data, we can often infer causation.
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If we assign the level of fertilizer to plots, usually on the basis of a randomization
scheme, and observe differences due to levels of fertilizer, we can infer that the fer-
tilizer is causing the differences. Observational predictors allow weaker inferences.
We might say that weather variables are associated with yield, but the causal link
is not available for variables that are not under the experimenter’s control. Some
experimental designs, including those that use randomization, are constructed so
that the effects of observational factors can be ignored or used in analysis of
covariance (see, e.g., Cox, 1958; Oehlert, 2000).

Purely observational studies that are not under the control of the analyst can
only be used to predict or model the events that were observed in the data, as
in the fuel consumption example. To apply observational results to predict future
values, additional assumptions about the behavior of future values compared to the
behavior of the existing data must be made. From a purely observational study,
we cannot infer a causal relationship without additional information external to the
observational study.

Feedlots
A feedlot is a farming operation that includes large number of cattle, swine or
poultry in a small area. Feedlots are efficient producers of animal products, and can
provide high-paying skilled jobs in rural areas. They can also cause environmental
problems, particularly with odors, ground water pollution, and noise.

Taff, Tiffany, and Weisberg (1996) report a study on the effect of feedlots on
property values. This study was based on all 292 rural residential property sales
in two southern Minnesota counties in 1993–94. Regression analysis was used.
The response was sale price. Predictors included house characteristics such as
size, number of bedrooms, age of the property, and so on. Additional predictors
described the relationship of the property to existing feedlots, such as distance to
the nearest feedlot, number of nearby feedlots, and related features of the feedlots
such as their size. The “feedlot effect” could be inferred from the coefficients for
the feedlot variables.

In the analysis, the coefficient estimates for feedlot effects were generally pos-
itive and judged to be nonzero, meaning that close proximity to feedlots was
associated with an increase in sale prices. While association of the opposite sign
was expected, the positive sign is plausible if the positive economic impact of the
feedlot outweighs the negative environmental impact. The positive effect is esti-
mated to be small, however, and equal to 5% or less of the sale price of the homes
in the study.

These data are purely observational, with no experimental predictors. The data
collectors had no control over the houses that actually sold, or siting of feed-
lots. Consequently, any inference that nearby feedlots cause increases in sale price
is unwarranted from this study. Given that we are limited to association, rather
than causation, we might next turn to whether we can generalize the results.
Can we infer the same association to houses that were not sold in these coun-
ties during this period? We have no way of knowing from the data if the same
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relationship would hold for homes that did not sell. For example, some home-
owners may have perceived that they could not get a reasonable price and may
have decided not to sell. This would create a bias in favor of a positive effect of
feedlots.

Can we generalize geographically, to other Minnesota counties or to other places
in the Midwest United States? The answer to this question depends on the char-
acteristics of the two counties studied. Both are rural counties with populations of
about 17,000. Both have very low property values with median sale price in this
period of less than $50,000. Each had different regulations for operators of feedlots,
and these regulations could impact pollution problems. Applying the results to a
county with different demographics or regulations cannot be justified by these data
alone, and additional information and assumptions are required.

Joiner (1981) coined the picturesque phrase lurking variable to describe a pre-
dictor variable not included in a mean function that is correlated with terms in the
mean function. Suppose we have a regression with predictors X that are included
in the regression and a lurking variable L not included in the study, and that the
true regression mean function is

E(Y |X = x, L = �) = β0 +
p∑

j−1

βjxj + δ� (4.7)

with δ �= 0. We assume that X and L are correlated and for simplicity we assume
further that E(L|X = x) = γ0 + ∑

γjxj . When we fit the incorrect mean function
that ignores the lurking variable, we get, from Section 4.1.6,

E(Y |X = x) = β0 +
p∑

j−1

βjxj + δE(L|X = x)

= (β0 + δγ0) +
p∑

j−1

(βj + δγj )xj (4.8)

Suppose we are particularly interested in inferences about the coefficient for X1,
and, unknown to us, β1 in (4.7) is equal to zero. If we were able to fit with the
lurking variable included, we would probably conclude that X1 is not an important
predictor. If we fit the incorrect mean function (4.8), the coefficient for X1 becomes
(β1 + δγ1), which will be non zero if γ1 �= 0. The lurking variable masquerades
as the variable of interest to give an incorrect inference. A lurking variable can
also hide the effect of an important variable if, for example, β1 �= 0 but β1 +
δγ1 = 0.

