Review

Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity

Shuting Shi, Haoru Zhu, Xinyu Xia, Zhihui Liang, Xuehu Ma, Bingbing Sun

A R T I C L E I N F O
Article history:
Received 1 November 2018
Received in revised form 2 April 2019
Accepted 18 April 2019
Available online 29 April 2019

Keywords:
Adjuvant
Aluminum salt
Structure-activity relationship
Immunogenicity

A B S T R A C T
In conjugate, inactivated, recombinant, and toxoid vaccines, adjuvants are extensively and essentially used for enhanced and long-lasting protective immune responses. Depending on the type of diseases and immune responses required, adjuvants with different design strategies are developed. With aluminum salt-based adjuvants as the most used ones in commercial vaccines, other limited adjuvants, e.g., AS01, AS03, AS04, CpG ODN, and MF59, are used in FDA-approved vaccines for human use. In this paper, we review the uses of different adjuvants in vaccines including the ones used in FDA-approved vaccines and vaccines under clinical investigations. We discuss how adjuvants with different formulations could affect the magnitude and quality of adaptive immune response for optimized protection against specific pathogens. We emphasize the molecular mechanisms of various adjuvants, with the aim to establish structure-activity relationships (SARs) for designing more effective and safer adjuvants for both preventative and therapeutic vaccines.

© 2019 Elsevier Ltd. All rights reserved.

Contents

1. Introduction ... 3168
2. Adjuvants used in FDA-approved vaccines and vaccines under clinical investigation. ... 3169
 2.1. Aluminum salt-based vaccine adjuvants .. 3169
 2.1.1. Depot effect ... 3170
 2.1.2. Enhanced antigen uptake by antigen presenting cells 3170
 2.1.3. The NLRP3 inflammasome activation .. 3170
 2.1.4. Stimulation and differentiation of CD4+ T cells 3170
 2.1.5. Perturbation of dendritic cell membrane ... 3170
 2.1.6. Complement activation ... 3171
 2.2. Emulsion adjuvants ... 3171
 2.2.1. MF59 ... 3171
 2.2.2. AS03 ... 3171
 2.3. TLR agonist-based adjuvants ... 3172
 2.3.1. CpG-ODN ... 3172
 2.3.2. AS04 ... 3172
 2.4. AS01B ... 3173
 2.5. Adjuvants under clinical investigation .. 3174
 2.5.1. Lipid-based adjuvants ... 3174
 2.5.2. Emulsions ... 3174
 2.5.3. Saponin ... 3174
 2.5.4. Nucleotide ... 3174

* Corresponding author at: Dalian University of Technology, No. 2 Linggong Road, Dalian, Liaoning 116024, China.
E-mail address: bingbingsun@dlut.edu.cn (B. Sun).
1 Equal contribution.

https://doi.org/10.1016/j.vaccine.2019.04.055
0264-410X/© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Infectious diseases seriously threaten human health. According to the WHO’s data in 2018, the spread of influenza results in three to five million cases of severe illness and 290,000–650,000 deaths every year [1]. It is reported that 257 million people are hepatitis B virus surface antigen positive, which resulted in 887,000 deaths in 2015 [2]. In face of these infectious diseases, the introduction of immunization significantly decreased the prevalence and death rate of infectious diseases, and some of them were near eradication or even eliminated. For example, after vaccination efforts, smallpox was declared eradicated worldwide in 1980. The uses of inactivated oral poliovirus vaccines reduced poliomyelitis worldwide by 99.99% in 2018 [3]. In addition, the deaths caused by tetanus and diphtheria decreased by 83.4% and 73.8% in 2015, respectively. At the early stage of vaccine development, live or attenuated vaccines dominate. For example, rabies vaccines designed from whole viruses were used without adjuvants at the end of the 19th century [4]. The French scientist Louis Pasteur developed the first effective bacterial vaccine against anthrax for use in livestock and humans in 1881. Currently, there were still 17 FDA-approved vaccines that contain live viruses, e.g., BCG vaccine, measles and mumps virus vaccine, rotavirus vaccine, etc. The concept of adjuvant was proposed at the beginning of the 20th century when traditional vaccine failed to produce an effective immune response with diphtheria and tetanus purified toxoids. Adjuvant is formulated as a part of a vaccine that aims to enhance a stronger immune response. The components of adjuvants have gone through a process changing from natural ingredients to artificial synthetic compounds, and the discovery of the adjuvant effect of aluminum salts in 1926 is a milestone (Fig. 1). Thus far, adjuvants employed in human vaccines licensed by FDA include aluminum salts, oil-in-water emulsions (MF59 and AS03), AS04 (3'-O-deacylated monophosphoryl lipid A (MPL) plus aluminum salts), CpG ODN and AS01 (MPL and saponin QS-21 formulated in liposomes) (Table 1).

In this paper, we comprehensively reviewed the adjuvants both currently used in FDA-approved vaccines as well as the ones under experimental and clinical investigations, with a focus on the mechanisms regarding how these adjuvants induce immunogenicity. We aim to provide guidance on the design of effective vaccine adjuvants, including optimization of adjuvant formulations, design of new adjuvants and their clinical transformations, which will benefit the development of both preventive and therapeutic vaccines.

Fig. 1. Timeline of major events in vaccine adjuvants development. The development of vaccines has continuously promoted the advancement of adjuvants from natural components such as RNA and DNA to synthetic engineered vaccine adjuvants.
Aluminum-containing adjuvants have been widely used in diphtheria, tetanus, and hepatitis B vaccines, etc. Currently, among the human vaccines approved by FDA, there are 25 aluminum-containing vaccines. In the 1920s, the United States used to see as many as 200,000 cases of diphtheria every year, which urged the scientists to develop more effective vaccines to fight against this severe disease [5]. However, the diphtheria toxoid alone could not produce sufficient antibody response, and significant efforts were placed to seek for methods that could induce longer immune responses. Glenny et al. found that adding potassium aluminum sulfate in diphtheria vaccines could significantly improve the effectiveness of vaccines, resulting in longer antigenic effect and stronger antibody production [6]. Since then, aluminum salts have been used in vaccines against various infectious diseases. The types of aluminum salt-based adjuvants in FDA approved vaccines include aluminum hydroxide, aluminum phosphate, and amorphous aluminum hydroxyphosphate sulfate (AAHS). In addition, TWINRIX® and PEDIARIX® contain both aluminum hydroxide and aluminum phosphate (Table 2).

