Anisotropy of Magnetic Remanence: Empirical Guidelines Towards an Efficient Acquisition Protocol

Martin Chadima

AGICO Inc., Brno, Czech Republic (<u>chadima@aqico.cz</u>) Institute of Geology of the Czech Academy of Sciences, Prague, Czech Republic

ADVANCED GEOSCIENCE INSTRUMENTS COMPANY

1. Theoretical background for AMR

2. Instruments and data acquisition techniques

3. Empirical guidelines demonstrated on test samples

Introduction

- Rocks and sediments display a magnetic anisotropy when constituent mineral grains have a preferred orientation.
- Magnetic fabric is usually described by the anisotropy of magnetic susceptibility (AMS). As all minerals in a rock or sediment (diamagnetic, paramagnetic, ferromagnetic /sensu lato/) contribute to the susceptibility; the observed anisotropy is the sum of the individual mineral components, their specific susceptibility anisotropy and their preferred alignment.
- The anisotropy of magnetic remanence (AMR) is only dependent on the ferromagnetic grains (s.l.) in a rock. Since the number of different ferromagnetic phases is more limited, the source of the AMR is easier to distinguish, and the degree of anisotropy is less sensitive to mineral variation.

Application

- Tool to study rock texture (Petrofabric)
- Compared to the other methods of fabric analysis (U-stage, X-ray texture goniometry, neutron texture goniometry, EBSD), AMS is fast, cheap, highresolution, non-destructive.
- It can be applied to many samples covering whole outcrops, drill cores, or geological units.
- Application in structural geology and tectonics, volcanology, sedimentology, and paleomagnetism.

Hysteresis loop

Susceptibility vs. Remanence

Tensor notation of AMR (or AMS)

Magnetically isotropic material

 $M_{r1} = k_r H_1$ $M_{r2} = k_r H_2$ $M_{r3} = k_r H_3$

Magnetization of anisotropic materials $M_{r1} = k_{r11} H_1 + k_{r12} H_2 + k_{r13} H_3$ $M_{r2} = k_{r21} H_1 + k_{r22} H_2 + k_{r23} H_3$ $M_{r3} = k_{r31} H_1 + k_{r32} H_2 + k_{r33} H_3$

Matrix notation

Concept of magnetic fabric

$$k_1 \ge k_2 \ge k_3$$

Mean remanebility

$$k_{\rm m} = (k_1 + k_2 + k_3) / 3$$

Degree of anisotropy

 $P = \frac{k_1}{k_3}$

Shape parameter

$$T = (2\eta_2 - \eta_1 - \eta_3) / (\eta_1 - \eta_3)$$

where $\eta_1 = \ln k_1$, $\eta_2 = \ln k_2$, $\eta_3 = \ln k_3$

+1 > T > 0 oblate (planar) fabric

-1 < *T* < 0 prolate (linear) fabric

Shapes of fabric ellipsoids

Flinn diagram (L-F plot)

Point 1 b H

Point 4

Butler 1992

Types of anisotropy of magnetic remanence (AMR)

- Anisotropy of Anhysteretic Remanent Magnetization (AARM) Anisotropy of partial ARM (ApARM)
- Anisotropy of Isothermal Remanent Magnetization (AIRM) low field IRM high field IRM or saturation IRM (SIRM)
- Anisotropy of Thermal Remanent Magnetization (ATRM) Anisotropy of partial TRM (ApTRM)

Acquisition of ARM (pARM) and IRM

Application of AMR

- Preferential orientation of ferromagnetic (remanence-carrying) minerals
- Coaxial and non-coaxial fabrics
- Timing of mineral formation
- Change is strain field
- Deflection of paleomagnetic vectors
- Paleointensity
- Paleopole plate reconstruction

Gilder, S.A., K. He, M. Wack, and J. Ježek (2019), Relative paleointensity estimates from magnetic anisotropy: Proof of concept, Earth and Planetary Science Letters, 519, 83-91

Pros & Cons (advantages & disadvantages)

- AARM: easy to apply and remove, but limited in coercivity range
- AIRM: useful for high coercivity minerals, but question about repeatability of acquired magnetization.
- ATRM: useful for low and high coercivity minerals, but rocks cannot produce new ferromagnetic phases with heating.

Directional schemes for AMR acquisition

Instruments and Techniques

SushiBar Munich

AGICO LDA5/PAM1 Magnetizer & JR-6(A) Magnetometer

- Both instruments controlled from one computer
- Timer starts when magnetization pulse terminates
- Repeated measurement of viscous decay of IRM

Specifications

	LDA5				
	Specimen shape:	cube: cylinder:	20x20x20 mm 25.4 mm diameter 22 mm height		
	AF Demagnetizing Field: Power requirements: Dimensions, Mass:		1 to 200 mT		
			230 V / 50 Hz, 400 VA (optionally 120 V / 60 Hz)		
	Specimen Unit: Electronic Unit:		110 x 39 x 46 cm, 95 kg 47 x 38 x 17 cm, 30 kg		
	PAM1 Anhysteretic Magne Direct Magnetizing Fig	tizer eld:	0 to 500 µT		
	Pulse Magnetizer Direct Magnetizing Field Length of Direct Field	eld: Pulses:	0 to 20 mT 0.01 to 10 s		