All large observational studies like this feedlot study potentially have lurking
variables. For this study, a casino had recently opened near these counties, creating
many jobs and a demand for housing that might well have overshadowed any effect
of feedlots. In experimental data with random assignment, the potential effects of
lurking variables are greatly decreased, since the random assignment guarantees that
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the correlation between the terms in the mean function and any lurking variable is
small or zero.

The interpretation of results from a regression analysis depend on the details
of the data design and collection. The feedlot study has extremely limited scope,
and is but one element to be considered in trying to understand the effect of
feedlots on property values. Studies like this feedlot study are easily misused.
As recently as spring 2004, the study was cited in an application for a permit
to build a feedlot in Starke county, Indiana, claiming that the study supports the
positive effect of feedlots on property values, confusing association with causation,
and inferring generalizability to other locations without any logical foundation for
doing so.

4.3 SAMPLING FROM A NORMAL POPULATION

Much of the intuition for the use of least squares estimation is based on the assump-
tion that the observed data are a sample from a multivariate normal population.
While the assumption of multivariate normality is almost never tenable in practical
regression problems, it is worthwhile to explore the relevant results for normal
data, first assuming random sampling and then removing that assumption.

Suppose that all of the observed variables are normal random variables, and the
observations on each case are independent of the observations on each other case.
In a two-variable problem, for the ith case observe (xi, yi), and suppose that

(
xi

yi

)
∼ N

((
µx

µy

)
,

(
σ 2

x ρxyσxσy

ρxyσxσy σ 2
y

))
(4.9)

Equation (4.9) says that xi and yi are each realizations of normal random variables
with means µx and µy , variances σ 2

x and σ 2
y and correlation ρxy . Now, suppose

we consider the conditional distribution of yi given that we have already observed
the value of xi . It can be shown (see e.g., Lindgren, 1993; Casella and Berger,
1990) that the conditional distribution of yi given xi , is normal and,

yi |xi ∼ N

(
µy + ρxy

σy

σx

(xi − µx), σ 2
y (1 − ρ2

xy)

)
(4.10)

If we define

β0 = µy − β1µx β1 = ρxy

σy

σx

σ 2 = σ 2
y (1 − ρ2

xy) (4.11)

then the conditional distribution of yi given xi is simply

yi |xi ∼ N(β0 + β1xi, σ 2) (4.12)

which is essentially the same as the simple regression model with the added assump-
tion of normality.
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Given random sampling, the five parameters in (4.9) are estimated, using the
notation of Table 2.1, by

µ̂x = x σ̂ 2
x = SD2

x ρ̂xy = rxy

µ̂y = y σ̂ 2
y = SD2

y

(4.13)

Estimates of β0 and β1 are obtained by substituting estimates from (4.13) for
parameters in (4.11), so that β̂1 = rxySDy/SDx , and so on, as derived in Chapter 2.
However, σ̂ 2 = [(n − 1)/(n − 2)]SD2

y(1 − r2
xy) to correct for degrees of freedom.

If the observations on the ith case are yi and a p × 1 vector xi not including a
constant, multivariate normality is shown symbolically by

(
xi

yi

)
∼ N

((
µx

µy

)
,

(
�xx �xy

�xy σ 2
y

))
(4.14)

where �xx is a p × p matrix of variances and covariances between the elements
of xi and �xy is a p × 1 vector of covariances between xi and yi . The conditional
distribution of yi given xi is then

yi |xi ∼ N
(
(µy − β∗′

µx) + β∗′xi , σ 2
)

(4.15)

If R2 is the population multiple correlation,

β∗ = �−1
xx �xy; σ 2 = σ 2

y �′
xy�

−1
xx �xy = σ 2

y (1 − R2)

The formulas for β̂
∗

and σ 2 and the formulas for their least squares estimators
differ only by the substitution of estimates for parameters, with (n − 1)−1(X ′X )

estimating �xx , and (n − 1)−1(X ′Y) estimating �xy .

4.4 MORE ON R2

The conditional distribution in (4.10) or (4.15) does not depend on random sam-
pling, but only on normal distributions, so whenever multivariate normality seems
reasonable, a linear regression model is suggested for the conditional distribution
of one variable, given the others. However, if random sampling is not used, some
of the usual summary statistics, including R2, lose their connection to population
parameters.