Depending on the types of aluminum salts, they have distinctive physicochemical properties, which have important implications for their immunomodulatory effects [7]. Commercial aluminum hydroxide adjuvant is chemically crystalline aluminum oxihydroxide (AlOOH), and composed of needle-like nanoparticles with a primary diameter of 20 nm and length of 100–400 nm [7,8]. AlOOH adjuvants form porous and irregular aggregates that can be up to 20 μm in diameter [9]. In contrast, aluminum phosphate is chemically amorphous aluminum hydroxyphosphate, Al(OH)₃(PO₄)y. Primary aluminum phosphate particles are a network of primary aluminum hydroxide, aluminum phosphate, and amorphous aluminum hydroxyphosphate sulfate (AAHS). In addition, TWINRIX® and PEDIARIX® contain both aluminum hydroxide and aluminum phosphate (Table 2).

Table 1

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Trade Name</th>
<th>Type</th>
<th>Adjuvant</th>
<th>Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Anthrax Vaccine Adsorbed</td>
<td>Biothrax</td>
<td>N/A</td>
<td>Aluminium hydroxide</td>
<td>Intramuscular/ Subcutaneous</td>
</tr>
<tr>
<td>2 Diphtheria & Tetanus Toxoids Adsorbed & Tetanus Toxoids & Acellular Pertussis Vaccine Adsorbed</td>
<td>Infanrix</td>
<td>Toxoid</td>
<td>Aluminum hydroxide</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>3 Diphtheria & Tetanus Toxoids & Acellular Pertussis Vaccine Adsorbed</td>
<td>DPATACEL</td>
<td>Toxoid</td>
<td>Aluminum hydroxide</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>4 Diphtheria & Tetanus Toxoids & Acellular Pertussis Vaccine Adsorbed</td>
<td>Pediarix</td>
<td>Combined (Toxoid, Recombined, Inactivated)</td>
<td>Aluminum phosphate</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>5 Diphtheria & Tetanus Toxoids & Acellular Pertussis Vaccine Adsorbed, Hepatitis B (recombinant) & Inactivated Poliovirus Vaccine Combined Adsorbed</td>
<td>KINRIX</td>
<td>Combined (Toxoid, Inactivated)</td>
<td>Aluminum hydroxide</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>6 Diphtheria and Tetanus Toxoids and Acellular Pertussis Adsorbed and Inactivated Poliovirus Vaccine</td>
<td>Quadracel</td>
<td>Combined (Toxoid, Inactivated)</td>
<td>Aluminum hydroxide</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>7 Diphtheria and Tetanus Toxoids and Acellular Pertussis Adsorbed and Inactivated Poliovirus Vaccine</td>
<td>PedvaxHIB</td>
<td>Conjugate</td>
<td>Amorphous aluminum hydroxyphosphate sulfate</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>8 Diphtheria and Tetanus Toxoids and Acellular Pertussis Adsorbed, Inactivated Poliovirus and Haemophilus b Conjugate (Tetanus Toxoid Conjugate) Vaccine</td>
<td>Recombivax HB</td>
<td>Inactivated</td>
<td>Aluminum hydroxide & Aluminum phosphate</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>9 Human Papillomavirus Quadrivalent (Types 6, 11, 16, 18) Vaccine, Recombinant</td>
<td>Gardasil 9</td>
<td>Recombinant</td>
<td>Aluminium hydroxide & Aluminum phosphate</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>10 Human Papillomavirus Bivalent (Types 16, 18) Vaccine, Recombinant</td>
<td>Cervarix</td>
<td>Inactivated</td>
<td>Aluminium hydroxide & Aluminum phosphate</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>11 Human Papillomavirus Bivalent (Types 16, 18) Vaccine, Recombinant</td>
<td>N/A</td>
<td>Inactivated</td>
<td>Aluminium hydroxide & Aluminum phosphate</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>12 Human Papillomavirus Bivalent (Types 16, 18) Vaccine, Recombinant</td>
<td>DIARO</td>
<td>Inactivated</td>
<td>Aluminium hydroxide & Aluminum phosphate</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>13 Human Papillomavirus Bivalent (Types 16, 18) Vaccine, Recombinant</td>
<td>BEXSERO</td>
<td>Recombinant</td>
<td>Aluminium hydroxide & Aluminum phosphate</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>14 Human Papillomavirus Bivalent (Types 16, 18) Vaccine, Recombinant</td>
<td>TRUMENBA</td>
<td>Recombinant</td>
<td>Aluminium hydroxide & Aluminum phosphate</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>15 Human Papillomavirus Bivalent (Types 16, 18) Vaccine, Recombinant</td>
<td>Prevnar 13</td>
<td>Conjugate</td>
<td>Protein conjugate</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>16 Human Papillomavirus Bivalent (Types 16, 18) Vaccine, Recombinant</td>
<td>TDVAX</td>
<td>Conjugate</td>
<td>Protein conjugate</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>17 Human Papillomavirus Bivalent (Types 16, 18) Vaccine, Recombinant</td>
<td>TENIVAC</td>
<td>Toxoid and Inactivated Toxin</td>
<td>Protein conjugate</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>18 Human Papillomavirus Bivalent (Types 16, 18) Vaccine, Recombinant</td>
<td>Adacel</td>
<td>Toxoid and Inactivated Toxin</td>
<td>Protein conjugate</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>19 Human Papillomavirus Bivalent (Types 16, 18) Vaccine, Recombinant</td>
<td>Boostrix</td>
<td>Toxoid and Inactivated Toxin</td>
<td>Protein conjugate</td>
<td>Intramuscular</td>
</tr>
</tbody>
</table>

