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Recent advances in genome engineering technologies based on the CRISPR-associated RNA-
guided endonuclease Cas9 are enabling the systematic interrogation of mammalian genome
function. Analogous to the search function in modern word processors, Cas9 can be guided to
specific locations within complex genomes by a short RNA search string. Using this system,
DNA sequences within the endogenous genome and their functional outputs are now easily edited
or modulated in virtually any organism of choice. Cas9-mediated genetic perturbation is simple and
scalable, empowering researchers to elucidate the functional organization of the genome at the
systems level and establish causal linkages between genetic variations and biological phenotypes.
In this Review, we describe the development and applications of Cas9 for a variety of research or
translational applications while highlighting challenges as well as future directions. Derived from a
remarkable microbial defense system, Cas9 is driving innovative applications from basic biology to
biotechnology and medicine.
Introduction
The development of recombinant DNA technology in the 1970s

marked the beginning of a new era for biology. For the first

time, molecular biologists gained the ability to manipulate DNA

molecules, making it possible to study genes and harness

them to develop novel medicine and biotechnology. Recent

advances in genome engineering technologies are sparking a

new revolution in biological research. Rather than studying

DNA taken out of the context of the genome, researchers can

now directly edit or modulate the function of DNA sequences

in their endogenous context in virtually any organism of choice,

enabling them to elucidate the functional organization of the

genome at the systems level, as well as identify causal genetic

variations.

Broadly speaking, genome engineering refers to the process

of making targeted modifications to the genome, its contexts

(e.g., epigenetic marks), or its outputs (e.g., transcripts). The

ability to do so easily and efficiently in eukaryotic and especially

mammalian cells holds immense promise to transform basic sci-

ence, biotechnology, and medicine (Figure 1).

For life sciences research, technologies that can delete, insert,

andmodify the DNA sequences of cells or organisms enable dis-

secting the function of specific genes and regulatory elements.

Multiplexed editing could further allow the interrogation of

gene or protein networks at a larger scale. Similarly, manipu-

lating transcriptional regulation or chromatin states at particular

loci can reveal how genetic material is organized and utilized

within a cell, illuminating relationships between the architecture
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of the genome and its functions. In biotechnology, precise

manipulation of genetic building blocks and regulatory machin-

ery also facilitates the reverse engineering or reconstruction of

useful biological systems, for example, by enhancing biofuel

production pathways in industrially relevant organisms or by

creating infection-resistant crops. Additionally, genome engi-

neering is stimulating a new generation of drug development

processes and medical therapeutics. Perturbation of multiple

genes simultaneously could model the additive effects that un-

derlie complex polygenic disorders, leading to new drug targets,

while genome editing could directly correct harmful mutations in

the context of human gene therapy (Tebas et al., 2014).

Eukaryotic genomes contain billions of DNA bases and are

difficult to manipulate. One of the breakthroughs in genome

manipulation has been the development of gene targeting by

homologous recombination (HR), which integrates exogenous

repair templates that contain sequence homology to the donor

site (Figure 2A) (Capecchi, 1989). HR-mediated targeting has

facilitated the generation of knockin and knockout animal

models via manipulation of germline competent stem cells,

dramatically advancing many areas of biological research. How-

ever, although HR-mediated gene targeting produces highly pre-

cise alterations, the desired recombination events occur

extremely infrequently (1 in 106–109 cells) (Capecchi, 1989), pre-

senting enormous challenges for large-scale applications of

gene-targeting experiments.

To overcome these challenges, a series of programmable

nuclease-based genome editing technologies have been
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Figure 1. Applications of Genome Engineering
Genetic and epigenetic control of cells with genome engineering technologies
is enabling a broad range of applications from basic biology to biotechnology
and medicine. (Clockwise from top) Causal genetic mutations or epigenetic
variants associated with altered biological function or disease phenotypes can
now be rapidly and efficiently recapitulated in animal or cellular models (Animal
models, Genetic variation). Manipulating biological circuits could also facilitate
the generation of useful synthetic materials, such as algae-derived, silica-
based diatoms for oral drug delivery (Materials). Additionally, precise genetic
engineering of important agricultural crops could confer resistance to envi-
ronmental deprivation or pathogenic infection, improving food security while
avoiding the introduction of foreign DNA (Food). Sustainable and cost-effec-
tive biofuels are attractive sources for renewable energy, which could be
achieved by creating efficient metabolic pathways for ethanol production in
algae or corn (Fuel). Direct in vivo correction of genetic or epigenetic defects in
somatic tissue would be permanent genetic solutions that address the root
cause of genetically encoded disorders (Gene surgery). Finally, engineering
cells to optimize high yield generation of drug precursors in bacterial factories
could significantly reduce the cost and accessibility of useful therapeutics
(Drug development).
developed in recent years, enabling targeted and efficient modi-

fication of a variety of eukaryotic and particularly mammalian

species. Of the current generation of genome editing technolo-

gies, the most rapidly developing is the class of RNA-guided

endonucleases known as Cas9 from the microbial adaptive im-

mune system CRISPR (clustered regularly interspaced short

palindromic repeats), which can be easily targeted to virtually

any genomic location of choice by a short RNA guide. Here,

we review the development and applications of the CRISPR-

associated endonuclease Cas9 as a platform technology for

achieving targeted perturbation of endogenous genomic ele-

ments and also discuss challenges and future avenues for inno-

vation.

Programmable Nucleases as Tools for Efficient and
Precise Genome Editing
A series of studies by Haber and Jasin (Rudin et al., 1989; Plessis

et al., 1992; Rouet et al., 1994; Choulika et al., 1995; Bibikova

et al., 2001; Bibikova et al., 2003) led to the realization that tar-
geted DNA double-strand breaks (DSBs) could greatly stimulate

genome editing through HR-mediated recombination events.

Subsequently, Carroll and Chandrasegaran demonstrated the

potential of designer nucleases based on zinc finger proteins

for efficient, locus-specific HR (Bibikova et al., 2001, 2003).

Moreover, it was shown in the absence of an exogenous homol-

ogy repair template that localized DSBs can induce insertions or

deletion mutations (indels) via the error-prone nonhomologous

end-joining (NHEJ) repair pathway (Figure 2A) (Bibikova et al.,

2002). These early genome editing studies established DSB-

induced HR and NHEJ as powerful pathways for the versatile

and precise modification of eukaryotic genomes.

To achieve effective genome editing via introduction of site-

specific DNA DSBs, four major classes of customizable DNA-

binding proteins have been engineered so far: meganucleases

derived from microbial mobile genetic elements (Smith et al.,

2006), zinc finger (ZF) nucleases based on eukaryotic transcrip-

tion factors (Urnov et al., 2005; Miller et al., 2007), transcription

activator-like effectors (TALEs) from Xanthomonas bacteria

(Christian et al., 2010; Miller et al., 2011; Boch et al., 2009; Mos-

cou and Bogdanove, 2009), and most recently the RNA-guided

DNA endonuclease Cas9 from the type II bacterial adaptive im-

mune system CRISPR (Cong et al., 2013; Mali et al., 2013a).

Meganuclease, ZF, and TALE proteins all recognize specific

DNA sequences through protein-DNA interactions. Although

meganucleases integrate its nuclease and DNA-binding

domains, ZF and TALE proteins consist of individual modules

targeting 3 or 1 nucleotides (nt) of DNA, respectively

(Figure 2B). ZFs and TALEs can be assembled in desired combi-

nations and attached to the nuclease domain of FokI to direct

nucleolytic activity toward specific genomic loci. Each of these

platforms, however, has unique limitations.

Meganucleases have not been widely adopted as a genome

engineering platform due to lack of clear correspondence

between meganuclease protein residues and their target DNA

sequence specificity. ZF domains, on the other hand, exhibit

context-dependent binding preference due to crosstalk between

adjacent modules when assembled into a larger array (Maeder

et al., 2008). Although multiple strategies have been developed

to account for these limitations (Gonzaelz et al., 2010; Sander

et al., 2011), assembly of functional ZFPs with the desired DNA

binding specificity remains a major challenge that requires an

extensive screening process. Similarly, although TALE DNA-

binding monomers are for the most part modular, they can still

suffer from context-dependent specificity (Juillerat et al., 2014),

and their repetitive sequences render construction of novel

TALE arrays labor intensive and costly.

Given the challenges associated with engineering of modular

DNA-binding proteins, new modes of recognition would signifi-

cantly simplify the development of custom nucleases. The

CRISPR nuclease Cas9 is targeted by a short guide RNA that

recognizes the target DNA via Watson-Crick base pairing

(Figure 2C). The guide sequence within these CRISPR RNAs

typically corresponds to phage sequences, constituting the nat-

ural mechanism for CRISPR antiviral defense, but can be easily

replaced by a sequence of interest to retarget the Cas9

nuclease. Multiplexed targeting by Cas9 can now be achieved

at unprecedented scale by introducing a battery of short guide
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Figure 2. Genome Editing Technologies

Exploit Endogenous DNA Repair Machinery
(A) DNA double-strand breaks (DSBs) are typically
repaired by nonhomologous end-joining (NHEJ) or
homology-directed repair (HDR). In the error-
prone NHEJ pathway, Ku heterodimers bind to
DSB ends and serve as a molecular scaffold for
associated repair proteins. Indels are introduced
when the complementary strands undergo end
resection and misaligned repair due to micro-
homology, eventually leading to frameshift muta-
tions and gene knockout. Alternatively, Rad51
proteins may bind DSB ends during the initial
phase of HDR, recruiting accessory factors that
direct genomic recombination with homology
arms on an exogenous repair template. Bypassing
the matching sister chromatid facilitates the
introduction of precise gene modifications.
(B) Zinc finger (ZF) proteins and transcription
activator-like effectors (TALEs) are naturally
occurring DNA-binding domains that can be
modularly assembled to target specific se-
quences. ZF and TALE domains each recognize 3
and 1 bp of DNA, respectively. Such DNA-binding
proteins can be fused to the FokI endonuclease to
generate programmable site-specific nucleases.
(C) The Cas9 nuclease from the microbial CRISPR
adaptive immune system is localized to specific
DNA sequences via the guide sequence on its
guide RNA (red), directly base-pairing with the
DNA target. Binding of a protospacer-adjacent
motif (PAM, blue) downstream of the target locus
helps to direct Cas9-mediated DSBs.
RNAs rather than a library of large, bulky proteins. The ease of

Cas9 targeting, its high efficiency as a site-specific nuclease,

and the possibility for highly multiplexed modifications have

opened up a broad range of biological applications across basic

research to biotechnology and medicine.

