
Chapter 9
State Feedback Control

Consider first continuous systems. The state space representation of a continuous,
linear, time invariant single input–single output system can be given by parameter
matrices A; b, c, d in the following form:

_x ¼ Axþ bu
y ¼ cTxþ du

(The upper index T indicates transpose, i.e. cT is a row vector.) The equations
above (the state equation and the output equation) determine the transfer function
between the u input signal and the y output signal, which is calculated by

PðsÞ ¼ YðsÞ
UðsÞ ¼ c

TðsI � AÞ�1bþ d

The system model characterized by the four parameters A; b; c; df g is called
the state model.
The poles of the model are the roots of the characteristic equation

det(sI � A) ¼ 0:

In most practical cases, d ¼ 0.
By state feedback, the control signal is obtained from the state variables feeding

them back to the input through the constant elements of the vector kT:

u ¼ krr� kTx:

The state feedback control shown in Fig. 9.1 modifies both the static and the
dynamic response of the system between the reference signal r and the output
signal y.
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In the feedback, let us consider the feedback (row) vector kT, and in the forward
path suppose a compensation factor kr. The control signal is obtained as
u ¼ krr� kTx. The equations of the closed loop control system are as follows (here
d is also considered, its value is generally zero):

_x ¼ A� bkT� �
xþ krbr

y ¼ cT � dkT� �
xþ dkrr

By introducing the notation Ak ¼ A� bkT, bk ¼ krb, ck ¼ c� dk, dk ¼ dkr,
we have

_x ¼ Akxþ bkr
y ¼ cTkxþ dkr

and the characteristic equation is

det sI � Akð Þ ¼ det sI � Aþ bkT� � ¼ 0:
Comparing the characteristic equations of the open and of the closed loops, it

can be seen that the poles of the open loop depend only on A, while the poles of the
closed loop depend on three parameters A; b; kf g. The performance of the closed
loop is prescribed by the required location of its poles in the complex plane. What
has to be found is a state feedback vector k that ensures that the roots of the
characteristic equation are in the required locations.

9.1 State Feedback with Pole Placement

The design of state feedback is executed in three steps:

– choose the desired location of the poles of the closed loop system;
– for SISO systems the state feedback vector k can be determined by the
ACKERMANN formula (textbook [1], Sect. 9.1), in MATLAB™ by using the
command acker.

– determine the compensation factor kr to fulfill the static requirements.

Fig. 9.1 State feedback
control
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Example 9.1 Consider the system given by the following transfer function:

PðsÞ ¼ 6
ðsþ 1Þðsþ 2Þðsþ 3Þ

The static gain of the system is 1, its poles are −1, −2, −3. Give the system in
MATLAB™ with its poles, then transform it to state space form.

num=6;
den=poly([-1,-2,-3])
P=tf(num,den)
[A,b,c,d]=tf2ss(num,den)

The command tf2ss gives the controllability canonical form of the state
equation.

A ¼
�6 �11 �6
1 0 0
0 1 0

24 35; b ¼ 1
0
0

24 35; cT ¼ 0 0 6½ �; d ¼ 0

Choose the pk poles of the closed loop by

pk=[-6;-3+i*4;-3-i*4]

(The conjugate complex poles can be considered as the poles of a second order
oscillating system. The damping factor n is calculated from the angle u of the
vector of the poles, n ¼ cos u ¼ 3= ffiffiffiffiffiffiffiffiffiffiffiffiffi9þ 16p ¼ 0:6).
Let us remark that the system can be accelerated by shifting its poles to the left in

the complex plane. Analyse the required behaviour of the step response with these
prescribed poles.
First let the numerator be the constant 1, and let the denominator be the char-

acteristic polynomial.

numk=1
denk=poly(pk)
H=tf(numk,denk)
H=zpk(H)
g0=dcgain(H)

To get a system with unit gain, normalize the system by its static gain. Compare
the step responses of the original and the prescribed system.