2. Adjuvants used in FDA-approved vaccines and vaccines under clinical investigation

2.1. **Aluminium salt-based vaccine adjuvants**

Aluminum-containing adjuvants have been widely used in diphtheria, tetanus, and hepatitis B vaccines, etc. Currently, among the human vaccines approved by FDA, there are 25 aluminum-containing vaccines. In the 1920s, the United States used to see as many as 200,000 cases of diphtheria every year, which urged the scientists to develop more effective vaccines to fight against this severe disease [5]. However, the diphtheria toxoid alone could not produce sufficient antibody response, and significant efforts were placed to seek for methods that could induce longer immune responses. Glenny et al. found that adding potassium aluminum sulfate in diphtheria vaccines could significantly improve the effectiveness of vaccines, resulting in longer antigenic effect and stronger antibody production [6]. Since then, aluminum salts have been used in vaccines against various infectious diseases. The types of aluminum salt-based adjuvants in FDA approved vaccines include aluminum hydroxide, aluminum phosphate, and amorphous aluminum hydroxyphosphate sulfate (AAHS). In addition, TWINRIX® and PEDIARIX® contain both aluminum hydroxide and aluminum phosphate (Table 2).

Depending on the types of aluminum salts, they have distinctive physicochemical properties, which have important implications for their immunomodulatory effects [7]. Commercial aluminum hydroxide adjuvant is chemically crystalline aluminum oxyhydroxide (AlOOH), and composed of needle-like nanoparticles with a primary diameter of 20 nm and length of 100–400 nm [7,8]. AlOOH adjuvants form porous and irregular aggregates that can be up to 20 μm in diameter [9]. In contrast, aluminum phosphate is chemically amorphous aluminum hydroxyphosphate, Al(OH)₃(PO₄)y. Primary aluminum phosphate particles are a network of platy particles with diameter of 50 nm, and they form 3 μm loose aggregates [7,8]. Another commercially available aluminum-based adjuvant is amorphous aluminum hydroxyphosphate sulfate (AAHS), which is licensed to Merck. AAHS appear as meshes under the transmission electron microscope [10]. Depending on the types of aluminum salts, their surface charges have notable differences.
promote the interaction of antigens with cells, and further enhance the surface of adjuvants, which present antigens to immune cells, antigens at the site of injection. Soluble antigens are adsorbed on are typical short-term depots, which could continuously release
eral mechanisms were proposed that explain the immunostimula-
Types of aluminum salts used in human vaccines.

<table>
<thead>
<tr>
<th>Adjuvant</th>
<th>Product Name</th>
<th>Trade Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum hydroxide</td>
<td>Menactra Meningococcal Group B Vaccine</td>
<td>BEXSERO</td>
</tr>
<tr>
<td>Anthrax Vaccine</td>
<td>Biothrax</td>
<td></td>
</tr>
<tr>
<td>Diphtheria & Tetanus Toxoids &</td>
<td>Infanrix</td>
<td></td>
</tr>
<tr>
<td>Acellular Pertussis Vaccine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diphtheria and Tetanus Toxoids</td>
<td>KINRIX</td>
<td></td>
</tr>
<tr>
<td>and Acellular Pertussis and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poliovirus Vaccine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitis A Vaccine</td>
<td>Havrix</td>
<td></td>
</tr>
<tr>
<td>Hepatitis B Vaccine</td>
<td>Engerix-B</td>
<td></td>
</tr>
<tr>
<td>Japanese Encephalitis Virus</td>
<td>IXIARDO</td>
<td></td>
</tr>
<tr>
<td>Vaccine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetanus Toxoid, Reduced</td>
<td>Boostrix</td>
<td></td>
</tr>
<tr>
<td>Diphtheria Toxoid and Acellular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pertussis Vaccine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS04</td>
<td>Human Papillomavirus Bivalent (Types 16, 18)</td>
<td>Cervarix</td>
</tr>
<tr>
<td>Aluminum phosphate</td>
<td>Diphtheria & Tetanus Toxoids & Acellular Pertussis</td>
<td>DAPTACEL</td>
</tr>
<tr>
<td>Vaccine</td>
<td>Diphtheria & Tetanus Toxoids</td>
<td>N/A</td>
</tr>
<tr>
<td>and Acellular Pertussis and</td>
<td>Quadracel</td>
<td></td>
</tr>
<tr>
<td>Poliovirus Vaccine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diphtheria and Tetanus Toxoids</td>
<td>Pentacel</td>
<td></td>
</tr>
<tr>
<td>and Acellular Pertussis and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poliovirus Vaccine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amorphous aluminum hydroxyphe-</td>
<td>Hepatitis A Vaccine</td>
<td>VAQTA</td>
</tr>
<tr>
<td>sulate (AAHS)</td>
<td>Haemophilus b Conjugate Vaccine</td>
<td>PedvaxHB</td>
</tr>
<tr>
<td>Pneumococcal 13-valent</td>
<td></td>
<td>Recombivax HB</td>
</tr>
<tr>
<td>Conjugate Vaccine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetanus & Diphtheria Toxoids for</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Adult Use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetanus & Diphtheria Toxoids for</td>
<td>TENVIVAC</td>
<td></td>
</tr>
<tr>
<td>Adult Use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetanus Toxoid, Reduced</td>
<td>Adacel</td>
<td></td>
</tr>
<tr>
<td>Diphtheria Toxoid and Acellular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pertussis Vaccine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum hydroxide &</td>
<td>Hepatitis A Vaccine</td>
<td>VAQTA</td>
</tr>
<tr>
<td>Aluminum phosphate</td>
<td>Haemophilus b Conjugate Vaccine</td>
<td>PedvaxHB</td>
</tr>
<tr>
<td></td>
<td>Hepatitis B Vaccine</td>
<td>Recombivax HB</td>
</tr>
<tr>
<td></td>
<td>Human Papillomavirus 9-valent Vaccine</td>
<td>Gardasil 9</td>
</tr>
<tr>
<td></td>
<td>Human Papillomavirus Quadrivalent (Types 6, 11, 16, 18) Vaccine</td>
<td>Gardasil</td>
</tr>
<tr>
<td></td>
<td>Aluminum hydroxide &</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diphtheria & Tetanus Toxoids & Acellular Pertussis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vaccine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hepatitis A and Hepatitis B Vaccine</td>
<td>Twinrix</td>
</tr>
</tbody>
</table>