The utility of customizable DNA-binding domains extends far

beyond genome editing with site-specific endonucleases.

Fusing them to modular, sequence-agnostic functional effector

domains allows flexible recruitment of desired perturbations,

such as transcriptional activation, to a locus of interest (Xu and

Bestor, 1997; Beerli et al., 2000a; Konermann et al., 2013;

Maeder et al., 2013a; Mendenhall et al., 2013). In fact, any

modular enzymatic component can, in principle, be substituted,

allowing facile additions to the genome engineering toolbox.

Integration of genome- and epigenome-modifying enzymes

with inducible protein regulation further allows precise temporal

control of dynamic processes (Beerli et al., 2000b; Konermann

et al., 2013).

CRISPR-Cas9: From Yogurt to Genome Editing
The recent development of the Cas9 endonuclease for genome

editing draws upon more than a decade of basic research into

understanding the biological function of themysterious repetitive

elements now known as CRISPR (Figure 3), which are found

throughout the bacterial and archaeal diversity. CRISPR loci

typically consist of a clustered set of CRISPR-associated (Cas)

genes and the signature CRISPR array—a series of repeat

sequences (direct repeats) interspaced by variable sequences

(spacers) corresponding to sequences within foreign genetic

elements (protospacers) (Figure 4). Whereas Cas genes are

translated into proteins, most CRISPR arrays are first tran-
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scribed as a single RNA before subsequent processing into

shorter CRISPR RNAs (crRNAs), which direct the nucleolytic

activity of certain Cas enzymes to degrade target nucleic acids.

The CRISPR story began in 1987. While studying the iap

enzyme involved in isozyme conversion of alkaline phosphatase

in E. coli, Nakata and colleagues reported a curious set of 29 nt

repeats downstream of the iap gene (Ishino et al., 1987). Unlike

most repetitive elements, which typically take the form of tandem

repeats like TALE repeat monomers, these 29 nt repeats were

interspaced by five intervening 32 nt nonrepetitive sequences.

Over the next 10 years, as more microbial genomes were

sequenced, additional repeat elements were reported from

genomes of different bacterial and archaeal strains. Mojica and

colleagues eventually classified interspaced repeat sequences

as a unique family of clustered repeat elements present in

>40% of sequenced bacteria and 90% of archaea (Mojica

et al., 2000).

These early findings began to stimulate interest in such micro-

bial repeat elements. By 2002, Jansen and Mojica coined the

acronym CRISPR to unify the description of microbial genomic

loci consisting of an interspaced repeat array (Jansen et al.,

2002; Barrangou and van der Oost, 2013). At the same time,

several clusters of signature CRISPR-associated (cas) genes

were identified to be well conserved and typically adjacent to

the repeat elements (Jansen et al., 2002), serving as a basis for

the eventual classification of three different types of CRISPR

systems (types I–III) (Haft et al., 2005; Makarova et al., 2011b).

Types I and III CRISPR loci contain multiple Cas proteins, now

known to form complexes with crRNA (CASCADE complex for

type I; Cmr or Csm RAMP complexes for type III) to facilitate

the recognition and destruction of target nucleic acids (Brouns



Figure 3. Key Studies Characterizing and Engineering CRISPR Systems
Cas9 has also been referred to as Cas5, Csx12, and Csn1 in literature prior to 2012. For clarity, we exclusively adopt the Cas9 nomenclature throughout this
Review. CRISPR, clustered regularly interspaced short palindromic repeats; Cas, CRISPR-associated; crRNA, CRISPR RNA; DSB, double-strand break;
tracrRNA, trans-activating CRISPR RNA.
et al., 2008; Hale et al., 2009) (Figure 4). In contrast, the type II

system has a significantly reduced number of Cas proteins.

However, despite increasingly detailed mapping and annotation

of CRISPR loci across many microbial species, their biological

significance remained elusive.

A key turning point came in 2005, when systematic analysis of

the spacer sequences separating the individual direct repeats

suggested their extrachromosomal and phage-associated ori-

gins (Mojica et al., 2005; Pourcel et al., 2005; Bolotin et al.,

2005). This insight was tremendously exciting, especially given

previous studies showing that CRISPR loci are transcribed

(Tang et al., 2002) and that viruses are unable to infect archaeal

cells carrying spacers corresponding to their own genomes

(Mojica et al., 2005). Together, these findings led to the specula-

tion that CRISPR arrays serve as an immune memory and

defense mechanism, and individual spacers facilitate defense

against bacteriophage infection by exploiting Watson-Crick

base-pairing between nucleic acids (Mojica et al., 2005; Pourcel

et al., 2005). Despite these compelling realizations that CRISPR

loci might be involved in microbial immunity, the specific mech-

anism of how the spacers act to mediate viral defense remained

a challenging puzzle. Several hypotheses were raised, including

thoughts that CRISPR spacers act as small RNA guides to
degrade viral transcripts in a RNAi-like mechanism (Makarova

et al., 2006) or that CRISPR spacers direct Cas enzymes to

cleave viral DNA at spacer-matching regions (Bolotin et al.,

2005).

Working with the dairy production bacterial strain Strepto-

coccus thermophilus at the food ingredient company Danisco,

Horvath and colleagues uncovered the first experimental

evidence for the natural role of a type II CRISPR system as an

adaptive immunity system, demonstrating a nucleic-acid-based

immune system in which CRISPR spacers dictate target speci-

ficity while Cas enzymes control spacer acquisition and phage

defense (Barrangou et al., 2007). A rapid series of studies illumi-

nating the mechanisms of CRISPR defense followed shortly and

helped to establish themechanism as well as function of all three

types of CRISPR loci in adaptive immunity. By studying the type I

CRISPR locus of Escherichia coli, van der Oost and colleagues

showed that CRISPR arrays are transcribed and converted into

small crRNAs containing individual spacers to guide Cas

nuclease activity (Brouns et al., 2008). In the same year,

CRISPR-mediated defense by a type III-A CRISPR system

from Staphylococcus epidermidis was demonstrated to block

plasmid conjugation, establishing the target of Cas enzyme

activity as DNA rather than RNA (Marraffini and Sontheimer,
Cell 157, June 5, 2014 ª2014 Elsevier Inc. 1265



Figure 4. Natural Mechanisms of Microbial

CRISPR Systems in Adaptive Immunity
Following invasion of the cell by foreign genetic
elements from bacteriophages or plasmids (step
1: phage infection), certain CRISPR-associated
(Cas) enzymes acquire spacers from the exoge-
nous protospacer sequences and install them into
the CRISPR locus within the prokaryotic genome
(step 2: spacer acquisition). These spacers are
segregated between direct repeats that allow the
CRISPR system to mediate self and nonself
recognition. The CRISPR array is a noncoding
RNA transcript that is enzymatically maturated
through distinct pathways that are unique to each
type of CRISPR system (step 3: crRNA biogenesis
and processing).
In types I and III CRISPR, the pre-crRNA transcript
is cleaved within the repeats by CRISPR-asso-
ciated ribonucleases, releasing multiple small
crRNAs. Type III crRNA intermediates are further
processed at the 30 end by yet-to-be-identified
RNases to produce the fully mature transcript. In
type II CRISPR, an associated trans-activating
CRISPR RNA (tracrRNA) hybridizes with the direct
repeats, forming an RNA duplex that is cleaved
and processed by endogenous RNase III and
other unknown nucleases. Maturated crRNAs
from type I and III CRISPR systems are then
loaded onto effector protein complexes for target
recognition and degradation. In type II systems,
crRNA-tracrRNA hybrids complex with Cas9 to
mediate interference.
Both type I and III CRISPR systems use multi-
protein interference modules to facilitate target
recognition. In type I CRISPR, the Cascade com-
plex is loaded with a crRNA molecule, constituting
a catalytically inert surveillance complex that rec-
ognizes target DNA. The Cas3 nuclease is then
recruited to the Cascade-bound R loop, mediating

target degradation. In type III CRISPR, crRNAs associate either with Csm or Cmr complexes that bind and cleave DNA and RNA substrates, respectively. In
contrast, the type II system requires only the Cas9 nuclease to degrade DNA matching its dual guide RNA consisting of a crRNA-tracrRNA hybrid.
2008), although later investigation of a different type III-B system

from Pyrococcus furiosus also revealed crRNA-directed RNA

cleavage activity (Hale et al., 2009, 2012).

As the pace of CRISPR research accelerated, researchers

quickly unraveled many details of each type of CRISPR system

(Figure 4). Building on an earlier speculation that protospacer-

adjacent motifs (PAMs) may direct the type II Cas9 nuclease to

cleave DNA (Bolotin et al., 2005), Moineau and colleagues high-

lighted the importance of PAM sequences by demonstrating that

PAM mutations in phage genomes circumvented CRISPR inter-

ference (Deveau et al., 2008). Additionally, for types I and II, the

lack of PAMwithin the direct repeat sequencewithin the CRISPR

array prevents self-targeting by the CRISPR system. In type III

systems, however, mismatches between the 50 end of the crRNA

and the DNA target are required for plasmid interference (Marraf-

fini and Sontheimer, 2010).

