
Chapter 9
Control Systems with State Feedback

In Chap. 3. the description of processes in state-space was investigated. In many
cases, this is the kind of description that is primarily available, and not the transfer
function of the controlled system. This is the explanation, in part, for why there is a
control design methodology directly based on the state-space description. For
illustrative purposes, let us consider the state-space representation of an (LTI)
process to be controlled,

dx
dt
¼ _x ¼ Axþ bu
y ¼ cTx

ð9:1Þ

which corresponds to (3.10) for the case of d ¼ 0. This, as was mentioned earlier,
does not impair generality, because it is a very rare case when the model contains
proportional channel directly affecting the output. The block scheme of (9.1) is
shown in Fig. 9.1.
Here u and y are the input and output signals of the process, respectively, and

x is the state vector. According to the equivalent transfer function (3.17) we get

PðsÞ ¼ cTðsI � AÞ�1b ¼ BðsÞ
detðsI � AÞ ¼

BðsÞ
AðsÞ ¼

b1sn�1þ � � � þbn�1sþ bn
snþ a1sn�1þ � � � þan�1sþ an :

ð9:2Þ

Figure 9.2 shows the so-called classical closed control system directly fitting the
state-equation description, where r denotes the reference signal. In the closed-loop,
the state vector is fed back with the linear proportional vector kT according to the
expression below

u ¼ krr � kTx ð9:3Þ
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Based on Fig. 9.2, the state-equation of the complete closed system can be easily
written as

dx
dt
¼ A� bkT� �

xþ krbr
y ¼ cTx

ð9:4Þ

i.e. with the state feedback the dynamics represented by the original system matrix
is modified by the dyadic product bkT to A� bkT� �

.
The transfer function of the closed control loop is

TryðsÞ ¼ YðsÞRðsÞ ¼ c
T sI � Aþ bkT� ��1

bkr ¼ cT sI � Að Þ�1bkr
1þ kT sI � Að Þ�1b

¼ kr
1þ kT sI � Að Þ�1bPðsÞ ¼

krBðsÞ
AðsÞ þ kTWðsÞb

ð9:5Þ

which comes from the comparison of the equations valid for the LAPLACE transforms
XðsÞ ¼ sI � Að Þ�1bUðsÞ [see (3.12)], UðsÞ ¼ krRðsÞ � kTXðsÞ [see (9.3)] and

Fig. 9.1 Block scheme of
the state-space equation of the
LTI system

Fig. 9.2 Linear controller with state feedback
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YðsÞ ¼ cTXðsÞ [see (9.1)] using the matrix inversion lemma (for details, see A.9.1
in Appendix A.5). Note that the state feedback leaves the zeros of the process
untouched and only the poles of the closed-loop system can be designed by kT.
The so-called calibration factor kr is introduced in order to make the gain of Try

equal to unity Tryð0Þ ¼ 1
� �

. The open-loop is obviously not of integrator type, it
cannot provide zero error and unit static transfer gain. It can be assured only if the
condition

kr ¼ �1
cT A� bkT� ��1

b
¼ k

TA�1b� 1
cTA�1b

ð9:6Þ

is fulfilled [see A.9.2 in Appendix A.5.]. The special control loop shown above is
called state-feedback.

9.1 Pole Placement by State Feedback

The most natural design method for state feedback is the so-called pole placement.
In this case the feedback vector kT has to be chosen to make the characteristic
equation of the closed-loop equal to the prescribed (or design) polynomial RðsÞ,
i.e.,

RðsÞ ¼ snþ r1sn�1þ � � � þ rn�1sþ rn ¼
Yn
i¼1
s� sið Þ = det sI � Aþ bkT� �

¼ AðsÞ þ kTWðsÞb ð9:7Þ

A solution always exists if the process is controllable. (It is reasonable if the
order of R is equal to that of A.) In the exceptional case when the transfer function
of the controlled system is known, then the canonical state-equations can be written
directly. Based on the controllable canonical form (3.47) the system matrices are

Ac ¼

�a1 �a2 . . . �an�1 �an
1 0 . . . 0 0
0 1 0 0
..
. ..

. . .
. ..

. ..
.

0 0 0 1 0

266664
377775; cTc ¼ ½b1; b2; . . .; bn�; and

bc ¼ [1,0, . . . 0]T

ð9:8Þ

Considering the special forms of Ac and bc, it can be seen that according to the
design equation
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Ac � bckTc ¼

�a1 �a2 . . . �an�1 �an
1 0 . . . 0 0
0 1 . . . 0 0
..
. ..