Figure 4.2a repeats Figure 1.1, the scatterplot of Dheight versus Mheight for
the heights data. These data closely resemble a bivariate normal sample, and so
R2 = 0.24 estimates the population R2 for this problem. Figure 4.2b repeats this
last figure, except that all cases with Mheight between 61 and 64 inches—the lower
and upper quartile of the mother’s heights rounded to the nearest inch—have been
removed form the data. The ols regression line appears similar, but the value of
R2 = 0.37 is about 50% larger. By removing the middle of the data, we have made
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FIG. 4.2 Three views of the heights data.

R2 larger, and it no longer estimates a population value. Similarly, in Figure 4.2c,
we exclude all the cases with Mheight outside the quartiles, and get R2 = 0.027,
and the relationship between Dheight and Mheight virtually disappears.

This example points out that even in the unusual event of analyzing data drawn
from a multivariate normal population, if sampling of the population is not random,
the interpretation of R2 may be completely misleading, as this statistic will be
strongly influenced by the method of sampling. In particular, a few cases with
unusual values for the predictors can largely determine the observed value of this
statistic.

We have seen that we can manipulate the value of R2 merely by changing our
sampling plan for collecting data: if the values of the terms are widely dispersed,
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then R2 will tend to be too large, while if the values are over a very small range,
then R2 will tend to be too small. Because the notion of proportion of variability
explained is so useful, a diagnostic method is needed to decide if it is a useful
concept in any particular problem.

4.4.1 Simple Linear Regression and R2

In simple regression linear problems, we can always determine the appropriateness
of R2 as a summary by examining the summary graph of the response versus the
predictor. If the plot looks like a sample from a bivariate normal population, as in
Figure 4.2a, then R2 is a useful measure. The less the graph looks like this figure,
the less useful is R2 as a summary measure.

Figure 4.3 shows six summary graphs. Only for the first three of them is R2

a useful summary of the regression problem. In Figure 4.3e, the mean function
appears curved rather than straight so correlation is a poor measure of depen-
dence. In Figure 4.3d the value of R2 is virtually determined by one point, making
R2 necessarily unreliable. The regular appearance of the remaining plot suggests
a different type of problem. We may have several identifiable groups of points
caused by a lurking variable not included in the mean function, such that the
mean function for each group has a negative slope, but when groups are com-
bined the slope becomes positive. Once again R2 is not a useful summary of this
graph.

Predictor or ŷ

(a) (b)

(e) (f)

(c)

R
es

po
ns

e

(d)

FIG. 4.3 Six summary graphs. R2 is an appropriate measure for a–c, but inappropriate for d–f.
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4.4.2 Multiple Linear Regression

In multiple linear regression, R2 can also be interpreted as the square of the
correlation in a summary graph, this time of Y versus fitted values Ŷ . This plot can
be interpreted exactly the same way as the plot of the response versus the single
term in simple linear regression to decide on the usefulness of R2 as a summary
measure.

For other regression methods such as nonlinear regression, we can define R2 to
be the square of the correlation between the response and the fitted values, and use
this summary graph to decide if R2 is a useful summary.

4.4.3 Regression through the Origin

With regression through the origin, the proportion of variability explained is given
by 1 − SSreg/

∑
y2
i , using uncorrected sums of squares. This quantity is not invari-

ant under location change, so, for example, if units are changed from Fahrenheit to
Celsius, you will get a different value for the proportion of variability explained.
For this reason, use of an R2-like measure for regression through the origin is not
recommended.

4.5 MISSING DATA

In many problems, some variables will be unrecorded for some cases. The methods
we study in this book generally assume and require complete data, without any
missing values. The literature on analyzing incomplete data problems is very large,
and our goal here is more to point out the issues than to provide solutions. Two
recent books on this topic are Little and Rubin (1987) and Schafer (1997).