By 2010, just 3 years after the first experimental evidence for

CRISPR in bacterial immunity, the basic function and mecha-

nisms of CRISPR systems were becoming clear. A variety of

groups had begun to harness the natural CRISPR system for

various biotechnological applications, including the generation

of phage-resistant dairy cultures (Quiberoni et al., 2010) and

phylogenetic classification of bacterial strains (Horvath et al.,

2008, 2009). However, genome editing applications had not

yet been explored.
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Around this time, two studies characterizing the functional

mechanisms of the native type II CRISPR system elucidated

the basic components that proved vital for engineering a simple

RNA-programmable DNA endonuclease for genome editing.

First, Moineau and colleagues used genetic studies in Strepto-

coccus thermophilus to reveal that Cas9 (formerly called

Cas5, Csn1, or Csx12) is the only enzyme within the cas

gene cluster that mediates target DNA cleavage (Garneau

et al., 2010). Next, Charpentier and colleagues revealed a

key component in the biogenesis and processing of crRNA

in type II CRISPR systems—a noncoding trans-activating

crRNA (tracrRNA) that hybridizes with crRNA to facilitate

RNA-guided targeting of Cas9 (Deltcheva et al., 2011). This

dual RNA hybrid, together with Cas9 and endogenous RNase

III, is required for processing the CRISPR array transcript

into mature crRNAs (Deltcheva et al., 2011). These two studies

suggested that there are at least three components (Cas9,

the mature crRNA, and tracrRNA) that are essential for recon-

stituting the type II CRISPR nuclease system. Given the

increasing importance of programmable site-specific nucleases

based on ZFs and TALEs for enhancing eukaryotic genome

editing, it was tantalizing to think that perhaps Cas9 could

be developed into an RNA-guided genome editing system.

From this point, the race to harness Cas9 for genome editing

was on.



In 2011, Siksnys and colleagues first demonstrated that the

type II CRISPR system is transferrable, in that transplantation

of the type II CRISPR locus from Streptococcus thermophilus

into Escherichia coli is able to reconstitute CRISPR interference

in a different bacterial strain (Sapranauskas et al., 2011). By

2012, biochemical characterizations by the groups of Charpent-

ier, Doudna, and Siksnys showed that purified Cas9 from Strep-

tococcus thermophilus or Streptococcus pyogenes can be

guided by crRNAs to cleave target DNA in vitro (Jinek et al.,

2012; Gasiunas et al., 2012), in agreement with previous bacte-

rial studies (Garneau et al., 2010; Deltcheva et al., 2011; Sapra-

nauskas et al., 2011). Furthermore, a single guide RNA (sgRNA)

can be constructed by fusing a crRNA containing the targeting

guide sequence to a tracrRNA that facilitates DNA cleavage by

Cas9 in vitro (Jinek et al., 2012).

In 2013, a pair of studies simultaneously showed how to suc-

cessfully engineer type II CRISPR systems from Streptococcus

thermophilus (Cong et al., 2013) and Streptococcus pyogenes

(Cong et al., 2013; Mali et al., 2013a) to accomplish genome

editing in mammalian cells. Heterologous expression of mature

crRNA-tracrRNA hybrids (Cong et al., 2013) as well as sgRNAs

(Cong et al., 2013; Mali et al., 2013a) directs Cas9 cleavage

within the mammalian cellular genome to stimulate NHEJ or

HDR-mediated genome editing. Multiple guide RNAs can also

be used to target several genes at once. Since these initial

studies, Cas9 has been used by thousands of laboratories for

genome editing applications in a variety of experimental model

systems (Sander and Joung, 2014). The rapid adoption of the

Cas9 technology was also greatly accelerated through a com-

bination of open-source distributors such as Addgene, as well

as a number of online user forums such as http://www.

genome-engineering.org and http://www.egenome.org.

Structural Organization and Domain Architecture of
Cas9
The family of Cas9 proteins is characterized by two signature

nuclease domains, RuvC and HNH, each named based on

homology to known nuclease domain structures (Figure 2C).

Though HNH is a single nuclease domain, the full RuvC domain

is divided into three subdomains across the linear protein

sequence, with RuvC I near the N-terminal region of Cas9 and

RuvC II/III flanking the HNH domain near the middle of the pro-

tein. Recently, a pair of structural studies shed light on the struc-

tural mechanism of RNA-guided DNA cleavage by Cas9.

First, single-particle EM reconstructions of the Streptococcus

pyogenes Cas9 (SpCas9) revealed a large structural rearrange-

ment between apo-Cas9 unbound to nucleic acid and Cas9 in

complex with crRNA and tracrRNA, forming a central channel

to accommodate the RNA-DNA heteroduplex (Jinek et al.,

2014). Second, a high-resolution structure of SpCas9 in complex

with sgRNA and the complementary strand of target DNA further

revealed the domain organization to comprise of an a-helical

recognition (REC) lobe and a nuclease (NUC) lobe consisting of

the HNH domain, assembled RuvC subdomains, and a PAM-

interacting (PI) C-terminal region (Nishimasu et al., 2014)

(Figure 5A and Movie S1).

Together, these two studies support the model that SpCas9

unbound to target DNA or guide RNA exhibits an autoinhibited
conformation in which the HNH domain active site is blocked

by the RuvC domain and is positioned away from the REC lobe

(Jinek et al., 2014). Binding of the RNA-DNA heteroduplex would

additionally be sterically inhibited by the orientation of the C-ter-

minal domain. As a result, apo-Cas9 likely cannot bind nor cleave

target DNA. Like many ribonucleoprotein complexes, the guide

RNA serves as a scaffold around which Cas9 can fold and orga-

nize its various domains (Nishimasu et al., 2014).

The crystal structure of SpCas9 in complex with an sgRNA and

target DNA also revealed how the REC lobe facilitates target

binding. An arginine-rich bridge helix (BH) within the REC lobe

is responsible for contacting the 30 8–12 nt of the RNA-DNA het-

eroduplex (Nishimasu et al., 2014), which correspond with the

seed sequence identified through guide sequence mutation ex-

periments (Jinek et al., 2012; Cong et al., 2013; Fu et al., 2013;

Hsu et al., 2013; Pattanayak et al., 2013; Mali et al., 2013b).

The SpCas9 structure also provides a useful scaffold for engi-

neering or refactoring of Cas9 and sgRNA. Because the REC2

domain of SpCas9 is poorly conserved in shorter orthologs,

domain recombination or truncation is a promising approach

for minimizing Cas9 size. SpCas9 mutants lacking REC2 retain

roughly 50%of wild-type cleavage activity, which could be partly

attributed to their weaker expression levels (Nishimasu et al.,

2014). Introducing combinations of orthologous domain re-

combination, truncation, and peptide linkers could facilitate the

generation of a suite of Cas9 mutant variants optimized for

different parameters such as DNA binding, DNA cleavage, or

overall protein size.

Metagenomic, Structural, and Functional Diversity of
Cas9
Cas9 is exclusively associated with the type II CRISPR locus and

serves as the signature type II gene. Based on the diversity of

associated Cas genes, type II CRISPR loci are further subdivided

into three subtypes (IIA–IIC) (Figure 5B) (Makarova et al., 2011a;

Chylinski et al., 2013). Type II CRISPR loci mostly consist of the

cas9, cas1, and cas2 genes, as well as a CRISPR array and

tracrRNA. Type IIC CRISPR systems contain only this minimal

set of cas genes, whereas types IIA and IIB have an additional

signature csn2 or cas4 gene, respectively (Chylinski et al., 2013).

Subtype classification of type II CRISPR loci is based on the

architecture and organization of each CRISPR locus. For

example, type IIA and IIB loci usually consist of four cas genes,

whereas type IIC loci only contain three cas genes. However,

this classification does not reflect the structural diversity of

Cas9 proteins, which exhibit sequence homology and length

variability irrespective of the subtype classification of their

parental CRISPR locus. Of >1,000 Cas9 nucleases identified

from sequence databases (UniProt) based on homology, protein

length is rather heterogeneous, roughly ranging from 900 to 1600

amino acids (Figure 5C). The length distribution of most Cas9

proteins can be divided into two populations centered around

1,100 and 1,350 amino acids in length. It is worth noting that a

third population of large Cas9 proteins belonging to subtype

IIA, formerly called Csx12, typically contain around 1500 amino

acids.

Despite the apparent diversity of protein length, all Cas9 pro-

teins share similar domain architecture (Makarova et al., 2011a;
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Figure 5. Structural and Metagenomic Diversity of Cas9 Orthologs
(A) Crystal structure of Streptococcus pyogenes Cas9 in complex with guide RNA and target DNA.
(B) Canonical CRISPR locus organization from type II CRISPR systems, which can be classified into IIA-IIC based on their cas gene clusters. Whereas type IIC
CRISPR loci contain the minimal set of cas9, cas1, and cas2, IIA and IIB retain their signature csn2 and cas4 genes, respectively.
(C) Histogram displaying length distribution of known Cas9 orthologs as described in UniProt, HAMAP protein family profile MF_01480.
(D) Phylogenetic tree displaying the microbial origin of Cas9 nucleases from the type II CRISPR immune system. Taxonomic information was derived from
greengenes 16S rRNA gene sequence alignment, and the tree was visualized using the Interactive Tree of Life tool (iTol).
(E) Four Cas9 orthologs from families IIA, IIB, and IIC were aligned by ClustalW (BLOSUM). Domain alignment is based on the Streptococcus pyogenes Cas9,
whereas residues highlighted in red indicate highly conserved catalytic residues within the RuvC I and HNH nuclease domains.
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Chylinski et al., 2013, 2014; Fonfara et al., 2014), consisting of

the RuvC and HNH nuclease domains and the REC domain, an

a-helix-rich region with an Arg-rich bridge helix. Unlike type I

and III CRISPR systems, which are found in both bacteria and

archaea, type II CRISPRs have so far only been found in bacterial

strains (Chylinski et al., 2013). The majority of Cas9 orthologs in

fact belong to the phyla of Bacteroidetes, Proteobacteria, and

Firmicutes (Figure 5D).