For example, aluminum hydroxide is positively charged, while aluminum phosphate carries negative charge and AAHS carries scarcely charge in physiological solution (pH = 7.4) [10–12]. The points of zero charge are 5.0, 7.4, and 11.1 for aluminum phosphate, AAHS and aluminum hydroxide, respectively [10,11]. Substantial amounts of mechanistic studies have demonstrated that the aluminum salt-based adjuvants stimulate the Th2 immune responses, with minimum or no Th1 responses [8]. Thus far, several mechanisms were proposed that explain the immunostimulatory activity of aluminum salts [7].

2.1.1. Depot effect

It is traditionally believed that aluminum salt-based adjuvants are typical short-term depots, which could continuously release antigens at the site of injection. Soluble antigens are adsorbed on the surface of adjuvants, which present antigens to immune cells, promote the interaction of antigens with cells, and further enhance the intensity of the immune response [13]. Glenny et al., were the first to propose the formation of depot [14,15]. However, the depot effect has been challenged. Biodistribution studies of 14C-labeled tetanus toxoids adsorbed onto aluminum phosphate showed that the antigen in the injection site was eliminated rapidly within a few hours [16]. Hutchison et al. also reported that antigen-aluminum depot (ear) ablation did not significantly affect antibody responses [17].

2.1.2. Enhanced antigen uptake by antigen presenting cells

Antigens are adsorbed onto the adjuvant, and the binding of antigen to aluminum salts is believed to be a strong electrostatic interaction that enhances antigen uptake and presentation by antigen presenting cells (APCs) [18,19]. Adsorption of antigen enables it to maintain a high local concentration within a certain period of time, which is effective for antigen uptake [20]. Mannhalter et al. demonstrated that aluminum hydroxide adsorbed by tetanus toxoid enhanced antigen uptake and regulated the level of the antigen presentation [21]. Ghimire et al. demonstrated aluminum could prolong the duration and magnitude of antigen presentation by decreasing the degradation rate of internalized antigen [22]. Furthermore, the experimental data of aluminum-containing adjuvants with OVA confirmed that they could enhance uptake of antigen [23].

2.1.3. The NLRP3 inflammasome activation

Aluminum salts could stimulate the NLRP3 inflammasome activation. Studies have demonstrated that aluminum salts were capable of inducing NLRP3 inflammasome activation and stimulating IL-1β and IL-18 productions [9,15], which may explain their ability to induce local inflammation, antigen presenting cell (APC) recruitment, dendritic cell maturation, enhanced antigen uptake, and stimulation and differentiation of T cells [7,24]. Eisenbarth et al. demonstrated that in NLRP3 knockout mice, aluminum adsorbed by ovalbumin (OVA) could not produce antigen-specific antibody [25]. Additionally, studies have shown that the shape, crystallinity and surface functionalization of engineered AlOOH nanoparticles play critical roles in stimulate NLRP3 inflammasome that could quantitatively instruct the adjuvanticity in vivo. Further study showed that the NLRP3 inflammasome activation induced by engineered AlOOH involved ROS production, damage of lysosome and release of cathepsin B [24,26]. However, Franchi et al. proposed a different perspective and showed that the induction of antigen-specific IgG production was independent of the NLRP3 inflammasome when adjuvanted with aluminum [27]. The role of NLRP3 inflammasome activation in aluminum’s adjuvanticity is still under debate.

2.1.4. Stimulation and differentiation of CD4+ T cells

T cells are one type of lymphocyte that plays a key role in the induction of immunity. T cell differentiation is effectively activated by three molecular signals provided by mature dendritic cells and the local differentiation environment [8]. The first two signals are provided by antigen presentation and costimulatory molecules [7,28]. For the third signal, it is shown that aluminum could induce IL-1β and IL-18 productions in dendritic cells (DCs) [23]. DCs then promote the differentiation of effector T cells [29]. Studies have demonstrated that aluminum-based adjuvants were able to induce the differentiation of CD4+ T cells into Th2 cells [23,30].

2.1.5. Perturbation of dendritic cell membrane

By using atomic force microscopy, Flach et al. demonstrated that aluminum could interact with DC membrane, but are not absorbed. The experimental alum (including CsAl crystal, Inject Alum and Alhydrogel) all enhanced OVA-specific antibody titers in mice [31]. The aluminum salts do not enter the cell, however,
they delivers soluble antigen across the cell membrane. They induce cell membrane lipid reordering, which further lead to antigen uptake and upregulation of CD4+ T cells [31].

2.1.6. Complement activation
The experiment in the guniea pig demonstrated that complement activation by aluminum hydroxide could induce chronic inflammation [32]. Complement factors could regulate immune responses of B cells [33]. Dendritic cells could recruit and deposit complexes of antigen-adjuvant and antibody by CD35 receptors [20]. The receptors on B cells and dendritic cells form antigen-adjuvant-antibody complexes to enhance signal transmission and facilitate immune effects [20]. Therefore, aluminum salts as adjuvants promote complement activation, which enhance immune responses through B cells and dendritic cells [20] (Fig. 2).