4.5.1 Missing at Random

The most common solution to missing data problems is to delete either cases or
variables so the resulting data set is complete. Many software packages delete
partially missing cases by default, and fit regression models to the remaining,
complete, cases. This is a reasonable approach as long as the fraction of cases
deleted is small enough, and the cause of values being unobserved is unrelated to
the relationships under study. This would include data lost through an accident like
dropping a test tube, or making an illegible entry in a logbook. If the reason for not
observing values depends on the values that would have been observed, then the
analysis of data may require modeling the cause of the failure to observe values.
For example, if values of a measurement are unrecorded if the value is less than the
minimum detection limit of an instrument, then the value is missing because the
value that should have been observed is too small. A simple expedient in this case
that is sometimes helpful is to substitute a value less than or equal to the detection
limit for the unobserved values. This expedient is not always entirely satisfactory
because substituting, or imputing, a fixed value for the unobserved quantity can
reduce the variation on the filled-in variable, and yield misleading inferences.
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As a second example, suppose we have a clinical trial that enrolls subjects
with a particular medical condition, assigns each subject a treatment, and then the
subjects are followed for a period of time to observe their response, which may
be time until a particular landmark occurs, such as improvement of the medical
condition. Subjects who do not respond well to the treatment may drop out of
the study early, while subjects who do well may be more likely to remain in the
study. Since the probability of observing a value depends on the value that would
have been observed, simply deleting subjects who drop out early can easily lead to
incorrect inferences because the successful subjects will be overrepresented among
those who complete the study.

In many clinical trials, the response variable is not observed because the study
ends, not because of patient characteristics. In this case, we call the response times
censored; so for each patient, we know either the time to the landmark or the time
to censoring. This is a different type of missing data problem, and analysis needs
to include both the uncensored and censored observations. Book-length treatments
of censored survival data are given by Kalbfleisch and Prentice (1980) and Cox
and Oakes (1984), among others.

As a final example, consider a cross-cultural demographic study. Some demo-
graphic variables are harder to measure than others, and some variables, such as
the rate of employment for women over the age of 15, may not be available for
less-developed countries. Deleting countries that do not have this variable measured
could change the population that is studied by excluding less-developed countries.

Rubin (1976) defined data to be missing at random (MAR) if the failure to
observe a value does not depend on the value that would have been observed.
With MAR data, case deletion can be a useful option. Determining whether an
assumption of MAR is appropriate for a particular data set is an important step in
the analysis of incomplete data.

4.5.2 Alternatives

All the alternatives we briefly outline here require strong assumptions concerning
the data that may be impossible to check in practice.

Suppose first that we combine the response and predictors into a single vector
Z. We assume that the distribution of Z is fully known, apart from unknown
parameters. The simplest assumption is that Z ∼ N(µ, �). If we had reasonable
estimates of µ and �, then we could use (4.15) to estimate parameters for the
regression of the response on the other terms. The EM algorithm (Dempster, Laird,
and Rubin , 1977) is a computational method that is used to estimate the parameters
of the known joint distribution based on data with missing values.

Alternatively, given a model for the data like multivariate normality, one could
impute values for the missing data and then analyze the completed data as if it were
fully observed. Multiple imputation carries this one step further by creating several
imputed data sets that, according to the model used, are plausible, filled-in data
sets, and then “average” the analyses of the filled-in data sets. Software for both
imputation and the EM algorithm for maximum likelihood estimate is available
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in several standard statistical packages, including the “missing” package in S-plus
and the “MI” procedure in SAS.

The third approach is more comprehensive, as it requires building a model for
the process of interest and the missing data process simultaneously. Examples of
this approach are given by Ibrahim, Lipsitz, and Horton (2001), and Tang, Little,
and Raghunathan (2003).

The data described in Table 4.2 provides an example. Allison and Cicchetti
(1976) presented data on sleep patterns of 62 mammal species along with several
other possible predictors of sleep. The data were in turn compiled from several
other sources, and not all values are measured for all species. For example, PS, the
number of hours of paradoxical sleep, was measured for only 50 of the 62 species in
the data set, and GP, the gestation period, was measured for only 58 of the species.
If we are interested in the dependence of hours of sleep on the other predictors,
then we have at least three possible responses, PS, SWS, and TS, all observed on
only a subset of the species. To use case deletion and then standard methods to
analyze the conditional distributions of interest, we need to assume that the chance
of a value being missing does not depend on the value. For example, the four
missing values of GP are missing because no one had (as of 1976) published this
value for these species. Using the imputation or the maximum likelihood methods
are alternatives for these data, but they require making assumptions like normality,
which might be palatable for many of the variables if transformed to logarithmic
scale. Some of the variables, like P and SE are categorical, so other assumptions
beyond multivariate normality might be needed.