The length difference among Cas9 proteins largely results

from variable conservation of the REC domain (Figure 5E), which

associates with the sgRNA and target DNA. For example, the

type IIC Actinomyces naeslundii Cas9, which is more compact

than its Streptococcus pyogenes ortholog, has a much smaller

REC lobe with substantially different orientation (Jinek et al.,

2014).

Protospacer Adjacent Motif: Cas9 Target Range and
Search Mechanism
A critical feature of the Cas9 system is the protospacer-adjacent

motif (PAM), which flanks the 30 end of the DNA target site

(Figure 2C) and dictates the DNA target search mechanism of

Cas9. In addition to facilitating self versus non-self discrimination

by Cas9 (Shah et al., 2013), because direct repeats do not

contain PAM sites, biochemical and structural characterization

of SpCas9 suggested that PAM recognition is involved in trig-

gering the transition between Cas9 target binding and cleavage

conformations (Sternberg et al., 2014; Jinek et al., 2014; Nishi-

masu et al., 2014).

Single-molecule imaging indicated that Cas9-crRNA-

tracrRNA complexes first associate with PAM sequences

throughout the genome, allowing Cas9 to initiate DNA strand

separation via unknown mechanisms (Sternberg et al., 2014).

DNA competitor cleavage assays additionally suggested that

formation of the RNA-DNA heteroduplex is initiated at the PAM

site before proceeding PAM distally by interrogating the target

site upstream of the PAM for guide sequence complementarity

(Sternberg et al., 2014). Binding of the PAM and a matching

target then triggers Cas9 nuclease activity by activating the

HNH and RuvC domains, supported by the observation of

HNH domain flexibility within the Cas9-sgRNA-DNA ternary

complex (Nishimasu et al., 2014).

The complexity of the PAM sequences also determines the

overall DNA targeting space of Cas9. For example, the 50-NGG

of SpCas9 allows it to target, on average, every 8 bp within the

human genome (Cong et al., 2013; Hsu et al., 2013). Additionally,

SpCas9 can target sites flanked by 50-NAG PAMs (Jiang et al.,

2013; Hsu et al., 2013), albeit at a lower efficiency, further

expanding its editing versatility. The PAM is specific to each

Cas9 ortholog, even within the same species, such as 50-NNA
GAAW for Streptococcus thermophilus CRISPR1 (Deveau

et al., 2008) and 50-NGGNG for Streptococcus thermophilus

CRISPR3 (Horvath et al., 2008). Another Cas9 from Neisseria

meningitidis with a 50-NNNNGATT PAM requirement (Zhang

et al., 2013) was recently applied in human pluripotent stem cells

(Hou et al., 2013).

Computational (Chylinski et al., 2013, 2014; Fonfara et al.,

2014) or metagenomic analysis of bacteria and archaea contain-

ing CRISPR loci could lead to the discovery of Cas9 nucleases
with additional PAMs to expand the targeting range of the

Cas9 toolkit. Delivery of multiple Cas9 proteins with different

PAM requirements facilitates orthogonal genome engineering,

in which independent but simultaneous functions are applied

at different loci within the same cell or cell population. NmCas9

and SpCas9, for example, can be employed for independent

transcriptional repression and nuclease activity (Esvelt et al.,

2013).

PAM specificity can also be modified. For instance, ortho-

logous replacement of the PAM-interacting (PI) domain from

the Streptococcus thermophilus CRISPR3 Cas9 with the cor-

responding domain from Streptococcus pyogenes Cas9 suc-

cessfully altered PAM recognition from 50-NGGNG to 50-NGG

(Nishimasu et al., 2014). PAM engineering strategies could also

be exploited to generate short Cas9 orthologs with flexible 50-
NGG or 50-NG PAM domains.

Genome Editing Using CRISPR-Cas9 in Eukaryotic Cells
To date, the Streptococcus pyogenes Cas9 (SpCas9) has been

used broadly to achieve efficient genome editing in a variety of

species and cell types, including human cell lines, bacteria, ze-

brafish, yeast, mouse, fruit fly, roundworm, rat, common crops,

pig, and monkey (see Sander and Joung [2014] for a detailed

list). SpCas9 is also dramatically expanding the catalog of genet-

ically tractable model organisms, for example, by enabling the

introduction of multiplex mutations in cynomolgus monkeys

(Niu et al., 2014).

SpCas9 can be targeted either with a pair of crRNA and

tracrRNA (Cong et al., 2013) or with a chimeric sgRNA (Cong

et al., 2013; Mali et al., 2013a; Cho et al., 2013; Jinek et al.,

2013), as the crRNA or sgRNA contains a 20 nt guide sequence

that directly matches the target site. The only requirement for the

selection of Cas9 target sites is the presence of a protospacer-

adjacent motif (PAM) immediately downstream of the target site.

An early discrepancy in the use of SpCas9 editing of the

human genome was the drastically higher levels of NHEJ-

induced indels given the same target site, when using the engi-

neered dual guide RNA system (Cong et al., 2013) compared

to the engineered sgRNA(+48) scaffold, which only contained

up to the 48th base of tracrRNA. Although sgRNA(+48) is suffi-

cient for cleaving DNA in vitro (Jinek et al., 2012), extension of

the 30 tracrRNA sequence preserved several hairpin structures

(sgRNA(+72) and sgRNA(+84)) that were critical for effective

sgRNA-mediated genome editing in vivo (Mali et al., 2013a;

Hsu et al., 2013). The additional stem loops enhance the stability

of the sgRNA (Hsu et al., 2013) and are important for proper

Cas9-sgRNA-DNA ternary complex formation (Nishimasu

et al., 2014). These analyses of the sgRNA structure and function

indicate that careful sgRNA design is critical for optimal Cas9

activity, especially for testing novel Cas9 candidates derived

from metagenomic analysis.

One hallmark of the natural CRISPR-Cas9 system is its

inherent ability to efficiently cleave multiple distinct target

sequences in parallel (Barrangou et al., 2007; Garneau et al.,

2010) by converting a pre-crRNA transcript containing many

spacers into individual guide RNAs duplexes (mature crRNA

and tracrRNA) through hybridization with tracrRNA (Deltcheva

et al., 2011). Harnessing this unique aspect of CRISPR
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interference would enable highly scalable multiplex perturba-

tions. Indeed, coexpression of a CRISPR array containing

spacers targeting different genes (Cong et al., 2013) or a battery

of several sgRNAs (Mali et al., 2013a; Wang et al., 2013) together

with SpCas9 has led to efficient multiplex editing in mammalian

cells. Surprisingly, CRISPR arrays containing direct repeats

interspaced by designer spacers were processed into mature

guide RNAs without the introduction of bacterial RNase III.

Because RNase III is required for crRNA maturation in prokary-

otic cells (Deltcheva et al., 2011), it is likely that endogenous

mammalian RNases play compensatory roles (Cong et al., 2013).

Specificity of Cas9 Nucleases
Because genome editing leads to permanent modifications

within the genome, the targeting specificity of Cas9 nucleases

is of particular concern, especially for clinical applications and

gene therapy. A combination of in vitro and in vivo assays has

been typically used to characterize the specificity of ZFNs and

TALENs (Gabriel et al., 2011), but systematic analysis has

remained challenging due to difficulties in synthesizing large

libraries of proteins with varying sequence specificity. However,

Cas9 target recognition is dictated by the Watson-Crick base-

pairing interactions of an RNA guide with its DNA target, enabling

experimentally tractable and systematic evaluation of the effect

of guide RNA-target DNA mismatches on Cas9 activity.

Streptococcus pyogenes Cas9 specificity has been exten-

sively characterized by multiple groups using mismatched guide

RNA libraries, in vitro selection, and reporter assays (Fu et al.,

2013; Hsu et al., 2013; Mali et al., 2013b; Pattanayak et al.,

2013). In contrast to previous studies that suggested a seed

sequence model for Cas9 specificity, wherein the first 8–12

PAM-proximal guide sequence bases determine specificity

(Jinek et al., 2012; Cong et al., 2013), these studies collectively

demonstrate that Cas9 tolerates mismatches throughout the

guide sequence in a manner that is sensitive to the number,

position, and distribution of the mismatches (Fu et al., 2013;

Hsu et al., 2013; Mali et al., 2013b; Pattanayak et al., 2013).

Although the PAM-distal bases of the guide sequence are less

important for specificity, meaning that mismatches at those

positions often do not abolish Cas9 activity, all positions within

the guide contribute to overall specificity. Importantly, off-target

sites followed by the 50-NAG PAM can also lead to off-target

cleavage, demonstrating the importance of considering both

NGG and NAG PAMs in off-target analysis.

Interestingly, Cas9 requires extensive homology between the

guide RNA and target DNA in order to cleave but can remain

semi-transiently bound with only a short stretch of complemen-

tary sequence between the guide RNA and target DNA. These

observations suggest that Cas9 has many off-target binding

sites but cleaves only a small fraction of them (Wu et al., 2014).

Thus, concerns about off-target activity could vary widely given

a desired application that exploits Cas9 for its DNA binding or

cleavage capabilities.

Enzymatic concentration is also an important factor in deter-

mining Cas9 off-target mutagenesis. This is particularly impor-

tant because Cas9 can tolerate even five mismatches within

the target site (Fu et al., 2013). Mismatches appear to be better

tolerated when Cas9 is present at high concentrations (Hsu
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et al., 2013; Pattanayak et al., 2013), leading to higher off-target

activity; decreasing Cas9 concentration significantly improves

the on- to off-target ratio at the expense of the efficiency of

on-target cleavage (Hsu et al., 2013). The duration of Cas9

expression is likely an additional factor that tunes off-target

activity, though its contributions remain to be carefully investi-

gated.