2.2. Emulsion adjuvants
2.2.1. MF59
In the late 1980s, new protein antigens could be produced through recombinant DNA technology, however, the majority of recombinant antigens appears to be weakly immunogenic when combined with the traditional aluminum adjuvants. Thus, numerous studies had intended to design water-in-oil adjuvants that could provide potent immunogenicity similar to the Complete Freund’s adjuvant (CFA). However, the undesirable side effect of CFA limits its applications [34]. Key turning point occurred when the emulsions used in the adjuvant were changed from water-in-oil to oil-in-water, which not only significantly improved the tolerability of the adjuvant, but also bettered the ease of use due to reduced viscosity [35]. MF59 is composed of squalene, polysorbate 80, sorbitan trioleate and trisodium citrate dehydrate. The oil phase used in the formulation is squalene that is both biodegradable and biocompatible [36]. MF59 became the first oil-in-water adjuvant approved for human vaccine in Italy in 1997 [37]. Currently, MF59 is included in licensed products in 30 countries [35]. MF59 is mainly used in influenza vaccines since studies have found that the addition of MF59 could significantly promote the production of antibody against the antigen and the boost of both Th2 and Th1 immune responses [38,39]. Contrary to the previously belief that MF59 established an antigen depot at injection site [40], it was believed to enhance immune responses by a few factors. It enhances antigen uptake at the injection site and the major target cell types could be monocytes, macrophages, and dendritic cells [41]. These activated cells then could secret a complex of chemokines to recruit more immune cells to the injection site, which helps to form an immunocompetent environment for enhanced antigen transportation to the draining lymph nodes [42]. A variety of APCs with different antigen processing ways will lead to a more competent immune response, including the increased engulfing of antigen and the accumulation of antigens in the draining lymph nodes contributing to the facilitated transportation of the APCs [43] (Fig. 3).

2.2.2. AS03
AS03 is another oil-in-water emulsion-based adjuvant. The European Commission granted marketing authorization for AS03-adjuvanted Pandemrix in 2009 [44]. AS03-adjuvanted influenza A (H5N1) monovalent vaccine was licensed by FDA in 2013 [45]. Since then, AS03 has begun to play an increasingly important role in influenza vaccines, as well as in malaria vaccines [46,47]. AS03 is composed of surfactant polysorbate 80 and two biodegradable oils, i.e., squalene and DL-α-tocopherol [48]. The use of DL-α-tocopherol, the most bioavailable form of vitamin E, distinguishes AS03 from MF59. In order to elucidate the contribution of DL-α-tocopherol in AS03, studies were designed to compare the effects of AS03 and an equivalent emulsion where DL-α-tocopherol was omitted by using in vitro and in vivo models. By measuring the secreted cytokines, immune cell recruitments and antigen uptake, it was concluded that the omission of DL-α-tocopherol changed the profile of innate immune response and led to a lower antibody response [49]. Study showed that AS03 could induce cytokine and chemokine productions in muscle and draining lymph nodes (dLN), provoking migration of monocytes, DCs and granulocytes into dLN. In addition, AS03 is found to be able to stimulate CD4+ T cell specific immune response, which might account for persisting neutralizing antibody productions and higher frequency of memory B cells [50] (Fig. 3).
2.3. TLR agonist-based adjuvants

2.3.1. CpG-ODN

After the first report in 1995 showing that cytosine phosphoguanosine (CpG) motifs in bacterial DNA could enhance immune stimulation [51], extensive studies had been performed on bacterial DNA and its synthetic mimic, CpG oligodeoxynucleotides (CpG ODN) [52]. CpG ODNs are synthetic DNA molecules, which are ODNs with phosphorothioate backbone, containing unmethylated CpG motifs [53]. CpG motifs occur at higher frequency in bacterial and viral DNA than vertebrate DNA [54]. Depending on their structure and biological functions, CpG-containing sequences can be divided into different classes, i.e., classes A, B, C, P and S [55]. Among these, CpG-B class, e.g., CpG 1018, 1826, 2007, is the most commonly used one in pre-clinical and clinical trials [56]. HEPLISAV-B, a hepatitis B vaccine approved by the FDA in 2017, is the first vaccine adjuvanted with CpG ODN 1018 [56]. Compared to Engerix-B/C210 that is adjuvanted with aluminum hydroxide, HEPLISAV-B-immunized group induced more rapid and durable antibody responses [56]. CpG ODN 1018 in combination with hepatitis B surface antigen (HBsAg) significantly improves immunogenicity [56]. Moreover, CpG ODN 7909-adjuvanted malaria vaccine and hepatitis B virus vaccine are undergoing phase 1 and 2 trial, respectively [57,58].

CpG ODN is a strong adjuvant for inducing Th1 responses, supporting by its ability to induce strong generation of cytotoxic T lymphocyte (CTL) and IFN-γ secretion [59]. The activation of TLR9 by CpG ODN enhances specific humoral and cellular immune responses to antigens [55,60]. Considering such a unique characteristic, CpG ODN can be used as adjuvant for vaccination via intra-muscular, subcutaneous, oral and intranasal routes [60,61]. As efficient vaccine adjuvants, CpG ODN can promote the immunostimulatory effect of antigens, activate APC [60], and speed up the immune responses [54]. CpG ODNs could facilitate the expression of MHC, CD40 and CD86 on pDCs and enhance antigen processing and presentation [61]. Sparwasser et al. demonstrated that CpG-DNA could activate immature antigen-presenting DC to professional APC [62]. Another report by Klinman et al. demonstrated that CpG-adjuvanted anthrax vaccine could accelerated serum antibody response and the induction of protective immunity [63] (Fig. 4).

2.3.2. AS04

Aluminum salts have been used as platforms for the discovery of novel adjuvants, consisting of various Toll-like receptor (TLR) agonists adsorbed on them. One of these, known as the adjuvant system 04 (AS04), has been used in HPV and HBV vaccines. Among these, CERVARIX, a human Papillomavirus bivalent vaccine, is the first AS04-adjuvanted vaccine approved by FDA in 2009 [64].