. . .
. ..

. ..
.

0 0 0 1 0

266664
377775�

1
0
0
..
.

0

266664
377775kTc

¼

�r1 �r2 . . . �rn�1 �rn
1 0 . . . 0 0
0 1 . . . 0 0
..
. ..

. . .
. ..

. ..
.

0 0 0 1 0

266664
377775 ð9:9Þ

the choice

kT ¼ kTc ¼ r1 � a1; r2 � a2; . . .; rn � an½ � ð9:10Þ

ensures the satisfaction of the characteristic equation (9.7), i.e., the prescribed poles.
The choice of the calibration factor can be determined by simple calculations

kr ¼ anþ rn � anð Þ
bn

¼ rn
bn

ð9:11Þ

Based on Eqs. (9.4) and (9.6) it can be seen that in the case of state feedback
pole placement, the transfer function turns out to be

TryðsÞ ¼ krBðsÞRðsÞ ð9:12Þ

as was shown at (9.5).

Example 9.1 Consider an unstable process with transfer function

PðsÞ ¼ �8
ðsþ 2)(s� 4Þ ¼

1
1þ 0:5sð Þ 1� 0:25sð Þ ¼

�8
s2 � 2s� 8 ¼

�8
AðsÞ

where AðsÞ ¼ ðsþ 2)(s� 4Þ ¼ s2 � 2s� 8 ¼ s2þ a1sþ a2. To stabilize the pro-
cess we should mirror the right half-plane unstable pole pc2 ¼ 4 into the left plane,
i.e. pc2 ¼ �4 is to be obtained. This can be arranged by the choice of the polynomial
RðsÞ ¼ ðsþ 2)(sþ 4Þ ¼ s2þ 6sþ 8 ¼ s2þ r1sþ r2. So the necessary stabilizing
feedback vector is

kT ¼ r1 � a1 r2 � a2½ � ¼ 6� ð�2) 8 � ð�8)½ � ¼ 8 16½ �

■
The most frequent case of state feedback is when rather than the transfer

function, the state-space form of the control system is given. In relation with
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Eq. (3.67) it has already been discussed that all controllable systems can be
described in controllable canonical form using the transformation matrix
Tc ¼ Mcc Mcð Þ�1. This linear transformation also refers to the feedback vector

kT ¼ kTcTc ¼ kTcMccM�1c
kT ¼ bTcM�1c R Að Þ ¼ 0; 0; . . .; 1½ �M�1c R Að Þ

ð9:13Þ

The design relating to the controllable canonical form (9.10), together with the
linear transformation relationship corresponding to the first row of the
non-controllable form (9.13) is called BASS-GURA algorithm. The algorithm in the
second row of (9.13) is called ACKERMANN method after its developer (see the
details in the A.9.3 of Appendix A.5).
In the BASS-GURA algorithm, the inverse of the controllability matrix Mc has to

be determined by the general system matrices A and b, on the one hand, and the
controllability matrix Mcc of the controllable canonical form [see (3.61)], on the
other. Since this latter term depends only on the coefficients ai in the denominator
of the process transfer function, then the denominator has to be calculated:
AðsÞ ¼ det sI � Að Þ. Since 0; 0; . . .; 1½ �M�1c is the last row of the inverse of the
controllability matrix, and besides this R Að Þ has to be also calculated, in the
ACKERMANN method it is not necessary to calculate AðsÞ.
It can be easily seen that state feedback formally corresponds to a serial com-

pensation Rs ¼ AðsÞ=RðsÞ (Fig. 9.3a). The real operation and effect of state
feedback can be easily understood by the equivalent block schemes using the
transfer functions shown in Fig. 9.3. The “controller” RfðsÞ of the closed-loop is in
the feedback line (Fig. 9.3b). The transfer function of the closed-loop (9.12) is