While potential off-target sites have typically been computa-

tionally determined by searching for genomic sequences with

high sequence similarity to the desired target locus, whole-

genome sequencing or other unbiased ways of labeling DNA

DSBs genome-wide may illuminate off-target sites that are not

predictable by first-order sequence comparison. Unbiased

genome-wide characterizations have been previously used to

characterize ZFN off-target mutagenesis (Gabriel et al., 2011)

and could easily be adapted for Cas9 nuclease activity. Such

data, perhaps in combination with thermodynamic characteri-

zation of guide RNA and target DNA hybridization, will likely pro-

vide a quantitative framework for assessing and predicting the

off-target activity of Cas9. Multiple groups now provide Cas9

target selection tools (e.g., http://tools.genome-engineering.

org, http://zifit.partners.org, and http://www.e-crisp.org).

Improving Cas9 Target Recognition Fidelity
Cas9 nucleases cleave DNA through the activity of their RuvC

and HNH nuclease domains, each of which nicks a strand of

DNA to generate a blunt-ended DSB (Figure 2C). SpCas9 can

be converted into a DNA ‘‘nickase’’ that creates a single-

stranded break (SSB) by catalytically inactivating the RuvC or

HNH nuclease domains (Gasiunas et al., 2012; Jinek et al.,

2012; Sapranauskas et al., 2011) via point mutations

(Figure 6A). Because DNA single-strand breaks are repaired

via the high-fidelity base excision repair (BER) pathway (Dianov

and Hübscher, 2013), Cas9 nickases can be exploited for more

specific NHEJ as well as HR.

To improve on-target DSB specificity, a double-nicking

approach analogous to dimeric ZFNs or TALENs can be used

to increase the overall number of bases that are specifically

recognized in the target DNA. Using pairs of guide RNAs (Mali

et al., 2013b; Ran et al., 2013) and anSpCas9HNH+/RuvC� nick-

ase mutant (D10A), properly spaced cooperative nicks can

mimic DSBs and mediate efficient indel formation (Figure 6B).

Because off-target nick sites are precisely repaired, this

multiplexed nicking strategy can improve specificity by up to

1,5003 relative to the wild-type Cas9 (Ran et al., 2013).

BecauseCas9 nuclease ormultiplex nicking activity both stim-

ulate NHEJ, a population of cells cotargeted with a homology

donor would eventually possess a mix of indel mutants and

donor integrants. Single DNA nicks, however, are also able to

mediate donor recombination, albeit at a lower level than with

DSBs (Hsu et al., 2013). Cas9 nickases with single sgRNAs

can thus be used to mediate HR rather than NHEJ. Furthermore,

off-target integration is highly unlikely due to long homology

arms flanking the donor cassette.

In addition to the double-nicking strategy, sgRNAs truncated

by 2 or 3 nt have been reported to significantly increase targeting

specificity of SpCas9, potentially due to greater mismatch sensi-

tivity (Fu et al., 2014). These truncated sgRNAs can be combined

http://tools.genome-engineering.org
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Figure 6. Applications of Cas9 as a Genome

Engineering Platform
(A) The Cas9 nuclease cleaves DNA via its RuvC
and HNH nuclease domains, each of which nicks a
DNA strand to generate blunt-end DSBs. Either
catalytic domain can be inactivated to generate
nickase mutants that cause single-strand DNA
breaks.
(B) Two Cas9 nickase complexes with appropri-
ately spaced target sites canmimic targeted DSBs
via cooperative nicks, doubling the length of target
recognition without sacrificing cleavage effi-
ciency.
(C) Expression plasmids encoding the Cas9 gene
and a short sgRNA cassette driven by the U6 RNA
polymerase III promoter can be directly trans-
fected into cell lines of interest.
(D) Purified Cas9 protein and in vitro transcribed
sgRNA can bemicroinjected into fertilized zygotes
for rapid generation of transgenic animal models.
(E) For somatic genetic modification, high-titer
viral vectors encoding CRISPR reagents can be
transduced into tissues or cells of interest.
(F) Genome-scale functional screening can be
facilitated by mass synthesis and delivery of guide
RNA libraries.
(G) Catalytically dead Cas9 (dCas9) can be con-
verted into a general DNA-binding domain and
fused to functional effectors such as transcrip-
tional activators or epigenetic enzymes. The
modularity of targeting and flexible choice of
functional domains enable rapid expansion of the
Cas9 toolbox.
(H) Cas9 coupled to fluorescent reporters facili-
tates live imaging of DNA loci for illuminating the
dynamics of genome architecture.
(I) Reconstituting split fragments of Cas9 via
chemical or optical induction of heterodimer
domains, such as the cib1/cry2 system from Ara-
bidopsis, confers temporal control of dynamic
cellular processes.
with multiplex nicking to further reduce off-target mutagenesis

(Fu et al., 2014). Future structure-function analyses and Cas9

and protein engineering via rational design or directed evolution

may lead to further improvements in Cas9 specificity.

Applications of Cas9 in Research, Medicine, and
Biotechnology
Cas9 can be used to facilitate a wide variety of targeted genome

engineering applications. The wild-type Cas9 nuclease has

enabled efficient and targeted genome modification in many

species that have been intractable using traditional genetic

manipulation techniques. The ease of retargeting Cas9 by simply

designing a short RNA sequence also enables large-scale unbi-

ased genome perturbation experiments to probe gene function

or elucidate causal genetic variants. In addition to facilitating co-

valent genome modifications, the wild-type Cas9 nuclease can

also be converted into a generic RNA-guided homing device

(dCas9) by inactivating the catalytic domains. The use of effector

fusions can greatly expand the repertoire of genome engineering

modalities achievable using Cas9. For example, a variety of pro-

teins or RNAs can be tethered to Cas9 or sgRNA to alter tran-

scription states of specific genomic loci, monitor chromatin
states, or even rearrange the three-dimensional organization of

the genome.

Rapid Generation of Cellular and Animal Models

Cas9-mediated genome editing has enabled accelerated gener-

ation of transgenic models and expands biological research

beyond traditional, genetically tractable animal model organisms

(Sander and Joung, 2014). By recapitulating genetic mutations

found in patient populations, CRISPR-based editing could be

used to rapidly model the causal roles of specific genetic varia-

tions instead of relying on disease models that only phenocopy a

particular disorder. This could be applied to develop novel trans-

genic animal models (Wang et al., 2013; Niu et al., 2014), to

engineer isogenic ES and iPS cell disease models with specific

mutations introduced or corrected, respectively, or in vivo and

ex vivo gene correction (Schwank et al., 2013; Wu et al., 2013).

For generation of cellular models, Cas9 can be easily intro-

duced into the target cells using transient transfection of plas-

mids carrying Cas9 and the appropriately designed sgRNA

(Figure 6C). Additionally, the multiplexing capabilities of Cas9

offer a promising approach for studying common human

diseases—such as diabetes, heart disease, schizophrenia, and

autism—that are typically polygenic. Large-scale genome-wide
Cell 157, June 5, 2014 ª2014 Elsevier Inc. 1271



association studies (GWAS), for example, have identified haplo-

types that show strong association with disease risk. However, it

is often difficult to determine which of several genetic variants in

tight linkage disequilibriumwith the haplotype or which of several

genes in the region are responsible for the phenotype. Using

Cas9, one could study the effect of each individual variant or

test the effect of manipulating each individual gene on an

isogenic background by editing stem cells and differentiating

them into cell types of interest.

For generation of transgenic animal models, Cas9 protein and

transcribed sgRNA can be directly injected into fertilized zygotes

to achieve heritable gene modification at one or multiple alleles

in models such as rodents and monkeys (Wang et al., 2013; Li

et al., 2013; Yang et al., 2013; Niu et al., 2014) (Figure 6D). By

bypassing the typical ES cell targeting stage in generating trans-

genic lines, the generation time for mutant mice and rats can be

reduced from more than a year to only several weeks. Such

advances will facilitate cost-effective and large-scale in vivo

mutagenesis studies in rodent models and can be combined

with highly specific editing (Fu et al., 2014; Ran et al., 2013) to

avoid confounding off-target mutagenesis. Successful multiplex

targeting in cynomolgus monkey models was also recently re-

ported (Niu et al., 2014), suggesting the potential for establishing

more accurate modeling of complex human diseases such as

neuropsychiatric disorders using primate models. Additionally,

Cas9 could be harnessed for direct modification of somatic tis-

sue, obviating the need for embryonic manipulation (Figure 6E)

as well as enabling therapeutic use for gene therapy.

One outstanding challenge with transgenic animal models

generated via zygotic injection of CRISPR reagents is genetic

mosaicism, partly due to a slow rate of nuclease-induced

mutagenesis. Studies to date have typically relied on the in-

jection of Cas9 mRNA into zygotes (fertilized embryos at the

single-cell stage). However, because transcription and transla-

tion activity is suppressed in the mouse zygote, Cas9 mRNA

translation into active enzymatic form is likely delayed until

after the first cell division (Oh et al., 2000). Because NHEJ-

mediated repair is thought to introduce indels of random

length, this translation delay likely plays a major role in contrib-

uting to genetic mosaicism in CRISPR-modified mice. To over-

come this limitation, Cas9 protein and sgRNA could be directly

injected into single-cell fertilized embryos. The high rate of

nonmutagenic repair by the NHEJ process may additionally

contribute to undesired mosaicism because introducing indels

that mutate the Cas9 recognition site would then have to

compete with zygotic division rates. To increase the mutagenic

activity of NHEJ, a pair of sgRNAs flanking a small fragment of

the target gene may be used to increase the probability of gene

disruption.