AS04 is prepared from 3′-O-deacetylated monophosphoryl lipid A (MPL) and an aluminum salt. MPL is a detoxified lipopolysaccharide (LPS) that has been reported to be a specific agonist of TLR4 [65]. However, MPL’s signaling properties through the activation of the TLR4 are not exactly the same as LPS. The difference might be contributed to the absence of the 1-phosphate on the MPL molecule [66]. It has been shown that AS04, compared with an adjuvant containing only aluminum salt, induced a long-term and sustainable effective immune response in the HPV vaccines [67]. Studies have found rapid production of cytokines and recruitment of various immune cells in muscles and draining lymph nodes at the injection site within 3–6 h when adjuvanted with MPL or AS04 [68]. It is demonstrated that MPL is the principal component in the vaccine that mediated the early immune response. Although aluminum salts did not synergize with MPL, its presence prolonged the immune response owing to the function of depot effect [69]. In addition, it’s found that AS04 could induce transient and local inflammatory responses, and AS04 must be co-inoculated with the antigen or administered at the same injection site within 1 day of antigen inoculation to achieve superior adjuvant activity [68]. Furthermore, recent study indicates that levels of IFN-γ, a
marker of Th1-biased response, were higher when the HPV-16 and HPV-18 VLPs antigens were adjuvanted with AS04 compared with aluminum hydroxide alone. These results indicate that AS04 is more efficient in inducing the amplification and differentiation of CD4+ T cells and promotes a Th1-biased response [69].

2.4. AS01B

AS01B is an adjuvant developed by GlaxoSmithKline (GSK) Biologicals in recombinant zoster vaccine Shingrix, which was approved by FDA in 2017 [70]. It is formulated in liposome with MPL and QS–21.

MPL is an effective stimulator of T cell and antibody responses, and studies have demonstrated that it could stimulate innate immunity via Toll-like activated receptor 4 (TLR4) [71]. QS–21 is purified from the bark of Chilean tree, *Quillaja saponaria* [72]. QS–21 promotes cytotoxic T-lymphocytes (CTLs) production and induces Th1 cytokines, including interleukin-2 (IL-2), TNF-α, CD40L and IFN-γ could stimulate naive B-cell division into plasma cells and memory B cells.

Fig. 4. Acting mechanisms of CpG ODNs. As a new type of adjuvant, synthetic oligodeoxynucleotides (ODNs) that contain immunestimulatory CpG motifs is in favor of Th1 cell responses. After initial CpG ODN uptake inside of the antigen presenting cells, the PI3K facilitates the translocation into endosomal vesicles containing TLR9. The interaction between TLR9 and CpG ODN transduces the cytoplasmic activation signal. CpG ODNs directly activate B cells and plasmacytoid dendritic cells, producing proinflammatory- and T helper 1 (Th1) cytokine-rich environment. CpG ODNs could facilitate the pDCs maturation and enhance antigen processing and presentation. CpG ODN induces T cells to promote development of CTL via IFN-γ, and increases production of IL-6, IL-12 to support secretion of IgG2a antibodies.

Fig. 5. Acting mechanisms of AS01B. Adjuvant AS01B and antigen are injected into the muscle and taken up by APCs. MPL activates APCs through TLR4, QS–21 activates the NLRP3 inflammasome, resulting in the release of IL-1β and IL-18. MPL and QS–21 act synergistically to increase the release of chemokines, circulate granulocyte and enhance the recruitment of monocytes and dendritic cells. In draining lymph nodes, highly activated dendritic cells efficiently induce naive CD4+ T-cell differentiation into CD4+ T-memory cells and CD4+ T-effector cells. Cytokines secreted by CD4+ T-effector cells such as IL-2, TNF-α, CD40L and IFN-γ could stimulate naive B-cell division into plasma cells and memory B cells.
and IL-18 productions, though its in vivo mechanism still remains
to be determined [71]. Additionally, MPL and QS-21 could work
synergistically to increase the release of chemokines, circulate
granulocyte and enhance the recruitment of monocytes and den-
dritic cells [71].

AS01B-adjuvanted vaccine can induce strong and persistent
antigen-specific humoral and cellular immune responses. Accord-
ing to preclinical studies in mice and rhesus monkeys, AS01B is
better in inducing antigen-specific CTL and IFN responses than
AS02A which is a multicomponent adjuvant system consisting of
oil-in-water emulsion, MPL and QS21 [73,74] (Fig. 5).

2.5. Adjuvants under clinical investigation

Limited types of adjuvants with various formulations are being
used in human vaccines, however, there is a big demand for novel
adjuvants with better potency and longevity. Moreover, owing to
the limited understanding of acting mechanisms, the currently
available adjuvants are still the compromised results of adequate
immunity and low-toxicity [75]. Thus far, various vaccine adju-
vants are undergoing different stages of clinical trials.

2.5.1. Lipid-based adjuvants

Lipid-based material has been used as vaccine adjuvant since its
unique vesicle structure was proved to be extremely suitable for
capsulating various biologically active materials, such as DNA
and fatty acids [76,77]. At the early stage, scientists had been
focusing on Lipid A, the hydrophobic anchor of LPS, which was
believed to be a potent adjuvant and could remarkably increase
both the humoral and cellular immune response. However, Lipid-
A based adjuvant was considered not suitable in human vaccines
due to high toxicity [78–80]. GLA-SE and GLA-AF are both Lipid A
analogues, and are particularly effective in enhancing protection
against H5N1 with low toxicity and limited side effects [81–83].
GLA-AF is also tested as an alternative to emulsions in many vacci-
nies, among which the most notable one is pandemic influenza
[81,84].