TryðsÞ ¼ krBðsÞRðsÞ ¼
krBðsÞ

AðsÞþBðsÞ ¼
krPðsÞ

1þKkðsÞPðsÞ ¼
krAðsÞ
RðsÞ

BðsÞ
AðsÞ ¼ krRsðsÞPðsÞ

ð9:14Þ

where

Rf ¼ KkðsÞ ¼ KðsÞBðsÞ ¼
RðsÞ � AðsÞ
BðsÞ ¼ k

T sI � Að Þ�1b
cT sI � Að Þ�1b ð9:15Þ

and the calibration factor is

kr ¼ k
TA�1b � 1
cTA�1b

¼ 1þKkð0ÞPð0Þ
Pð0Þ : ð9:16Þ

Based on the block schemes of Fig. 9.3 it can be stated that the state-feedback
also stabilizes the unstable terms, since due to the effect of the polynomial
KðsÞ ¼ RðsÞ � AðsÞ, there is a pole allocation for any process, so by choosing a
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stable RðsÞ, the stabilization is achieved. The feedback polynomial KðsÞ corre-
sponds formally to kT. The fact that the numerator BðsÞ of the process is present in
the denominator of KkðsÞ requires special consideration. It is used to be said in these
cases that the controller can be applied only to minimum-phase (inverse stable)
processes, where the roots of BðsÞ are stable. As a consequence of the special
character of the state feedback, however, here BðsÞ is not replaced by its modelbBðsÞ, but the method itself realizes the exact 1=BðsÞ.
Further methods have been developed for the calculation of the pole placement

state feedback vector kT. From among these, the so-called MAYNE-MURDOCH
method is briefly shown here, on the basis of which useful statements can be made.
In the BASS-GURA and ACKERMANN methods the controllable canonical form has a
special role. A similarly important canonical form is the diagonal form. Let the
diagonal form Ad ¼ diag k1; . . .; kn½ � be built with the eigenvalues ki, i.e. the roots
of AðsÞ, and let the roots of the design polynomial RðsÞ be the prescribed values of
l1; . . .; lnf g. Assuming that the eigenvalues are single, the MAYNE-MURDOCH
method gives the following closed form expression for the product kdi b

d
i ,

(a)

(b)

(c)

Fig. 9.3 Equivalent schemes
of the state feedback design
by transfer functions and
polynomials
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kdi b
d
i ¼

Pnj¼1 ki � lj
� �

Pnj ¼ 1
i 6¼ j

ki � kj
� � i ¼ 1; . . .; n ð9:17Þ

from which kdi can be easily determined. Here the coefficient b
d
i is an element of the

parameter vector bd ¼ bd1; . . .; bdn
� �T¼ b1; . . .; bn½ �T of the diagonal form [see also

(3.38)]. The most interesting consequence of (9.17) is that it clearly shows that the
absolute value of the feedback gain kdi required by the pole placement increases
directly proportionally to the “moving” distance between the poles of the open- and
closed-loop.

9.2 Observer Based State Feedback

The method of state-feedback shown in the previous section requires the direct
measurement of the state vector of the state-equation describing the process. Only
very rarely can this be fulfilled: generally only in the case of low order dynamics
(e.g., in mechanical systems measuring the values of the distance, velocity and
acceleration). Thus the usefulness of the method depends on the possible mea-
surement or estimation of the state vector. To determine the state vector the
so-called observer principle has been developed. This method requires the
knowledge of the system matrices A, b and cT, by means of which an exact model
of the process is realized and using the same excitation that is applied for the
original process, this model (observer) provides estimated values x̂ and ŷ of the
variables x and y. The state-feedback is realized by using x̂. The principle is shown
in Fig. 9.4.
More strictly the estimated values Â; b̂ and ĉT in the observer should have been

used instead of A, b and cT. The speciality of the observer, however, is that it
applies not only a parallel model, but it calculates an error e ¼ y� ŷ from the
deviation of the original and estimated output values of the process, and has a
feedback via a proportional feedback vector l to the input of the integrator of the
observer. This feedback is in operation until the error exists, i.e., until the output of
the process and the observer become equal. This operation can tolerate a rather
large error in the knowledge of the system matrices.
It can be seen in the figure that now the state-feedback is

u ¼ krr � kTx̂ ð9:18Þ
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thus simply x̂ is used instead of x. Through a long and very complex deduction,
whose details will not be discussed here, we get the overall closed-loop transfer
function in the form

TryðsÞ ¼ krPðsÞ
1þ kT sI � Að Þ�1b ¼

krBðsÞ
RðsÞ ; ð9:19Þ

which, perhaps surprisingly, is exactly equal to (9.12), i.e., to the case of
state-feedback without an observer. (A detailed proof can be seen in A.9.5 of
Appendix A.5.) This means that the tracking property of the closed-loop does not
depend on the choice of the vector l. (The theoretical explanation for this phe-
nomenon is that the observer is the non-controllable part of the whole closed-loop.)
The feedback “controller” introduced in Fig. 9.3 can also be determined now as

Rf ¼ kT sI � Aþ bkTþ lcT
� ��1

l ¼ kT sI � Aþ bkT� ��1
l

1þ cT sI � Aþ bkT� ��1
l

ð9:20Þ

which has a more complex form than in (9.15).