Functional Genomic Screens

The efficiency of genome editing with Cas9 makes it possible

to alter many targets in parallel, thereby enabling unbiased

genome-wide functional screens to identify genes that play an

important role in a phenotype of interest. Lentiviral delivery of

sgRNAs directed against all genes (either together with Cas9

or to cells already expressing Cas9) can be used to perturb thou-

sands of genomic elements in parallel. Recent papers have

demonstrated the ability to perform robust negative and positive
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selection screens in human cells (Wang et al., 2014; Shalem

et al., 2014) by introducing loss-of-function mutations into early,

constitutive coding exons of a different gene in each cell

(Figure 6F). Genome-wide loss-of-function screens have pre-

viously used RNAi, but this approach leads to only partial

knockdown, has extensive off-target effects, and is limited to

transcribed (and usually protein-coding) genes. By contrast,

Cas9-mediated pooled sgRNA screens have been shown to pro-

vide increased screening sensitivity as well as consistency and

can be designed to target nearly any DNA sequence (Shalem

et al., 2014).

Future applications of single sgRNA libraries may also enable

the perturbation of noncoding genetic elements, while multiplex

sgRNA delivery may be used to dissect the function of large

genomic regions through tiled microdeletions. For example, sys-

tematic targeting of gene regulatory regions could facilitate the

discovery of distant enhancers, general promoter architectures,

and any additional regulatory elements that have an effect on

protein levels. An additional application could be to dissect large,

uncharacterized genomic regions that are implicated in

sequencing studies or GWAS.

Tethering dCas9 to different effector domains may also facili-

tate genomic screens beyond loss-of-function phenotypes.

dCas9 fused to epigenetic modifiers, for instance, could be

used to study the effects of methylation or certain chromatin

states on cellular differentiation or disease pathologies, whereas

transcriptional activators allow screening for gain-of-function

phenotypes. Using truncated sgRNAs or building redundancy

with several sgRNAs targeting each locus would be important

design principles for filtering out false positive signals and

improving the interpretability of screening data.

Transcriptional Modulation

dCas9 binding alone to DNA elements may repress transcription

by sterically hindering RNA polymerase machinery (Qi et al.,

2013), likely by stalling transcriptional elongation. This

CRISPR-based interference, or CRISPRi, works efficiently in

prokaryotic genomes but is less effective in eukaryotic cells

(Gilbert et al., 2013). The repressive function of CRISPRi can

be enhanced by tethering dCas9 to transcriptional repressor

domains such as KRAB or SID effectors, which promote epige-

netic silencing (Gilbert et al., 2013; Konermann et al., 2013).

However, dCas9-mediated transcriptional repression needs to

be further improved—in the current generation of dCas9-based

eukaryotic transcription repressors, even the addition of helper

functional domains results in only partial transcriptional knock-

down (Gilbert et al., 2013; Konermann et al., 2013).

Cas9 can also be converted into a synthetic transcriptional

activator by fusing it to VP16/VP64 or p65 activation domains

(Figure 6G). In general, targeting Cas9 activators with a single

sgRNA to a particular endogenous gene promoter leads to

only modest transcriptional upregulation (Konermann et al.,

2013; Maeder et al., 2013b; Perez-Pinera et al., 2013; Mali

et al., 2013b). By tiling a promoter with multiple sgRNAs, several

groups have reported strong synergistic effects with nonlinear

increases in activation (Perez-Pinera et al., 2013; Maeder et al.,

2013b; Mali et al., 2013b). Although the requirement for multiple

sgRNAs to achieve efficient transcription activation is potentially

advantageous for increased specificity, screening applications



employing libraries of sgRNAs will require highly efficient and

specific transcriptional control using individual guide RNAs.

Epigenetic Control

Complex genome functions are defined by the highly dynamic

landscape of epigenetic states. Epigenetic modifications that

tune histones are thus crucial for transcriptional regulation and

play important roles in a variety of biological functions. These

marks, such as DNA methylation or histone acetylation, are

established and maintained in mammalian cells by a variety of

enzymes that are recruited to specific genomic loci either directly

or indirectly through scaffolding proteins.

Previously, zinc finger proteins and TAL effectors have been

used in a small number of proof-of-concept studies to achieve

locus-specific targeting of epigenetic modifying enzymes (Beerli

et al., 2000a; Konermann et al., 2013; Maeder et al., 2013a; Men-

denhall et al., 2013). Cas9 epigenetic effectors (epiCas9s) that

can artificially install or remove specific epigenetic marks at spe-

cific loci would serve as a more flexible platform to probe the

causal effects of epigenetic modifications in shaping the regula-

tory networks of the genome (Figure 6G). Of course, the potential

for off-target activity or crosstalk between effector domains and

endogenous epigenetic complexes would need to be carefully

characterized. One solution could be to harness prokaryotic

epigenetic enzymes to develop orthogonal epigenetic regulatory

systems that minimize crosstalk with endogenous proteins.

Live Imaging of the Cellular Genome

The spatial organization of functional and structural elements

within the cell contribute to the functional output of genomes,

which can be amplified or suppressed dynamically. However,

the way that genomes are modified and how their structural

organization in vivo modulates functional output remain unclear.

Genomic loci located megabases apart or on entirely different

chromosomes could be brought into close proximity given

appropriate chromosomal organization, thus mediating long-

range trans interactions.

Studying the interactions of specific genes given changing

chromatin states would require a robust method to visualize

DNA in living cells. Traditional techniques for labeling DNA,

such as fluorescence in situ hybridization (FISH), require sample

fixation and are thus unable to capture live processes. Fluores-

cently tagged Cas9 labeling of specific DNA loci was recently

developed as a powerful live-cell-imaging alternative to DNA-

FISH (Chen et al., 2013) (Figure 6H). Advances in orthogonal

Cas9 proteins or modified sgRNAs will build out multi-color

and multi-locus capabilities to enhance the utility of CRISPR-

based imaging for studying complex chromosomal architecture

and nuclear organization.

Inducible Regulation of Cas9 Activity

By exploiting the bilobed structure of Cas9, it may be possible to

split the protein into two units and control their reassembly

via small-molecule or light-inducible heterodimeric domains

(Figure 6I). Small-molecule induction would facilitate systemic

control of Cas9 in patients or animal models, whereas optical

regulation enables more spatially precise perturbation. For

example, the light-inducible dimerization domains CIB1 and

CRY2 or chemically inducible analogs ABI and PYL, which have

beensuccessfully used toconstruct inducible TALEs (Konermann

et al., 2013),maybeadapted to engineer inducibleCas9 systems.
Future Development of Cas9-Based Genome
Engineering Technologies
Unbiased Analysis of Cas9 Binding and Cleavage

Despite the rapid adoption of Cas9 as a platform technology for

genetic and epigenetic perturbation and significant progress in

understanding and improving Cas9 specificity, its on- and off-

target DNA binding and cleavage profiles still need to be thor-

oughly evaluated. Studies to date characterizing Cas9 off-target

activity have relied on in silico computational prediction or in vitro

selection. As a result, they have been unable to account for the

likelihood of Cas9 activity that is unpredictable by sequence ho-

mology to the sgRNA guide sequence.

Because the off-target activity of dCas9 binding for effector

domain localization may be much more extensive than Cas9-

mediated genome editing, unbiased profiling methods are

needed to refine our understanding of ‘‘true positive’’ Cas9

off-target activity that actually leads to undesired functional

outcomes. Cas9-based chromatin immunoprecipitation

sequencing (ChIP-seq) analysis at multiple target sites could

be a high-throughput solution for understanding binding degen-

eracy (Wu et al., 2014), whereas techniques for detecting and

labeling double-strand breaks (Crosetto et al., 2013) will help

to achieve a comprehensive map of Cas9-induced off-target

indels.

These data together will help to generate predictive models for

minimizing off-target activity in gene therapeutics or other appli-

cations requiring high levels of precision. Understanding Cas9

binding and cleavage in the context of chromatin accessibility

and epigenetic states will also inform better computational eval-

uation of guide RNA specificity. For example, particular sgRNAs

could be evaluated based on the genomic nature of its off-target

sites, which would vary by guide sequence. Degenerate target-

ing of transcriptionally silent genes for a cell type or tissue of in-

terest would likely be preferred to off-target sites in the coding

region of essential housekeeping genes.

Although it is still unclear how Cas9 is affected by chromatin

accessibility and heterochromatin versus euchromatin, dCas9

transcriptional activators can upregulate transcription at sites

lacking DNase I hypersensitivity sites, indicating successful

binding to inaccessible chromatin (Perez-Pinera et al., 2013)

(Figure 6G). CpG methylation does not appear to affect DNA

cleavage in vitro, and Cas9 could introduce indels at a highly

methylated promoter in vivo (Hsu et al., 2013). It will be important

to evaluate Cas9 binding and cleavage of genomic loci in rele-

vant primary cells with different chromatin states, ideally in post-

mitotic cells in which genomic architecture is stably defined.

Overall, these efforts aimed at improving our understanding of

Cas9 binding and cleavage specificity will complement existing

methods (Mali et al., 2013b; Ran et al., 2013; Fu et al., 2014) as

well as future protein engineering and metagenomic mining

efforts to improve Cas9 specificity and the selection of guide

RNA target sites.

Development of Versatile Delivery and Expression

Systems for Applications of Cas9

Viral vectors such as adeno-associated virus (AAV) or lentivirus

are commonly used for delivering genes of interest in vivo or

into cell types resistant to common transfection methods, such

as immune cells. AAV vectors have been commonly used for
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attractive candidates for efficient gene delivery in vivo because

of their low immunogenic potential, reduced oncogenic risk

from host-genome integration, and well-characterized serotype

specificity (Figure 6E). However, the most commonly used

Cas9 nuclease-encoding gene from Streptococcus pyogenes

is >4 kb in length, which is difficult to transduce using AAV due

to its 4.7 kb packaging capacity. Non-viral approaches for intro-

ducing CRISPR reagents in vivo present a fertile ground for

developing novel delivery strategies, from liposomes and ap-

tamers to cell-penetrating peptides and the molecular Trojan

horse (Niewoehner et al., 2014).