Hn=H/g0
step(P,'b',Hn,'r'); grid

In Fig. 9.2 it can be seen that with this pole prescription the system can be
accelerated significantly.
Then using the ACKERMANN formula determine the state feedback vector that

shifts the poles pTo ¼ �1 �2 �3½ � of the open loop to the required locations
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pTk ¼ �6 �3þ 4j �3� 4j½ � of the closed loop. The analytical form of the
ACKERMANN formula is

kT ¼ 1; 0; . . .; 0½ �M�1c R Að Þ;

where Mc is the controllability matrix of the open loop, R sð Þ is the characteristic
equation of the closed loop (which is determined by its prescribed poles), andR Að Þ
is the value of this polynomial at A. In MATLAB™ all this is executed by one
command:

k=acker(A,b,pk)

k = 6 50 144

Tk=ss(A-b*k,b,c,d)

Tk=zpk(Tk)

step(Tk,6)

In Fig. 9.3 it can be seen that by shifting the poles to the left, the transients of the
step response decay faster, but the static value is not satisfactory. To ensure a static
gain of value 1, a compensation factor kr is calculated.

kr=1/dcgain(Tk)

kr =

25.0000

Tk1=kr*Tk

Fig. 9.2 With pole
prescription the system can be
accelerated
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or

Tk1=ss(A-b*k,kr*b,c,d),Tk=zpk(Tk)

150

----------------------

(s+6) (s^2 + 6s + 25)

step(Tk1,'b')

In Fig. 9.4 it can be seen that setting the state feedback vector kT and the
compensation factor kr, the settling process is fast and there is no static error. The
dynamic properties have also been improved by this pole placement.

Fig. 9.3 Step response of
state feedback

Fig. 9.4 Static error can be
compensated
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It should be mentioned that the choice of the state feedback vector kT is not
unique, it depends on the form of the state space representation. Let us check the
value of the state feedback vector when the state space representation of the process
is given in a different form.

s=zpk('s')

P=6/((s+1)*(s+2)*(s+3))

[A1,b1,c1,d1]=ssdata(P)

k1=acker(A1,b1,pk)
k1 = 40.8248 13.0639 2.4495

A different state representation yields a different state feedback vector. But the
transfer functions of the two different representations are the same, yielding the
same step responses.

Tk1=ss(A1-b1*k1,b1,c1,d1)

kr1= 1/dcgain(Tk1)

T1=zpk(T1)*kr1
150

-------------------

(s+6) (s^2 + 6s + 25)

Example 9.2 With state feedback, unstable processes can be stabilized easily. The
state feedback constants are calculated by prescribing stable closed loop poles.
Consider the transfer function of an unstable process containing one pole in the

right half-plane:

PðsÞ ¼ �6
ðs� 1Þðsþ 2Þðsþ 3Þ

Suppose that the prescribed poles of the closed loop are

pk=[-6;-3+i*4;-3-i*4]

Determine the state feedback vector and plot the step response of the closed
loop. The MATLAB™ commands to do this are

num=-6;
den=poly([1,-2,-3])
P=tf(num,den)
[A,b,c,d]=tf2ss(num,den)
pk=[-6;-3+i*4;-3-i*4]
k=acker(A,b,pk)
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Tk=ss(A-b*k,b,c,d)
kr=1/dcgain(Tk)
Tk1=ss(A-b*k,kr*b,c,d)
step(Tk1,6)

and the state feedback vector is then

k = 8 60 156

Figure 9.5 shows the step response which ensures a performance corresponding
to the prescribed poles.

9.2 Introducing an Integrator into the Feedback Loop

The properties of state feedback control are analogous to the effect of serial PD
compensation, resulting in acceleration of the control circuit. The static accuracy is
ensured by a gain factor acting outside of the feedback circuit. This gain factor is
determined by the knowledge of the system parameters. This means that this gain is
sensitive to the accuracy of the knowledge of the parameters. Furthermore, the
effect of the disturbances can not be compensated with elements outside of the
feedback circuit. Therefore to ensure the static accuracy—similarly to design
considerations in the frequency domain—it is expedient to introduce an integrator
into the control circuit.
The state equation of the process is extended by the state variable xi, which is the

integral of the output signal y (Fig. 9.6).

Fig. 9.5 Step response of a
state feedback control system
with an unstable process
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The state equation of the extended system is

_x

_xi

� �
¼ A 0

cT 0

� �
x

xi

� �
þ b

0

� �
u ¼ Ab xbþ bb u

y ¼ cT 0
� � x

xi

� �
þ du ¼ cTb xbþ du

So the number of the state variables is increased by 1. For state feedback design,
the number of the prescribed poles should also increase by 1. The state feedback
vector kTb is calculated now for the extended state equation with state matrices Ab
and bb, for the prescribed poles pb, using the ACKERMANN formula. These poles will
be the prescribed poles of the characteristic equation det sI � Abþ bbkTb