TABLE 4.2 The Sleep Dataa

Number Percent
Variable Type Observed Missing Description

BodyWt Variate 62 0 Body weight in kg
BrainWt Variate 62 0 Brain weight in g
D Factor 62 0 Danger index, 1 = least danger,

. . . , 5 = most
GP Variate 58 6 Gestation time, days
Life Variate 58 6 Maximum life span, years
P Factor 62 0 Predation index, 1 = lowest , . . . ,

5 = highest
SE Factor 62 0 Sleep exposure index, 1 = more

exposed, . . . , 5 = most protected
PS Response 50 19 Paradoxical dreaming sleep, hrs/day
SWS Response 48 23 Slow wave nondreaming sleep,

hrs/day
TS Response 58 6 Total sleep, hrs/day
Species Labels 62 0 Species of mammal

a10 variables, 62 observations, 8 patterns of missing values; 5 variables (50%) have at least one missing
value; 20 observations (32%) have at least one missing value.
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4.6 COMPUTATIONALLY INTENSIVE METHODS

Suppose we have a sample y1, . . . , yn from a particular distribution G, for example
a standard normal distribution. What is a confidence interval for the population
median?

We can obtain an approximate answer to this question by computer simulation,
set up as follows:

1. Obtain a simulated random sample y∗
1 , . . . . , y∗

n from the known distribution
G. Most statistical computing languages include functions for simulating
random deviates (see Thisted, 1988 for computational methods).

2. Compute and save the median of the sample in step 1.

3. Repeat steps 1 and 2 a large number of times, say B times. The larger the
value of B, the more precise the ultimate answer.

4. If we take B = 999, a simple percentile-based 95% confidence interval for
the median is the interval between the 25th smallest value and the 975th
largest value, which are the sample 2.5 and 97.5 percentiles, respectively.

In most interesting problems, we will not actually know G and so this simu-
lation is not available. Efron (1979) pointed out that the observed data can be
used to estimate G, and then we can sample from the estimate Ĝ. The algorithm
becomes:

1. Obtain a random sample y∗
1 , . . . , y∗

n from Ĝ by sampling with replacement
from the observed values y1, . . . , yn. In particular, the i-th element of the
sample y∗

i is equally likely to be any of the original y1, . . . , yn. Some of
the yi will appear several times in the random sample, while others will not
appear at all.

2. Continue with steps 2–4 of the first algorithm. A test at the 5% level con-
cerning the population median can be rejected if the hypothesized value of
the median does not fall in the confidence interval computed at step 4.

Efron called this method the bootstrap, and we call B the number of bootstrap sam-
ples. Excellent references for the bootstrap are the books by Efron and Tibshirani
(1993), and Davison and Hinkley (1997).

4.6.1 Regression Inference without Normality

Bootstrap methods can be applied in more complex problems like regression. Infer-
ences and accurate standard errors for parameters and mean functions require either
normality of regression errors or large sample sizes. In small samples without nor-
mality, standard inference methods can be misleading, and in these cases a bootstrap
can be used for inference.
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Transactions Data
The data in this example consists of a sample of branches of a large Australian
bank (Cunningham and Heathcote, 1989). Each branch makes transactions of two
types, and for each of the branches we have recorded the number of transactions
T1 and T2, as well as Time, the total number of minutes of labor used by the branch
in type 1 and type 2 transactions. If βj is the average number of minutes for a
transaction of type j , j = 1, 2, then the total number of minutes in a branch for
transaction type j is βjTj , and the total number of minutes is expected to be

E(Time|T1, T2) = β0 + β1T1 + β2T2 (4.16)

possibly with β0 = 0 because zero transactions should imply zero time spent. The
data are displayed in Figure 4.4, and are given in the data file transact.txt.
The key features of the scatterplot matrix are: (1) the marginal response plots in
the last row appear to have reasonably linear mean functions; (2) there appear to
be a number of branches with no T1 transactions but many T2 transactions; and
(3) in the plot of Time versus T2, variability appears to increase from left to right.

The errors in this problem probably have a skewed distribution. Occasional
transactions take a very long time, but since transaction time is bounded below by
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FIG. 4.4 Scatterplot matrix for the transactions data.
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TABLE 4.3 Summary for B = 999 Case Bootstraps for the Transactions Data,
Giving 95% Confidence Intervals, Lower to Upper, Based on Standard Normal
Theory and on the Percentile Bootstrap

Normal Theory Bootstrap
Estimate Lower Upper Estimate Lower Upper

Intercept 144.37 −191.47 480.21 136.09 −254.73 523.36
T1 5.46 4.61 6.32 5.48 4.08 6.77
T2 2.03 1.85 2.22 2.04 1.74 2.36

zero, there can not be any really extreme “quick” transactions. Inferences based on
normal theory are therefore questionable.