2.5.2. Emulsions

Montanide ISA 51 and Montanide ISA 720 are two types of
water-in-oil emulsion adjuvants under clinical investigations.
Montanide ISA 51 is a mixture of a mineral oil and a mannide
monoooleate surfactant, while Montanide ISA 720 is formulated
with nonmineral vegetable oil. Moreover, they have different oil
to water ratios [85]. Montanide ISA 51 has been assessed in malaria
vaccines in phase 1 and influenza vaccines in phase 2 studies [86–
88], and it has been licensed in a therapeutic lung cancer vaccine in
Cuba [88]. Montanide ISA 720 are tested in malaria vaccine in a
phase 2 clinical trial [89]. Studies have shown that both of them
are able to promote effective immune response, particularly
enhanced specific cytotoxic T-lymphocyte (CTL) response [90].
Although both of them appear to be well tolerated, transient side
effects have been observed, such as fever, headache or flu-like
symptoms [89].

2.5.3. Saponin

Saponins are natural glycoside compounds. Their ability to acti-
vate human’s immune system has raised researchers’ interest
to exploit their applications as vaccine adjuvant [91]. Matrix M®
is next-generation saponin-based adjuvant patented by Novavax
[92], powered by a new formulation that provides a potent adju-
vant effect and low toxicity. It has been tested in combination res-
piratory vaccine in preclinical trial [93]. It was shown that Matrix
M® could increase the number of cells in draining lymph nodes
d(dLNs) and spleen, and activate lymphocytes, DCs and granulocytes
in dLNs [93], AS02, composing of MPL and QS-21, is undergoing
phase 2 trial in a malaria vaccine [94].

2.5.4. Nucleotide

Host cells could be invaded by pathogens e.g., lipopolysaccha-
ride, peptidoglycan, flagellin and microbial nucleic acids [95].
When recognizing these molecules, pattern recognition receptors
(PRR) of the host will release inflammatory cytokines, and then
promote an immune response [96]. Obviously, CpG ODN, dsRNA,
IL-12 DNA, and etc, are typical nucleotide-based adjuvant com-
ponents activating through PRR to stimulate immune response. CpG
ODN has been discussed in the above section. Double-stranded
RNA (dsRNA) could achieve its immune response by secreting
cytokines including IFN-α and IFN-γ, signaling through TLR3,
MDA-5 and NLRP3 inflammasome [97,98]. It is now undergoing
clinical trial in influenza vaccine during phase 1 stage [99] and
phase 2 study in rabies vaccine [100]. To provide efficient protec-
tion from the wide range of HIV variants, DNA vaccines adjuvanted
with IL-12 DNA are introduced [101]. Recent trials demonstrated
that IL-12 DNA was able to augment the immune response and
proved to be well tolerated [102]. Pika adjuvant is a synthetic ana-
logue of dsRNA stabilized with kanamycin and calcium. Pika adju-
vant promotes the production of interferon, IL-2, and IL-12, thus
transforming the preventive vaccine, which mainly produces
humoral immunity, into a therapeutic vaccine with strong cellular
immunity.

2.5.5. Cytokines

Recent studies have demonstrated that molecular adjuvants
could stimulate effective immune response, especially in subunit
vaccines [103]. Cytokines, e.g., IL-2 and granulocyte-macrophage
colony-stimulating factor (GM-CSF), were tested in vaccines
against foot and mouth disease [104]. Recently, GM-CSF is assessed
for use in both Hepatitis B and HIV vaccines. Its adjuvant effect is
believed to be related to its ability to stimulate macrophage differ-
entiation and proliferation, and to activate antigen presenting cells
[105]. Additionally, IL-12 and IL-15 are used as adjuvants in HIV
vaccine that is undergoing a phase I trial. These cytokines were
found to have the ability to stimulate both NK cells and T-cell prol-
eriferation [106,107].

2.5.6. Others

In addition, several other forms of adjuvants were under clinical
investigation. It is worth to mention calcium phosphate. Calcium
phosphate, in the form of hydroxyapatite, were licensed in France
for use in diphtheria, tetanus, pertussis, and poliomyelitis vaccines
[108]. There is a belief that calcium phosphate, as a natural com-
pound in human body and being well tolerated, will become a sub-
stitution for aluminum adjuvants to overcome its undesirable side
effects [109]. Moreover, bacterial flagellin, a ligand for TLR5, shows
its adjuvant effect that leads to mixed Th1 and Th2 responses
[110,111]. In a clinical trial, a bivalent P. aeruginosa flagella adju-
vanted vaccine can help patients with cystic fibrosis to lower the
risk for infection with P. aeruginosa [112]. Polysaccharide is
another potential adjuvant that can enhance the immune response
of vaccines and promote cellular immunity, humoral immunity
and mucosal immunity [113]. Virosomes are enveloped virus-like
particles [114]. Virosomes have been licensed in vaccines against
Hepatitis A and influenza in Europe [115], and they have been used
in clinical trials in Falciparum Malaria and Chronic Hepatitis C vac-
cines [116,117]. In addition, there also exist novel adjuvants that
are a combination of several types of adjuvants listed above. The
effective components synergize to create optimal immune
responses. (Table.3)
3. Conclusions and perspectives

In this review, we comprehensively discussed the adjuvants used in FDA-approved vaccines, e.g., aluminum salt-based adjuvants, AS01, AS03, AS04, CpG ODN, and MF59 as well as adjuvants under clinical investigations, e.g., lipids, saponins, nucleotide and glycoprotein. We focus on their formulations and potential mechanisms of immunogenicity, understanding of which will help to establish structure-activity relationships that facilitate the design of more effective adjuvants for both preventative and therapeutic vaccines.

In the design and clinical transformation of new adjuvants, many factors affecting the immunogenicity and stability of vaccines should be considered, including route of administration, choices of animal models [130], physicochemical characteristics of adjuvants, etc. Depending on the types of adjuvants, the innate immune activation varies that could affect the antigen presentation and further vaccine responses [131]. However, some non-negligible negative situations appear in practical applications. For example, immunostimulants may produce adverse reactions such as autoimmune diseases while effectively inducing an immune response. Systemic adverse reactions include allergies, fever, immunosuppression, and even teratogenic, carcinogenic, and mutagenic risks while local adverse reactions include inflammation, nodules, abscesses, etc. In addition, many adjuvants fail the clinical transformation due to complex manufacturing processes, poor stability, and high immune tolerance.