Fig. 9.4 Observer based state-feedback
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To investigate the operation of the observer, let us define a new state vector error
as

~x ¼ x� x̂ ð9:21Þ

which can also be written as

d~x
dt
¼ A� lcT� �

~x ð9:22Þ

which is very similar to (9.4) without excitation. For the design of observers, a
method very similar to what was used in the case of the state-feedback, is applied,
where by the choice of l our goal is to ensure the dynamics of (9.21) by the second
characteristic polynomial

det sI � Aþ lcT� � ¼ FðsÞ ¼ snþ f1sn�1þ � � � þ fn�1sþ fn ð9:23Þ

A solution always exists if the process is observable. (It is reasonable to assume
that the order of F is equal to that ofA.) It is an exceptional case when the transfer
function of the process to be controlled is known, by means of which the canonical
state-equations can be directly written. Based on the observable canonical form of
(3.53), the system matrices are

Ao ¼

�a1 1 0 . . . 0
�a2 0 1 . . . 0
..
. ..

. ..
. . .
. ..

.

�an�1 0 0 . . . 1
�an 0 0 . . . 0

2666664

3777775; cTo ¼ 1; 0; . . .; 0½ �; bo ¼ b1; b2; . . .; bn½ �T

ð9:24Þ

Considering the special form of Ao and cTo it can be easily seen, that according to
the design equation

Ao � locTo ¼

�a1 1 0 . . . 0

�a2 0 1 . . . 0

..

. ..
. ..
. . .
. ..

.

�an�1 0 0 . . . 1

�an 0 0 . . . 0

266666664

377777775� lo 1; 0; . . .; 0½ � ¼

¼

�f1 1 0 . . . 0

�f2 0 1 . . . 0

..

. ..
. ..
. . .
. ..

.

�fn�1 0 0 . . . 1

�fn 0 0 . . . 0

266666664

377777775; ð9:25Þ
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the choice

l ¼ lo ¼ f1 � a1; f2 � a2; . . .; fn � an½ �T ð9:26Þ

ensures the satisfaction of the characteristic equation of (9.23), i.e. the prescribed
poles.
The general case now is that the state-space form of the process to be controlled

is given instead of its transfer function. Referring to Eq. (3.79), it has been dis-
cussed that all observable systems can be written in observable canonical form by

using the transformation matrix To ¼ Moo
� ��1Mo. This similarity transformation

has an effect also on the feedback vector

l ¼ Toð Þ�1lo ¼ M�1o Moolo ð9:27Þ

To calculate (9.27) the inverse of the observability matrix Mo is required using
the system matrices A and cT. Similarly the observability matrix Moo of the ob-
servable canonical form has to be formed [see (3.73)]. Since this latter one depends
only on the coefficients ai in the denominator of the transfer function of the process,
so the denominator has to be calculated: AðsÞ = det sI � Að Þ. This method of cal-
culating the observer vector is called the ACKERMANN method, after its developer.
There is an interesting similarity in the design methods of the dynamics of the

observer and the state-feedback, often called duality, i.e., they correspond to each

other under the conditions: A$ AT; b$ cT; k$ lT; Mcc $ Moo
� �T

.
Based on the equations of the error (9.21) and the process (9.1), the joint

equations of the state-feedback and the observer are

d
dt

x

~x

� �
¼ A� bkT bkT

0 A� lcT
" #

x

~x

� �
þ krb

0

� �
r

e ¼ y� ŷ ¼ cT~x
ð9:28Þ

Since the system matrix of the right hand side is block diagonal, the charac-
teristic equation of the closed-loop is

det sI � Aþ bkT� �
det sI � Aþ lcT� � ¼ RðsÞFðsÞ ð9:29Þ

Thus the polynomial is the product of two terms: the first term relates to the
state-feedback, the other one to the observer. It is important to note, that FðsÞ, in
spite of (9.29), does not appear in the transfer function TryðsÞ of the closed-loop of
(9.5). This interesting fact can be explained by the re-definition of the whole system
given in the block diagram of Fig. 9.4, applying appropriate transfer functions.
Equation (9.29) of the observer based state-feedback, according to which the

state-feedback and the characteristic equation of the observer are independent, is
called the separation principle.
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9.3 Observer Based State Feedback Using Equivalent
Transfer Functions