Following the suggestion of Pardoe and Weisberg (2001) for this example, a
bootstrap is computed as follows:

1. Number the cases in the data set from 1 to n. Take a random sample with
replacement of size n from these case numbers. Thus, the i-th case number
in the sample is equally likely to be any of the n cases in the original data.

2. Create a data set from the original data, but repeating each row in the data
set the number of times that row was selected in the random sample in
step 1. Some cases will appear several times and others will not appear at
all. Compute the regression using this data set, and save the values of the
coefficient estimates.

3. Repeat steps 1 and 2 a large number of times, say, B times.

4. Estimate a 95% confidence interval for each of the estimates by the 2.5 and
97.5 percentiles of the sample of B bootstrap samples.

Table 4.3 summarizes the percentile bootstrap for the transactions data. The column
marked Estimate gives the ols estimate under “Normal theory” and the average
of the B bootstrap simulations under “Bootstrap.” The difference between these
two is called the bootstrap bias, which is quite small for all three terms relative to
the size of the confidence intervals. The 95% bootstrap intervals are consistently
wider than the corresponding normal intervals, indicating that the normal-theory
confidence intervals are probably overly optimistic. The bootstrap intervals given
in Table 4.3 are random, since if the bootstrap is repeated, the answers will be a
little different. The variability in the end-points of the interval can be decreased by
increasing the number B of bootstrap samples.

4.6.2 Nonlinear Functions of Parameters

One of the important uses of the bootstrap is to get estimates of error variability
in problems where standard theory is either missing, or, equally often, unknown
to the analyst. Suppose, for example, we wanted to get a confidence interval for
the ratio β1/β2 in the transactions data. This is the ratio of the time for a type 1
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transaction to the time for a type 2 transaction. The point estimate for this ratio is
just β̂1/β̂2, but we will not learn how to get a normal-theory confidence interval for
a nonlinear function of parameters like this until Section 6.1.2. Using the bootstrap,
this computation is easy: just compute the ratio in each of the bootstrap samples and
then use the percentiles of the bootstrap distribution to get the confidence interval.
For these data, the point estimate is 2.68 with 95% bootstrap confidence interval
from 1.76 to 3.86, so with 95% confidence, type 1 transactions take on average
from about 1.76 to 3.86 times as long as do type 2 transactions.

4.6.3 Predictors Measured with Error

Predictors and the response are often measured with error. While we might have
a theory that tells us the mean function for the response, given the true values
of the predictors, we must fit with the response, given the imperfectly measured
values of the predictors. We can sometimes use simulation to understand how the
measurement error affects our answers.

Here is the basic setup. We have a true response Y ∗ and a set of terms X∗ and
a true mean function

E(Y ∗|X∗ = x∗) = β ′x∗

In place of Y ∗ and X∗ we observe Y = Y ∗ + δ and X = X∗ + η, where δ and η

are measurement errors. If we fit the mean function

E(Y |X = x) = γ ′x

what can we say about the relationship between β and γ ? While there is a sub-
stantial theoretical literature on this problem (for example, Fuller, 1987), we shall
attempt to get an answer to this question using simulation. To do so, we need to
know something about δ and η.

Catchability of Northern Pike
One of the questions of interest to fisheries managers is the difficulty of catching a
fish. A useful concept is the idea of catchability. Suppose that Y ∗ is the catch for
an angler for a fixed amount of effort, and X∗ is the abundance of fish available
in the population that the angler is fishing. Suppose further that

E(Y ∗|X∗ = x∗) = β1x
∗ (4.17)

If this mean function were to hold, then we could define β1 to be the catchability
of this particular fish species.