� � ¼ 0.
Figure 9.7 shows the extended state feedback system. The integrator is located

after the error signal.
Supposing a single input–single output SISO system and d ¼ 0 the state equa-

tion of the closed loop system is written as

_xz ¼ _x
_xi

� �
¼ A� bkT bki

�cT 0

� �
x
xi

� �
þ 0
1

� �
r ¼ Az xzþ bz r

y ¼ cT 0
� � x

xi

� �
þ 0 � r ¼ cTz xzþ 0 � r

Fig. 9.6 An additional state variable is introduced as integral of the output variable

Fig. 9.7 Block diagram of the extended state feedback system
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Example 9.3 Extend the process given in Example 9.1 with an integrating state
variable.

num =6;
den =poly([-1,-2,-3])
P=tf(num,den)
[A,b,c,d]=tf2ss(num,den)

The parameter matrices of the extended system are

nulvec=[0;0;0];

Ab=[A nulvec;c 0]

bb=[b;0]
Ab =

-6 -11 -6 0

1 0 0 0

0 1 0 0

0 0 6 0

bb =

1

0

0

0

Let the poles of the closed loop system be

pb=[-9 -6 -3+i*4 -3-i*4];

Determine the state feedback vector:

kb=acker(Ab,bb,pb)
kb =

15 158 693 225

The first three elements of the extended state feedback vector realize the state
feedback from the original state variables, while the fourth element, ki, belongs to
the artificially introduced integrator:

k=kb(1:3)

ki=kb(4)
k =
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15 158 693

The state matrices of the closed loop system are

Az=[A-b*k b*ki;-c 0]

bz=[nulvec;1]

cz=[c 0]

dz=0;
Az =

-21 -169 -699 225

1 0 0 0

0 1 0 0

0 0 -6 0

bz =

0

0

0

1

cz =

0 0 6 0

dz=0

The step response of the closed loop (Fig. 9.8) is found by

t=0:0.1:6;
step(Az,bz,cz,dz,1,t),grid

Fig. 9.8 Step response of the
closed loop
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It can be seen that the dynamic and static behaviour of the closed loop system is
appropriate.

9.3 State Estimation

In practical applications, the instrumentation of the processes includes possibilities
for measurement of several variables. Sensors measure the output signal, but
generally not all the state variables are available for measurement. In this case the
control with state feedback has to be supplemented with the estimation of the
non-measurable state variables. The block scheme of a state estimator is shown in
Fig. 9.9. The estimator contains the model of the system. It is assumed that d ¼ 0.
If the system is known, the parameter matrices of the model are the same as the
parameter matrices of the system. The difference between the output of the system
and the model constitutes an error signal. This error signal is fed back to the
summing point at the derivatives of the estimated variables to modify their values.
The aim is to ensure that the estimated state variables move quickly to follow the
movement of the real state variables. The state estimation circuit forms a closed
loop whose input signal is y, the output signal of the process. The poles of the
estimation circuit can be prescribed. An important requirement is that the dynamics
of the estimation circuit should be much faster than the dynamics of the process.
The gain l of the estimation circuit can be calculated by the ACKERMANN formula. It
can be seen in the figure that the behaviour of the estimation circuit is influenced by

Fig. 9.9 Block diagram of state estimation
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the parameter matrices Â and ĉT. (For simplicity, A, b and cT are used in the
formulas.)
Let us suppose that the parameter matrices of the process and of the model are

the same (e ¼ 0). The free motion of the system states is to be estimated, i.e. the
motion of the state variables starting from their initial values supposing a zero input
signal. The output disturbance is zero. Based on Fig. 9.9, the estimated state
variables can be calculated according to the following relation:

_̂x ¼ A x̂þ b uþ l cT x� x̂ð Þ ¼ A� l cT� �
x̂þ l y:

Let us introduce the error signal e ¼ x� x̂. The derivative of the error signal is
obtained if the equation given for the estimated state variables is subtracted from the
equation of the original state variables.

_x� _̂x¼_e ¼ A e� l cTe ¼ A� l cT� �
e ¼ Aee ¼ A e� l y� ŷð Þ

The estimation circuit can be redrawn as Fig. 9.10.
The parameters of the estimation circuit (the elements of the vector l) can be

calculated by the ACKERMANN formula prescribing the roots of the characteristic
equation of the closed estimation circuit.