However, viral approaches are still highly desirable due to their

low immunogenicity and wide array of characterized tropisms.

The size constraints of viral vectors can be sidestepped by using

significantly smaller Cas9 orthologs derived from metagenomic

discovery, several of which have already been characterized

and validated in human cells (Cong et al., 2013; Hou et al.,

2013; Esvelt et al., 2013). Interestingly, short Cas9 variants

reported to date recognize much longer PAM sequences than

SpCas9 (50-NNAGAAW from Streptococcus thermophilus

CRISPR1 or 50-NNNNGATT from Neisseria meningitidis) (Zhang

et al., 2013; Garneau et al., 2010), whereas some longer ortho-

logs have more relaxed PAMs (50-NG from Francisella novicida)

(Fonfara et al., 2014). Although the effect of PAM restriction on

DNA targeting specificity remains to be investigated, the more

limited overall targeting range of short Cas9 variants may be

partially compensated for by decreasing the number of potential

off-target substrates genome-wide.

Moving beyond Endogenous Cellular Repair

The current generation of genome editing technologies depends

on the endogenous DNA repair machinery to introduce loss-of-

functionmutations or precisemodifications (Figure 2A). Although

Cas9 can be used to generate indel mutations via NHEJwith high

efficiency, the absolute rate of HDR remains relatively low.

Although it is sufficient for the generation of cell lines, especially

when paired with drug selection or FACS enrichment, poor rates

of recombination greatly limit the practical utility of Cas9-

mediated targeted gene insertion in fertilized zygotes or somatic

tissue. Homologous recombination proteins are also mainly ex-

pressed in the G2 phase of the cell cycle, making HDR-based

gene editing difficult in postmitotic cells such as neurons or

cardiac myocytes. As a result, methods for stimulating HDR-

based repair or alternative strategies for efficient gene insertion

are urgently needed. For instance, the highly efficient DNA dam-

age repair system in Deinococcus radiodurans (Zahradka et al.,

2006) may be exploited to enable efficient genome editing in

mitotic as well as postmitotic cells.

Furthermore, themajority of CRISPR-based technology devel-

opment has focused on the signature Cas9 nuclease from type II

CRISPR systems. However, there remains a wide diversity of

CRISPR types and functions. Cas RAMP module (Cmr) proteins

identified in Pyrococcus furiosus and Sulfolobus solfataricus

(Hale et al., 2012) constitute an RNA-targeting CRISPR immune

system, forming a complex guided by small CRISPR RNAs that

target and cleave complementary RNA instead of DNA. Cmr pro-

tein homologs can be found throughout bacteria and archaea,

typically relying on a 50 site tag sequence on the target-matching

crRNA for Cmr-directed cleavage.
1274 Cell 157, June 5, 2014 ª2014 Elsevier Inc.
Unlike RNAi, which is targeted largely by a 6 nt seed region and

to a lesser extent 13 other bases, Cmr crRNAs contain 30–40 nt

of target complementarity. Cmr-CRISPR technologies for RNA

targeting are thus a promising target for orthogonal engineering

and minimal off-target modification. Although the modularity of

Cmr systems for RNA-targeting in mammalian cells remains to

be investigated, Cmr complexes native to P. furiosus have

already been engineered to target novel RNA substrates (Hale

et al., 2009, 2012).

Cas9 as a Therapeutic Molecule for Treating Genetic
Disorders
Although Cas9 has already been widely used as a research tool,

a particularly exciting future direction is the development of Cas9

as a therapeutic technology for treating genetic disorders. For a

monogenic recessive disorder due to loss-of-function mutations

(such as cystic fibrosis, sickle-cell anemia, or Duchenne

muscular dystrophy), Cas9 may be used to correct the causative

mutation. This has many advantages over traditional methods of

gene augmentation that deliver functional genetic copies via viral

vector-mediated overexpression—particularly that the newly

functional gene is expressed in its natural context. For domi-

nant-negative disorders in which the affected gene is haplosuffi-

cient (such as transthyretin-related hereditary amyloidosis or

dominant forms of retinitis pigmentosum), it may also be

possible to use NHEJ to inactivate the mutated allele to achieve

therapeutic benefit. For allele-specific targeting, one could

design guide RNAs capable of distinguishing between single-

nucleotide polymorphism (SNP) variations in the target gene,

such as when the SNP falls within the PAM sequence.

Some monogenic diseases also result from duplication of

genomic sequences. For these diseases, the multiplexing capa-

bility of Cas9 may be exploited for deletion of the duplicated

elements. For example, trinucleotide repeat disorders could be

treated using two simultaneous DSBs to excise the repeat

region. The success of this strategy will likely be higher for

diseases such as Friedreich’s ataxia, in which duplications occur

in noncoding regions of the target gene, because NHEJ-medi-

ated repair may lead to imperfect or frameshifted repair junc-

tions.

In addition to repairing mutations underlying inherited disor-

ders, Cas9-mediated genome editingmight be used to introduce

protective mutations in somatic tissues to combat nongenetic or

complex diseases. For example, NHEJ-mediated inactivation of

the CCR5 receptor in lymphocytes (Lombardo et al., 2007) may

be a viable strategy for circumventing HIV infection, whereas

deletion of PCSK9 (Cohen et al., 2005) or angiopoietin (Musunuru

et al., 2010) may provide therapeutic effects against statin-resis-

tant hypercholesterolemia or hyperlipidemia. Although these

targets may be also addressed using siRNA-mediated protein

knockdown, a unique advantage of NHEJ-mediated gene inacti-

vation is the ability to achieve permanent therapeutic benefit

without the need for continuing treatment. As with all gene ther-

apies, it will of course be important to establish that each pro-

posed therapeutic use has a favorable benefit-risk ratio.

Cas9 could be used beyond the direct genomemodification of

somatic tissue, such as for engineering therapeutic cells.

Chimeric antigen receptor (CAR) T cells can be modified



ex vivo and reinfused into a patient to specifically target certain

cancers (Couzin-Frankel, 2013). The ease of design and testing

of Cas9 may also facilitate the treatment of highly rare genetic

variants through personalized medicine. Supporting these

tremendous possibilities are a number of animal model studies

as well as clinical trials using programmable nucleases that

already provide important insights into the future development

of Cas9-based therapeutics.

Recently, hydrodynamic delivery of plasmid DNA encoding

Cas9 and sgRNA along with a repair template into the liver of

an adult mouse model of tyrosinemia was shown to be able to

correct the mutant Fah gene and rescue expression of the

wild-type Fah protein in �1 out of 250 cells (Yin et al., 2014). In

addition, clinical trials successfully used ZF nucleases to combat

HIV infection by ex vivo knockout of the CCR5 receptor. In all

patients, HIV DNA levels decreased, and in one out of four

patients, HIV RNA became undetectable (Tebas et al., 2014).

Both of these results demonstrate the promise of programmable

nucleases as a new therapeutic platform.

However, numerous challenges still lie ahead. Most impor-

tantly, successful clinical translation will depend on appropriate

and efficacious delivery systems to target specific disease

tissues. To achieve high levels of therapeutic efficacy and simul-

taneously address a broad spectrum of genetic disorders,

homologous recombination efficiency will need to be signifi-

cantly improved. Although permanent genome modification

has advantages over monoclonal antibody or siRNA treatments,

which require repeated administration of the therapeutic mole-

cule, the long-term implications remain unclear. As researchers

further develop and test Cas9 toward clinical translation, it will

be paramount to thoroughly characterize the safety as well as

physiological effects of Cas9 using a variety of preclinical

models.

Conclusions
The story of how a mysterious prokaryotic viral defense system

became one of the most powerful and versatile platforms for

engineering biology highlights the importance of basic science

research. Just as recombinant DNA technology benefited from

basic investigation of the restriction enzymes that are central

to warfare between phage and bacteria, the latest generation

of Cas9-based genome engineering tools are also based on

components from the microbial antiphage defense system. It is

highly likely that the future solutions for efficient and precise

gene modification will be found in as of yet unexplored corners

of the rich biological diversity of nature.
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vin, S., Benomari, N., Bertonati, C., Silva, G.H., et al. (2014). Comprehensive

analysis of the specificity of transcription activator-like effector nucleases.

Nucleic Acids Res. 42, 5390–5402.

Konermann, S., Brigham, M.D., Trevino, A.E., Hsu, P.D., Heidenreich, M.,

Cong, L., Platt, R.J., Scott, D.A., Church, G.M., and Zhang, F. (2013). Optical

control of mammalian endogenous transcription and epigenetic states. Nature

500, 472–476.

Li,W., Teng, F., Li, T., and Zhou, Q. (2013). Simultaneous generation and germ-

line transmission of multiple genemutations in rat using CRISPR-Cas systems.

Nat. Biotechnol. 31, 684–686.

Lombardo, A., Genovese, P., Beausejour, C.M., Colleoni, S., Lee, Y.L., Kim,

K.A., Ando, D., Urnov, F.D., Galli, C., Gregory, P.D., et al. (2007). Gene editing

in human stem cells using zinc finger nucleases and integrase-defective lenti-

viral vector delivery. Nat. Biotechnol. 25, 1298–1306.

Maeder, M.L., Thibodeau-Beganny, S., Osiak, A., Wright, D.A., Anthony, R.M.,

Eichtinger, M., Jiang, T., Foley, J.E., Winfrey, R.J., Townsend, J.A., et al.

(2008). Rapid ‘‘open-source’’ engineering of customized zinc-finger nucleases

for highly efficient gene modification. Mol. Cell 31, 294–301.

Maeder, M.L., Angstman, J.F., Richardson, M.E., Linder, S.J., Cascio, V.M.,

Tsai, S.Q., Ho, Q.H., Sander, J.D., Reyon, D., Bernstein, B.E., et al. (2013a).