The data we use comes from a study of Northern Pike, a popular game fish
in inland lakes in the United States. Data were collected on 16 lakes by Rob
Pierce of the Minnesota Department of Natural Resources. On each lake we have
a measurement called CPUE or catch per unit effort, which is the catch for a
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specific amount of fishing effort. Abundance on the lake is measured using the fish
Density that is defined to be the number of fish in the lake divided by the surface
area of the lake. While surface area can be determined with reasonable accuracy,
the number of fish in the lake is estimated using a capture–recapture experiment
(Seber, 2002). Since both CPUE and Density are experimentally estimated, they
both have standard errors attached to them. In terms of (4.17), we have observed
CPUE = Y ∗ + δ and Density = x∗ + η. In addition, we can obtain estimates of the
standard deviations of the δs and ηs from the properties of the methods used to
find CPUE and Density. The data file npdata.txt includes both the CPUE and
Density and their standard errors SECPUE and SEdens.

Figure 4.5 is the plot of the estimated CPUE and Density. Ignoring the lines on
the graph, a key characteristic of this graph is the large variability in the points. A
straight line mean function seems plausible for these data, but many other curves
are equally plausible. We continue under the assumption that a straight-line mean
function is sensible.

The two lines on Figure 4.5 are the ols simple regression fits through the origin
(solid line) and not through the origin (dashed line). The F -test comparing them
has a p-value of about 0.13, so we are encouraged to use the simpler through-
the-origin model that will allow us to interpret the slope as the catchability. The
estimate is β̂1 = 0.34 with standard error 0.035, so a 95% confidence interval for
β1 ignoring measurement errors is (0.250, 0.0399).

To assess the effect of measurement error on the estimate and on the confidence
interval, we first make some assumptions. First, we suppose that the estimated stan-
dard errors of the measurements are the actual standard errors of the measurements.
Second, we assume that the measurement errors are independently and normally
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FIG. 4.5 Scatterplot of estimated CPUE versus Density for the northern pike data. Solid line is the
ols mean function through the origin, and the dashed line is the ols line allowing an intercept.
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TABLE 4.4 Simulation Summary for the Northern Pike
Data

Point Estimate 95% ConfidenceInterval

Normal theory 0.324 (0.250, 0.399)
Simulation 0.309 (0.230, 0.387)

distributed. Neither of these assumptions are checkable from these data, but for the
purposes of a simulation these seem like reasonable assumptions.

The simulation proceeds as follows:

1. Generate a pseudo-response vector given by Ỹ = CPUE + δ̃, where the i-th
element of δ̃ is a normal random number with mean zero and variance given
by the square of the estimated standard error for the i-th CPUE value. In this
problem, each observation has its own estimated error variance, but in other
problems there may be a common estimate for all elements of the response.

2. Repeat step 1, but for the predictor to get x̃ = Density + η̃.

3. Fit the simple regression model of Ỹ on x̃ and save the estimated slope.

4. Repeat steps 1–3 B times. The average of the B values of the slope estimate
is an estimate of the slope in the problem with no measurement error. A con-
fidence interval for the slope is found using the percentile method discussed
with the bootstrap.

The samples generated in steps 1–2 are not quite from the right distribution, as
they are centered at the observed values of CPUE and Density rather than the
unobserved values of Y ∗ and x∗, but the observed values estimate the unobserved
true values, so this substitution adds variability to the results, but does not affect
the validity of the methodology.

The results for B = 999 simulations are summarized in Table 4.4. The results of
the normal theory and the simulation that allows for measurement error are remark-
ably similar. In this problem, we judge the measurement error to be unimportant.

PROBLEMS

4.1. Fit the regression of Soma on AVE, LIN and QUAD as defined in Section 4.1
for the girls in the Berkeley Guidance Study data, and compare to the results
in Section 4.1.

4.2.

4.2.1. Starting with (4.10), we can write

yi = µy + ρxy

σy

σx

(xi − µx) + εi



PROBLEMS 93

Ignoring the error term εi , solve this equation for xi as a function of
yi and the parameters.

4.2.2. Find the conditional distribution of xi |yi . Under what conditions is
the equation you obtained in Problem 4.2.1, which is computed by
inverting the regression of y on x, the same as the regression of
x on y?

4.3. For the transactions data described in Section 4.6.1, define A = (T1 + T2)/2
to be the average transaction time, and D = T1 − T2, and fit the following
four mean functions

M1 : E(Y |T1, T2) = β01 + β11T1 + β21T2

M2 : E(Y |T1, T2) = β02 + β32A + β42D

M3 : E(Y |T1, T2) = β03 + β23T2 + β43D

M4 : E(Y |T1, T2) = β04 + β14T1 + β24T2 + β34A + β44D

4.3.1. In the fit of M4, some of the coefficients estimates are labelled as
either “aliased” or as missing. Explain what this means.