L=acker(A',c',Pe)'

Here Pe is the vector of the prescribed poles of the estimation circuit. The
estimation circuit has to be faster than the process, and faster than the control
system with state feedback. (Transposition is required to reconcile the dimensions
of the matrices and the vectors.)

Example 9.4 The process is the third order proportional system investigated also in
Example 9.1 (without the extension by the integrating state variable). Let the initial
conditions of all the three state variables have the value 1. The reference signal and
the disturbance signal are zero. Give the poles of the estimation circuit as

Fig. 9.10 The redrawn estimation circuit
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Pe=[-7 -7 -7]

The state estimation vector is obtained as lT ¼ �17:3333 7:6667 2:5000½ �.
The MATLAB™ program below gives the course in time of the real state variables
of the system which have to be estimated, then calculates the vector l of the
estimation circuit. Then according to Fig. 9.10 it simulates the evolution in time of
the state estimation exciting the estimation circuit with the signal y as the input of
the circuit. The program plots in one diagram the real state variables and their
estimation, as well as the output signal and its estimated value.

clear
clc
num =6;
den =poly([-1,-2,-3])
P=tf(num,den)
[A,b,c,d]=tf2ss(num,den)
sys1=ss(A,b,c,d)
x0=[1;1;1]
t=0:0.05:6;
[y,t,x]=initial(sys1,x0,t);
figure(1)
plot(t,x),grid
Pe=[-7 -7 -7]
L=acker(A',c',Pe)
Aest=A-L'*c
sysest=ss(Aest,L',c,d)
x0est=[0;0;0]
[yest,t,xest]=lsim(sysest,y,t,x0est)
figure(2)
plot(t,x,t,xest),grid
figure(3)
plot(t,x(:,1),t,xest(:,1)),grid
figure(4)
plot(t,y,t,yest),grid

Plot the evolution in time of the first state variable and its estimated value
(Fig. 9.11). The simulation shows that the state variables become settled quickly.

plot(t,[x(:,1),xest(:,1)]),grid

Prescribing appropriate poles of the estimation circuit, the settling process can be
further accelerated and the transients of the estimation can be influenced.
Build the state estimation circuit also in SIMULINK™. The process and its

model are built from the blocks State-Space of the Continuous library, and the
Matrix Gain block of the library Math Operations. The separation of parameter c is
needed because not only the output signal, but also the state variables have to be
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reached. The parameter b is also separated from the state model block, as the
derivatives of the state variables are modified, so the derivatives have to be also
available. (So in the State-Space blocks in the SIMULINK™ model (Fig. 9.12), the
parameters B and C are the identity matrices of the appropriate dimensions, and the
parameter d is a zero matrix. The process and its model can be the same, if the
process is known.) In the SIMULINK™ diagram shown in Fig. 9.12, the changes in
the real and the estimated state variables can be followed not only as the effect of
the unknown initial conditions, but also for the input and the disturbance signals. In
the example, after determining the state equation of the process and the calculation
of the vector l of the estimation circuit, the SIMULINK™ block can be run. In the
figure the parameters set for the State-Space blocks and the Matrix Gain blocks are
shown. Running the program, it can be observed in Scope that the estimated state
variables quickly follow the real state variables. As the variables are connected also
to Workspace blocks, the real and the estimated state variables can be plotted from
the MATLAB™ surface as well. For the course in time of the first state variable and
of its estimation, the result is the same as given in Fig. 9.11.

plot(t,x,t,xest),grid

Problem Set the values of the initial conditions to zero and the value of the output
disturbance to 1. Running the simulation, it can be seen that there is a static
deviation between the real and the estimated state variables. The input signal excites
the real and the estimation circuit the same way, therefore this excitation will not
distort the state estimation. But the output disturbance excites them differently, and
therefore a static error will appear in the estimation. To eliminate this deviation the
disturbance signal should be described by its state variables, then the state equation
should be enhanced by the state variables of the disturbance. Then the state esti-
mation could be executed for the extended system (but this extension will no be not
dealt with in more detail here).

xest(1)

x(1)

Fig. 9.11 Time course of the
first state variable and its
estimation
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9.4 State Feedback with State Estimation

State estimation (observer) and state feedback can be executed independently of
each other (separation principle, textbook [1], Chap. 9). If the state variables are not
available, then state feedback control can be realized by feeding back the estimated
state variables with the state feedback vector k calculated for the original state
variables. An important principle is that the dynamics of the state feedback circuit
should be faster than the process dynamics, and the dynamics of the estimation
circuit should be faster than the dynamics of the state feedback circuit to ensure that
the state feedback would consider estimated state variables which approach quickly
and well the state variables of the real system.
The block diagram of the state feedback system using an observer is given in