The block scheme containing transfer functions has already been applied in the
Fig. 9.3. A further generalized form of the approach used there can also be applied,
which is shown in Fig. 9.5.
It follows from Fig. 9.5 that the resulting equivalent serial compensator is now

again

Rs ¼ 1
1þRfP ¼

1
1þKkP ¼

AðsÞ
AðsÞþKðsÞ ¼

AðsÞ
RðsÞ ð9:30Þ

It must be stated that Rs is a fictitious term: it is used only for demonstrating the
final signal formation, i.e., krRsP ensures the same Try as (9.14). If the pole can-
cellation represented by Rs is intended to be performed by a serial compensator,
then it cannot be applied to unstable processes, since the unstable zeros and poles
cannot be eliminated by cancellation. The signal �x (which is not the same as x)
introduced in Fig. 9.4 represents that finally both the state-feedback and the ob-
server are SISO subsystems which can be performed by transfer functions, i.e., it is
always possible to find equivalent representations for the input and output.
Applying this approach and based on Fig. 9.4, the block scheme using transfer
functions can be drawn as shown in Fig. 9.6.
After a long transformation procedure and block manipulations the block scheme

of Fig. 9.6 can be traced back to the very simple, unit feedback closed-loop shown

(a)

(b)

Fig. 9.5 The further
equivalent schemes of the
state feedback with transfer
functions
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in Fig. 9.7. Here the relationship (9.15) defining Kk is also used, and Kl is intro-
duced in a similar way

KkðsÞ ¼ KðsÞBðsÞ ; KlðsÞ ¼
LðsÞ
BðsÞ ; ð9:31Þ

where the design polynomial equations

KðsÞ ¼ RðsÞ � AðsÞ and LðsÞ ¼ FðsÞ � AðsÞ ð9:32Þ

result from the conditions of the two kinds of pole placements.
It is easily seen that the resulting transfer function of the inner closed-loop

P2KkKl
1þP KkþKlð Þ þP2KkKl ¼

PKk
1þPKk

PKl
1þPKl ¼

K
AþK

L
AþL ¼

K
R
L
F ð9:33Þ

Fig. 9.6 State-feedback and
observer using transfer
functions

Fig. 9.7 The reduced block scheme of the state-feedback and observer

336 9 Control Systems with State Feedback



has a special form, but its denominator completely corresponds to the characteristic
equation (9.29), i.e., represents two serially connected independent closed-loops
(see Fig. 9.8). This fact is called the separation principle of the state-feedback and
the observer. To ensure stability, both loops must be stable. This can be arranged by
proper pole placement design.
At the same time, the transfer function of the whole system is

TryðsÞ ¼ kr 1þPKkPKlKk

PKl
1þPKl

PKk
1þPKk ¼

krP
1þPKl ¼

kr BA
1þ B

A
K
B
¼ krB
AþK ¼

krBðsÞ
RðsÞ ;

ð9:34Þ

which is completely the same as (9.19). As expected, the poles of the observer do
not appear in Try. The inner character of the whole system can be better seen from
the final block scheme shown in Fig. 9.9 for the tracking properties.
This simple structure is not valid for the disturbance rejection capabilities of the

closed-loop. This can be simply seen if the sensitivity function of the closed-loop is
constructed,

1

1þ P2KkKl
1þP KkþKlð Þ

¼ 1þP KkþKlð Þ
1þP KkþKlð Þ þP2KkKl ¼ 1þ LR

� �
1 � LF
� �

; ð9:35Þ

which shows that both R and F appear in the transfer function of the disturbance
rejection according to (9.29). Equation (9.35) has a special form, since formally it is
the product of the output noise rejection transfer functions of two serially connected
closed-loops, while it is known, that the tracking properties are indeed the result of
a product of the transfer functions, but this phenomenon is not valid for the

Fig. 9.8 Equivalent observer block schemes of the inner system

Fig. 9.9 The reduced block scheme of the state-feedback and the observer for the tracking
properties

9.3 Observer Based State Feedback Using Equivalent Transfer Functions 337



sensitivity functions. Note that the resulting noise rejection properties are not
independent of the tracking ones, therefore the joint application of the
state-feedback and the observer is not appropriate to realize an actual TDOF control
loop.