Targeted DNA demethylation and activation of endogenous genes using

programmable TALE-TET1 fusion proteins. Nat. Biotechnol. 31, 1137–1142.

Maeder, M.L., Linder, S.J., Cascio, V.M., Fu, Y., Ho, Q.H., and Joung, J.K.

(2013b). CRISPR RNA-guided activation of endogenous human genes. Nat.

Methods 10, 977–979.

Makarova, K.S., Grishin, N.V., Shabalina, S.A., Wolf, Y.I., and Koonin, E.V.

(2006). A putative RNA-interference-based immune system in prokaryotes:

computational analysis of the predicted enzymatic machinery, functional anal-

ogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol.

Direct 1, 7.



Makarova, K.S., Aravind, L., Wolf, Y.I., and Koonin, E.V. (2011a). Unification of

Cas protein families and a simple scenario for the origin and evolution of

CRISPR-Cas systems. Biol. Direct 6, 38.

Makarova, K.S., Haft, D.H., Barrangou, R., Brouns, S.J., Charpentier, E.,

Horvath, P., Moineau, S., Mojica, F.J., Wolf, Y.I., Yakunin, A.F., et al.

(2011b). Evolution and classification of the CRISPR-Cas systems. Nat. Rev.

Microbiol. 9, 467–477.

Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E.,

and Church, G.M. (2013a). RNA-guided human genome engineering via Cas9.

Science 339, 823–826.

Mali, P., Aach, J., Stranges, P.B., Esvelt, K.M., Moosburner, M., Kosuri, S.,

Yang, L., and Church, G.M. (2013b). CAS9 transcriptional activators for target

specificity screening and paired nickases for cooperative genome engineer-

ing. Nat. Biotechnol. 31, 833–838.

Marraffini, L.A., and Sontheimer, E.J. (2008). CRISPR interference limits hori-

zontal gene transfer in staphylococci by targeting DNA. Science 322, 1843–

1845.

Marraffini, L.A., and Sontheimer, E.J. (2010). Self versus non-self discrimina-

tion during CRISPR RNA-directed immunity. Nature 463, 568–571.

Mendenhall, E.M.,Williamson, K.E., Reyon, D., Zou, J.Y., Ram,O., Joung, J.K.,

and Bernstein, B.E. (2013). Locus-specific editing of histone modifications at

endogenous enhancers. Nat. Biotechnol. 31, 1133–1136.

Miller, J.C., Holmes, M.C., Wang, J., Guschin, D.Y., Lee, Y.L., Rupniewski, I.,

Beausejour, C.M., Waite, A.J., Wang, N.S., Kim, K.A., et al. (2007). An

improved zinc-finger nuclease architecture for highly specific genome editing.

Nat. Biotechnol. 25, 778–785.

Miller, J.C., Tan, S., Qiao, G., Barlow, K.A., Wang, J., Xia, D.F., Meng, X.,

Paschon, D.E., Leung, E., Hinkley, S.J., et al. (2011). A TALE nuclease architec-

ture for efficient genome editing. Nat. Biotechnol. 29, 143–148.

Mojica, F.J., Dı́ez-Villaseñor, C., Soria, E., and Juez, G. (2000). Biological

significance of a family of regularly spaced repeats in the genomes of Archaea,

Bacteria and mitochondria. Mol. Microbiol. 36, 244–246.

Mojica, F.J., Dı́ez-Villaseñor, C., Garcı́a-Martı́nez, J., and Soria, E. (2005).

Intervening sequences of regularly spaced prokaryotic repeats derive from

foreign genetic elements. J. Mol. Evol. 60, 174–182.

Moscou, M.J., and Bogdanove, A.J. (2009). A simple cipher governs DNA

recognition by TAL effectors. Science 326, 1501.

Musunuru, K., Pirruccello, J.P., Do, R., Peloso, G.M., Guiducci, C., Sougnez,

C., Garimella, K.V., Fisher, S., Abreu, J., Barry, A.J., et al. (2010). Exome

sequencing, ANGPTL3 mutations, and familial combined hypolipidemia.

N. Engl. J. Med. 363, 2220–2227.

Niewoehner, J., Bohrmann, B., Collin, L., Urich, E., Sade, H., Maier, P., Rueger,

P., Stracke, J.O., Lau, W., Tissot, A.C., et al. (2014). Increased brain penetra-

tion and potency of a therapeutic antibody using amonovalent molecular shut-

tle. Neuron 81, 49–60.

Nishimasu, H., Ran, F.A., Hsu, P.D., Konermann, S., Shehata, S.I., Dohmae,

N., Ishitani, R., Zhang, F., and Nureki, O. (2014). Crystal structure of Cas9 in

complex with guide RNA and target DNA. Cell 156, 935–949.

Niu, Y., Shen, B., Cui, Y., Chen, Y., Wang, J., Wang, L., Kang, Y., Zhao, X., Si,

W., Li, W., et al. (2014). Generation of gene-modified cynomolgus monkey via

Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156, 836–843.

Oh, B., Hwang, S., McLaughlin, J., Solter, D., and Knowles, B.B. (2000). Timely

translation during the mouse oocyte-to-embryo transition. Development 127,

3795–3803.

Pattanayak, V., Lin, S., Guilinger, J.P., Ma, E., Doudna, J.A., and Liu, D.R.

(2013). High-throughput profiling of off-target DNA cleavage reveals RNA-

programmed Cas9 nuclease specificity. Nat. Biotechnol. 31, 839–843.

Perez-Pinera, P., Kocak, D.D., Vockley, C.M., Adler, A.F., Kabadi, A.M.,

Polstein, L.R., Thakore, P.I., Glass, K.A., Ousterout, D.G., Leong, K.W., et al.

(2013). RNA-guided gene activation by CRISPR-Cas9-based transcription

factors. Nat. Methods 10, 973–976.
Plessis, A., Perrin, A., Haber, J.E., and Dujon, B. (1992). Site-specific recombi-

nation determined by I-SceI, a mitochondrial group I intron-encoded endo-

nuclease expressed in the yeast nucleus. Genetics 130, 451–460.

Pourcel, C., Salvignol, G., and Vergnaud, G. (2005). CRISPR elements in

Yersinia pestis acquire new repeats by preferential uptake of bacteriophage

DNA, and provide additional tools for evolutionary studies. Microbiology

151, 653–663.

Qi, L.S., Larson, M.H., Gilbert, L.A., Doudna, J.A., Weissman, J.S., Arkin, A.P.,

and Lim, W.A. (2013). Repurposing CRISPR as an RNA-guided platform for

sequence-specific control of gene expression. Cell 152, 1173–1183.

Quiberoni, A., Moineau, S., Rousseau, G.M., Reinheimer, J., and Ackermann,

H.W. (2010). Streptococcus thermophilus bacteriophages. Int. Dairy J. 20,

657–664.

Ran, F.A., Hsu, P.D., Lin, C.Y., Gootenberg, J.S., Konermann, S., Trevino, A.E.,

Scott, D.A., Inoue, A., Matoba, S., Zhang, Y., and Zhang, F. (2013). Double

nicking by RNA-guided CRISPR Cas9 for enhanced genome editing speci-

ficity. Cell 154, 1380–1389.

Rouet, P., Smih, F., and Jasin, M. (1994). Introduction of double-strand breaks

into the genome of mouse cells by expression of a rare-cutting endonuclease.

Mol. Cell. Biol. 14, 8096–8106.

Rudin, N., Sugarman, E., and Haber, J.E. (1989). Genetic and physical analysis

of double-strand break repair and recombination in Saccharomyces cerevi-

siae. Genetics 122, 519–534.

Sander, J.D., and Joung, J.K. (2014). CRISPR-Cas systems for editing, regu-

lating and targeting genomes. Nat. Biotechnol. 32, 347–355.

Sander, J.D., Dahlborg, E.J., Goodwin, M.J., Cade, L., Zhang, F., Cifuentes,

D., Curtin, S.J., Blackburn, J.S., Thibodeau-Beganny, S., Qi, Y., et al. (2011).

Selection-free zinc-finger-nuclease engineering by context-dependent

assembly (CoDA). Nat. Methods 8, 67–69.

Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., and

Siksnys, V. (2011). The Streptococcus thermophilus CRISPR/Cas system

provides immunity in Escherichia coli. Nucleic Acids Res. 39, 9275–9282.

Schwank, G., Koo, B.K., Sasselli, V., Dekkers, J.F., Heo, I., Demircan, T.,

Sasaki, N., Boymans, S., Cuppen, E., van der Ent, C.K., et al. (2013). Functional

repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic

fibrosis patients. Cell Stem Cell 13, 653–658.

Shah, S.A., Erdmann, S., Mojica, F.J., and Garrett, R.A. (2013). Protospacer

recognition motifs: mixed identities and functional diversity. RNA Biol. 10,

891–899.

Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelsen, T.S.,

Heckl, D., Ebert, B.L., Root, D.E., Doench, J.G., and Zhang, F. (2014).

Genome-scale CRISPR-Cas9 knockout screening in human cells. Science

343, 84–87.

Smith, J., Grizot, S., Arnould, S., Duclert, A., Epinat, J.C., Chames, P., Prieto,

J., Redondo, P., Blanco, F.J., Bravo, J., et al. (2006). A combinatorial approach

to create artificial homing endonucleases cleaving chosen sequences. Nucleic

Acids Res. 34, e149.

Sternberg, S.H., Redding, S., Jinek, M., Greene, E.C., and Doudna, J.A. (2014).

DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature

507, 62–67.

Tang, T.H., Bachellerie, J.P., Rozhdestvensky, T., Bortolin, M.L., Huber, H.,

Drungowski, M., Elge, T., Brosius, J., and Hüttenhofer, A. (2002). Identification
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