Fig. 9.13. On the basis of the figure, the state equation of the system is

_x
_̂x

� �
¼ A �bkT
lcT A� lcT � bkT
" #

x

x̂

� �
þ bkr
bkr

� �
r

y ¼ cT 0
� � x

x̂

� �
þ 0 � r

Workspace

Workspace 1

Workspace 2

Fig. 9.12 SIMULINK™ diagram of state estimation
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Example 9.5 Let us approximate the state variables of Example 9.1 by the esti-
mated state variables calculated in Example 9.4, then feed back the approximate
state variables by the state feedback constants calculated in Example 9.1. Plot in
one diagram the step response of the output signals for the case when the feedback
is taken from the original, and for the case where it is taken from the estimated state
variables. The reference signal is a unit step and the initial conditions are
0:2 0:2 0:2½ �. The initial conditions of the observer states are supposed to be
zeros.
The MATLAB™ program is

clear;clc
num =6;
den =poly([-1,-2,-3])
P=tf(num,den)
[A,b,c,d]=tf2ss(num,den)
sys1=ss(A,b,c,d)
%process
pk=[-6;-3+i*4;-3-i*4]
k=acker(A,b,pk)

Fig. 9.13 State feedback from the estimated state variables
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sys2=ss(A-b*k,b,c,d)
kr=1/dcgain(sys2)
sys3=ss(A-b*k,b*kr,c,d)
%state feedback system
x0=[0.2;0.2;0.2]
t=0:0.05:3;
[y1,t,x] = initial(sys3,x0,t);
y2=step(sys3,t);
y=y1+y2;
%Output of the state feedback system
pe=[-7 -7 -7]
L=acker(A',c',pe)
Abvcs=[A -b*k;L'*c A-L'*c-b*k]
bbvcs=[b*kr;b*kr]
cbvcs=[c zeros(1,3)]
dbvcs=0
sys4=ss(Abvcs,bbvcs,cbvcs,dbvcs)
x0est=[0;0;0]
x0bvcs=[x0;x0est]
[y3,t,x3] = initial(sys4,x0bvcs,t);
y4=step(sys4,t);
y5=y3+y4;
%Output of the state feedback system from the estimated
%state variables
figure(1)
plot(t,y,t,y5),grid
figure(2)
plot(t,x3),grid
%The real and the estimated state variables
figure(3)
plot(t,x3(:,1),t,x3(:,4)),grid
figure(4)
plot(t,x3(:,2),t,x3(:,5)),grid
figure(5)
plot(t,x3(:,3),t,x3(:,6)),grid

Figure 9.14 gives the output signals of the state feedback systems when the
feedback is taken from the original, and when it is taken from the estimated state
variables. The overshoot is higher in the case when the feedback is taken from the
estimated state variables. Figure 9.15 shows the first state variable and its
estimation.

9.4 State Feedback with State Estimation 181



Figure 9.16 gives the SIMULINK™ block diagram of the control system.
Running it for the given initial conditions and for unit step reference signal the
obtained results coincide with the results obtained in MATLAB™. With the output
disturbance, a static error does appear in the estimation of the state variables and
also in the output signal.

Fig. 9.14 Output signals
with feedback from the real
and from the estimated state
variables

Fig. 9.15 The time course of
the first state variable and its
estimation
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Problem Build a SIMULINK™ block diagram when extending the system with the
integrating state variable with state estimation and state feedback from the estimated
state variables. Simulate the behaviour of the control system for unit step reference
signal with the initial conditions given before. Analyse the disturbance rejection
properties of the system in the case of an output disturbance.

K*u

k

K*u

c1

K*u

c

K*u

b

t

To Workspace2 x

To Workspace1

xbecs

To Workspace

Subtract1

Subtract

Step1

Step

x' = Ax+Bu
y = Cx+Du

State-Space1
A, eye(3), eye(3), zeros(3,3)

x' = Ax+Bu
y = Cx+Du

State-Space
A, eye(3), eye(3), zeros(3,3)

Scope1

Scope

K*u

L'

kr

Gain

Clock

Add1

Add

Fig. 9.16 SIMULINK™ diagram of state feedback taken from the estimated state variables
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