9.4 Two-Step Design Methods Using State Feedback

It has been already seen in the discussion of the state-feedback based control that
the most advantageous features of that method are:

– the applicability of the method does not depend on whether the process is stable
or not

– the tracking property does not depend on the applied observer, thus it can be
directly designed

– the method is not very sensitive to the exact knowledge of the parameter
matrices of the state-equation.

(This last feature is usually demonstrated by experimental and simulation
examples, but it can be proved that the error, using an observer, can be reduced by
the 1þKlðsÞPðsÞ½ � part of the original one, compared to the modeling error
obtained by the simple parallel model of the state-equation of the process, thus
being like that which would be obtained via a closed-loop 1= 1þKlðsÞPðsÞ½ �. So it
can be reduced by the feedback KlðsÞ of the observer in a specific frequency region.
If the model of the process is applied, which is quite conventional practice, then
both loops of the Fig. 9.8 must be robust stable.)
The unfavorable (unwanted) features are:

– the state feedback is basically a zero-type control, therefore the remaining error
can be eliminated by the calibration factor, which, in the case of using a process
model, never provides a precise result

– the state feedback can not change the zeros of the process
– the disturbance rejection property can not be designed directly.

Mostly because of these latter features, usually further steps are applied to the
state-feedback based control systems. The necessity of the calibration factor can be
eliminated in the simplest way by using a cascade integrating controller, as shown
in Fig. 9.10.
Instead of (9.4), the joint state-equation of the closed-loop can be written as

_x�ðtÞ ¼ _xðtÞ
_dðtÞ

� �
¼ A 0

cT 0

� �
xðtÞ
dðtÞ

� �
þ b

0

� �
uðtÞ þ 0

�1

� �
rðtÞ

¼ A� � b�kT�
� �

x�ðtÞ þ v�rðtÞ
ð9:36Þ
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by introducing the new state variable dðtÞ, which is the integral of the error eðtÞ ¼
rðtÞ � yðtÞ in the outer loop. In this extended state-equation, the notation

A� ¼ A 0
cT 0

� �
; b� ¼ b

0

� �
; v� ¼ 0

�1
� �

ð9:37Þ

and the new extended feedback equation

uðtÞ ¼ � kT kr
� � xðtÞ

dðtÞ
� �

¼ �kT�x�ðtÞ ¼ kr
Z t
0

eðsÞ ds� kTxðtÞ ð9:38Þ

are employed. Equation (9.38) clearly shows the integrating effect. The term kTxðtÞ,
however, can be considered as a generalization of the differentiating effect.
Thus the closed control loop including an integrator can be formulated by a

state-equation of order greater by one, where besides the coefficient kT, now kr has
to be also determined. To design the extended system, the characteristic polynomial
R�ðsÞ of order ðnþ 1Þ has to be required, and then the design Eq. (9.10) of the
ACKERMANN method can be directly applied here too. If the process is not presented
in the transfer function form, then first the general state-equation has to be trans-
formed into the controllable canonical form, as was already shown in (9.13).
Note that the extended task can not be solved sequentially, i.e., in such a way

that first the kT relating to RðsÞ is determined, then kr based on R�ðsÞ ¼
RðsÞ s� snþ 1ð Þ is calculated. The task must be solved in one step for kT� by R�ðsÞ.
An integrating effect can also be included by the design of the state-feedback for

a modified process P�ðsÞ ¼ PðsÞ=s instead of the transfer function PðsÞ. Note that
the two state feedback vectors, obtained for the previous case and for this approach,
are not equal!
Obviously beside the I-controller, other—higher order—controllers can be also

applied, but the pole placement is not always automatically given by the
ACKERMANN method, and can result in complicated systems of non-linear equations.