4.3.2. What aspects of the fitted regressions are the same? What is different?

4.3.3. Why is the estimate for T2 different in M1 and M3?

4.4. Interpreting coefficients with logarithms
4.4.1. For the simple regression with mean function E(log(Y )|X = x) =

β0 + β1 log(x), provide an interpretation for β1 as a rate of change in
Y for a small change in x.

4.4.2. Show that the results of Section 4.1.7 do not depend on the base of
the logarithms.

4.5. Use the bootstrap to estimate confidence intervals of the coefficients in the
fuel data.

4.6. Windmill data For the windmill data in the data file wm1.txt discussed in
Problem 2.13, page 45, use B = 999 replications of the bootstrap to estimate
a 95% confidence interval for the long-term average wind speed at the candi-
date site and compare this to the prediction interval in Problem 2.13.5. See the
comment at the end of Problem 2.13.4 to justify using a bootstrap confidence
interval for the mean as a prediction interval for the long-term mean.

4.7. Suppose we fit a regression with the true mean function

E(Y |X1 = x1, X2 = x2) = 3 + 4x1 + 2x2

Provide conditions under which the mean function for E(Y |X1 = x1) is linear
but has a negative coefficient for x1.
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4.8. In a study of faculty salaries in a small college in the Midwest, a linear
regression model was fit, giving the fitted mean function

E( ̂Salary|Sex) = 24697 − 3340Sex (4.18)

where Sex equals one if the faculty member was female and zero if male.
The response Salary is measured in dollars (the data are from the 1970s).

4.8.1. Give a sentence that describes the meaning of the two estimated
coefficients.

4.8.2. An alternative mean function fit to these data with an additional term,
Years, the number of years employed at this college, gives the esti-
mated mean function

E( ̂Salary|Sex, Years) = 18065 + 201Sex + 759Years (4.19)

The important difference between these two mean functions is that the
coefficient for Sex has changed signs. Using the results of this chapter,
explain how this could happen. (Data consistent with these equations
are presented in Problem 6.13).

4.9. Sleep data
4.9.1. For the sleep data described in Section 4.5, describe conditions under

which the missing at random assumption is reasonable. In this case,
deleting the partially observed species and analyzing the complete data
can make sense.

4.9.2. Describe conditions under which the missing at random assumption
for the sleep data is not reasonable. In this case, deleting partially
observed species can change the inferences by changing the definition
of the sampled population.

4.9.3. Suppose that the sleep data were fully observed, meaning that values
for all the variables were available for all 62 species. Assuming that
there are more than 62 species of mammals, provide a situation where
examining the missing at random assumption could still be important.

4.10. The data given in longley.txt were first given by Longley (1967) to
demonstrate inadequacies of regression computer programs then available.
The variables are:

Def = GNP price deflator, in percent

GNP = GNP, in millions of dollars

Unemployed = Unemployment, in thousands of persons

Armed.Forces = Size of armed forces, in thousands

Population = Population 14 years of age and over, in thousands
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Employed = Total derived employment in thousands the response

Year = Year

4.10.1. Draw the scatterplot matrix for these data excluding Year, and explain
from the plot why this might be a good example to illustrate numer-
ical problems of regression programs. (Hint: Numerical problems
arise through rounding errors, and these are most likely to occur
when terms in the regression model are very highly correlated.)

4.10.2. Fit the regression of Employed on the others excluding Year.

4.10.3. Suppose that the values given in this example were only accurate to
three significant figures (two figures for Def). The effects of mea-
surement errors can be assessed using a simulation study in which
we add uniform random values to the observed values, and recom-
pute estimates for each simulation. For example, Unemp for 1947
is given as 2356, which corresponds to 2,356,000. If we assume
only three significant figures, we only believe the first three digits.
In the simulation we would replace 2356 by 2356 + u, where u is a
uniform random number between −5 and +5. Repeat the simulation
1000 times, and on each simulation compute the coefficient estimates.
Compare the standard deviation of the coefficient estimates from the
simulation to the coefficient standard errors from the regression on
the unperturbed data. If the standard deviations in the simulation are
as large or larger than the standard errors, we would have evidence
that rounding would have important impact on results.