The ideal adjuvants should have a broad-spectrum of safety, ease of production and use, and can effectively activate humoral and cellular immune responses with no adverse reactions. There is need to control and improve the physicochemical properties of the adjuvants and optimize the production process. In-depth study of the action mechanism of adjuvants, comprehensive understanding of their impacts on the immune system and further research on the structure-activity analysis of immunoadjuvant will further pave the way for safe and effective use of adjuvants to enhance the immune effect of vaccines. Additionally, it will promote the development of new and efficient adjuvants and their clinical transformation.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31870919), Natural Science Foundation of Liaoning Province (No. 20180550597), and Fundamental Research Funds for the Central Universities (No. DUT17RC(3)021). Bingbing Sun also thank the Recruitment Program of Global Youth Experts for supports.

References

Table 3

<table>
<thead>
<tr>
<th>Type of adjuvant</th>
<th>Adjuvant name</th>
<th>Conditions</th>
<th>Clinical phase</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipids</td>
<td>GLA-SE (Lipid A analogue, oil-in-water emulsion)</td>
<td>Malaria</td>
<td>Phase 1</td>
<td>[83]</td>
</tr>
<tr>
<td></td>
<td>GLA-AF (Lipid A analogue)</td>
<td>Influenza</td>
<td>Phase 1</td>
<td>[82]</td>
</tr>
<tr>
<td></td>
<td>MPL</td>
<td>Hepatitis B</td>
<td>Phase 2</td>
<td>[74]</td>
</tr>
<tr>
<td></td>
<td>CCS/C</td>
<td>Influenza</td>
<td>Phase 1</td>
<td>[118]</td>
</tr>
<tr>
<td>Emulsions</td>
<td>Montanide ISA 51</td>
<td>Malaria</td>
<td>Phase 1</td>
<td>[87]</td>
</tr>
<tr>
<td></td>
<td>Montanide ISA 720</td>
<td>Influenza</td>
<td>Phase 2</td>
<td>[85]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Malaria</td>
<td>Phase 2</td>
<td>[89]</td>
</tr>
<tr>
<td>Saponins</td>
<td>Matrix M™</td>
<td>Malaria</td>
<td>Phase 1</td>
<td>[119]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Respiratory Syncytial Virus F-protein</td>
<td>Phase 3</td>
<td>[93]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Melanoma</td>
<td>Phase 2</td>
<td>[119]</td>
</tr>
<tr>
<td></td>
<td>Matrix-M1</td>
<td>Malaria</td>
<td>Phase 1</td>
<td>[119]</td>
</tr>
<tr>
<td>Nucleotide</td>
<td>CpG 7909</td>
<td>Malaria</td>
<td>Phase 1</td>
<td>[57]</td>
</tr>
<tr>
<td></td>
<td>mRNA</td>
<td>Influenza</td>
<td>Phase 1</td>
<td>[97]</td>
</tr>
<tr>
<td></td>
<td>IL-12 DNA</td>
<td>HIV</td>
<td>Phase 1</td>
<td>[110]</td>
</tr>
<tr>
<td></td>
<td>Interleukin-2/Immunoglobulin (IL-2/Ig) DNA</td>
<td>HIV</td>
<td>Phase 1</td>
<td>[120121]</td>
</tr>
<tr>
<td>Poly-ICLC</td>
<td>HIV</td>
<td>Phase 1</td>
<td>[122]</td>
<td></td>
</tr>
<tr>
<td>Cytokines</td>
<td>GM-CSF</td>
<td>Hepatitis B</td>
<td>Phase 2</td>
<td>[123]</td>
</tr>
<tr>
<td></td>
<td>IL-12</td>
<td>HIV</td>
<td>Phase 2</td>
<td>[124]</td>
</tr>
<tr>
<td></td>
<td>IL-15</td>
<td>HIV</td>
<td>Phase 1</td>
<td>[102]</td>
</tr>
<tr>
<td>Others</td>
<td>Advax™ delta inulin adjuvant</td>
<td>Seasonal influenza</td>
<td>Phase 1</td>
<td>[125]</td>
</tr>
<tr>
<td></td>
<td>ViscoGel</td>
<td>Haemophilus influenzae type b</td>
<td>Phase 1/2a</td>
<td>[126]</td>
</tr>
<tr>
<td></td>
<td>Flagelin</td>
<td>Pseudomonas aeruginosa</td>
<td>Phase 3</td>
<td>[112]</td>
</tr>
<tr>
<td></td>
<td>AS01B</td>
<td>Malaria</td>
<td>Phase 2</td>
<td>[127]</td>
</tr>
<tr>
<td></td>
<td>AS02</td>
<td>Malaria</td>
<td>Phase 2</td>
<td>[94]</td>
</tr>
<tr>
<td></td>
<td>Virosomes</td>
<td>Falciparum Malaria</td>
<td>Phase 1</td>
<td>[116]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chronic Hepatitis C</td>
<td>Phase 1</td>
<td>[128]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hepatitis A</td>
<td>Licensed</td>
<td>[128]</td>
</tr>
<tr>
<td></td>
<td>Alum + TLR7 agonist</td>
<td>Anthrax</td>
<td>Phase 1</td>
<td>[129]</td>
</tr>
</tbody>
</table>

HogenEsch H, O’Hagan DT, Fox Christopher B. Optimizing the utilization of aluminum adjuvants: Vaccines; you might just get what you want. NPJ Vaccines 2018;3. Article Number: 51.

Technology DD. Pandemrix-Adjuvanted H1N1 Influenza Vaccine; 2017.

GlaxoSmithKline. Influenza A (H1N1) Virus Monovalent Vaccine, Adjuvanted; 2018.

Krieg AM. CpG motifs in bacterial DNA trigger direct B-cell activation; 1995.

Focus on the most relevant findings and contributions from the documents presented.