Fig. 9.10 Joint state-feedback and integrating controller
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In the case of observer based state-feedback, at the feedback of the observer
error, not only zero-type, but one-type or higher-type controllers can also be applied
by the methods shown above.
The untouched zeros of the process can be modified by a serial compensator

KsðsÞ ¼ GsðsÞ N ðsÞBþ ðsÞ ð9:39Þ

too, where the numerator of the process BðsÞ ¼ Bþ ðsÞB�ðsÞ is assumed according
to the method applied in the Chap. 7. Here Bþ is stable, B�, however, contains the
unstable zeros. For realizability, NðsÞ=Bþ ðsÞ must be proper, thus only as many
zeros can be placed in the transfer function of the closed-loop as many stable zeros
are in the process. Finally the resulting transfer function has the form

TryðsÞ ¼ NðsÞRðsÞ krGsðsÞB�ðsÞ ð9:40Þ

where the effect of the invariant B�ðsÞ can be optimally attenuated by the filter
GsðsÞ. In many cases, however, the simple, but not optimal, choice GsðsÞ ¼ 1 is
used.
An acceptable design of the disturbance rejection feature can be reached by the

application of the YOULA-parameterized controller in the outer cascade loop. It can
be done because by the state-feedback any process, even an unstable one, can be
stabilized. The qualitative control of the unstable processes has two steps in general.
In the first step the process is stabilized by the controller, then the required qual-
itative goals can be reached by a second outer control loop or even in TDOF
structures.
The state-feedback based stabilizing controller can only be applied to processes

without dead-time. If the process has considerable time-delay, then one possibility
is to approach the dead-time by rational fractions [see Sect. 2.5]. The other solution
is to use computer based sampled data control [see Chap. 15].

9.5 The LQ Controller

The method shown in the previous sections of this chapter could perform arbitrary
(stabilizing) pole placement by the so-called state feedback from the state vector of
the process. By this state feedback technique further optimization tasks can also be
solved. The goal of this task is to optimally control the LTI process (9.1) by the
minimization of a complex optimality criterion
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I ¼ 1
2

Z1
0

xTðtÞWxxðtÞ þWuu2ðtÞ
� �

dt: ð9:41Þ

Here Wx is a real symmetrical positive semi-definite matrix weighting the state
vector, and Wu is a positive constant weighting the excitation. The solution mini-
mizing the criterion is a state-feedback

uðtÞ ¼ �kTLQxðtÞ ð9:42Þ

[see (9.3)], where the feedback vector kTLQ has the form

kTLQ ¼
1
Wu
bTP: ð9:43Þ

Here the symmetrical positive semi-definite matrix P comes from the solution of
the algebraic RICCATI matrix equation

PAþATP� 1
Wu
PbbTP ¼ �Wx: ð9:44Þ

Since this RICCATI equation is non-linear in P, it has no explicit algebraic
solution. The CAD systems frequently used in the control technique, however,
generally provide several numerical algorithms for the solution of this equation.
This controller is called Linear Quadratic (LQ) controller. This stands for: linear
regulator—quadratic criterion.
The state-equation of the LQ controller based closed-loop is

dx
dt
¼ A� bkTLQ
� �

x; A ¼ A� bkTLQ: ð9:45Þ

The details of the LQ based method are given in A.9.6 of Appendix A.5. (The
above controller is very simple, but its derivation is quite time consuming.)
If the transfer function of the process is known, then the controllable canonical

form can be easily given. For special Ac and bc, Eq. (9.10) gives the classical state
feedback design algorithm. In the LQ method the feedback vector kTLQ is obtained
from the design (from the solution of the RICCATI equation). So turning back the
derivation of (9.10) the characteristic polynomial RðsÞ of the resulting closed-loop
system can be given by its coefficients as

r1; r2; . . .; rn½ �T¼ kTLQþ a1; a2; . . .; an½ �T: ð9:46Þ

It is also possible to employ an observer for constructing the state vector in LQ
control.
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In engineering practice it is simpler to solve the stabilizing task by pole allo-
cation state-feedback, since there the prescribed poles are directly known. It is
evident, however, that in this case the quality of the transient processes are less
known. The LQ controller, beside the stabilization, also makes it possible to design
even the quality of the transient processes, but it needs long term practice to
determine the proper weighting matrix Wx and weighting factor Wu, usually
through a trial-and-error method.
A simpler version of the LQ controller is when, instead of the states, only the

square of the output is weighted, similarly to the input, i.e., instead of (9.41) the
criterion

I ¼ 1
2

Z1
0

Wyy
2ðtÞ þWuu2ðtÞ

� �
dt ð9:47Þ

is used. This task (in the case of d ¼ 0), after some identical manipulations, can be
traced back to the original LQ controller

Wyy
2 ¼ yWyy ¼ xTcWycTx ¼ xT cWycT

� �
x ¼ xT WyccT

� �
x ð9:48Þ

by a special choice of the weighting matrix like

Wx ¼ WyccT: ð9:49Þ

Observe that the state-feedback kTLQ leaves the process zeros untouched.
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