Instruments and Techniques

	IDA5 - ver 123 [Deskton Mode]	
File Execute Graphics Settings About		
- Specimen		
Name SPECIMEN1		
Treatment ACmax ACmin DC Position Mx My Mz Exp.	AC/DC fields AC max time	
ARM_A3	AC max [mT] 50 Time [s] 1	
Geological file	AC min [mT] 10	
Azimuth Dip P1 Name Specimen1	DC [uT] 500	
120 30 6 Treatment ACmax [mT] ACmin [mT] DC [uT]		
Foliation Line ARM - 50 10 500	AC decrease rate AC decrease course	
Dip Dir. Dip Trei A-mode (12 directions) V A3 V	C Medium	
Copy Settings to I DA5	© Linear	
Results Sampling Angles Orientation Parameters Volume	C Slowing	
Modulus [A/m] Azimuth Dip P1 P2 P3 P4		
Error 120 30 6 0 6 0 10 - 10 -		
Foliation Lineation	C User mode C A-mode C B-mode	
Orientation of remanence vertex Dip Dir. Dip Trend Plunge	C P-mode C C-mode C D-mode	
Coordinate system	C x axis C y axis C z axis	
Specimen Note	0 -X-4XIS 0 -Y-4XIS 0 -Z-4XIS	
Geographic		
Tilt correction	Auto next	
Full correction		
D		
NEW SPECIMEN Auto Start SAVE		
30 ÷ STOP 1 ÷ CANCEL		
	START	
Specimens Magnetic States	STOP	
INSTRUMENT IS READY Auto Cylinder High speed Normal time Repeat: N/A CALIB HCORR		

Rema6 Instrument control SW for JR-6(A) LDA5 Instrument control SW for LDA5

Instruments and Techniques

New specimen				2_	New specimen			
Geological file				_ .	Geological file			
Name	Specimen1	•			Name	Specimen1		•
Treatment	ACmax [mT] ACmin [mT] [DC [uT]			Treatment	ACmax [mT]	ACmin [mT]	DC [uT]
AARM -	50 0	500			AARM 💌	50	0	500
AD TD	A-mode (12 positions) • A1	<u>•</u>				A-mode (12 pos A-mode (12 pos	itions) <u> </u>	
ARM IRM	Orientation parameters	Volume			Din Din	B-mode (6 posit C-mode (6 posit	ions) ions)	rs Volume
AARM	30 6 0 6 0	10			120	D-mode (3 posit	ions)	10
AIRM					1	User mode (18 pos	positions)	ŗ
Foliation	Lineation				Foliation	Lines	ation	
Dip dir. Dip	Trend Plunge				Dip dir. Dip	Tren	d Plunge	
1 1					1 1			
	OK	CANCEL	1				ок	CANCEL
		WHICE .]					Ordiolet
New specimen			a					
Geological file				<u> </u>				
Name	Specimen1	•						
Treatment	ACmax [mT] ACmin [mT] D	DC [uT]		AM	R calculation			
AARM 💌	50 0	500			Magnetizing	mode —		AC/DC field
	A-mode (12 positions) A1	▲		6	A mode (1)	2 directions	s)	AC max [mT
Orientation Dip Dip	P1 P2 P3 P4 A3			0	C B mode (6	directions)		AC min [mT]
120	30 6 0 6 0 A4				C mode (6	directione)		
Foliation	A6 Lineation A7			Ì Ì	o) soom o	unections)		DC [ui]
Dip dir. Dip	Trend Plunge A8	*		0) D mode (3	directions)		
				- (C P mode (1	5 directions	5)	
	OK	CANCEL	1					

50

0 500

CANCEL

ΟK

Even a small baby can handle anisotropy of magnetic remanence (with AGICO instruments)!

Samples

Name	Rock type	Location	Ferromagnetic carrier (?)	Magnetic susceptibility
AS32	Limestone	Italy	Magnetite	ca. 10 E-6
CS34	Camptonite (volcanic rock)	Czech Republic	Titanomagnetite	ca. 150 E-3
JH10	Shale	Czech Republic	Pyrrhotite	ca. 800 E-6
VIK01	Mudstone	Svalbard	Magnetite	ca. 300 E-6

Samples

Name	Rock type
AS32	Limestone
CS34	Camptonite (volcanic rock)
JH10	Shale
VIK01	Mudstone

Example 1: AS32 – Limestone at the Assergi Fault

AS32 – Rock characteristics

Ultracataclastic talus breccia. The fault rock is polymict and has the strongest susceptibility in this dataset. Nevertheless the magnetic fabric is not stronger or better constrained than in the other sites. K3 axes plot perfectly in the fault plane pole, whereas K1 and K2 are nearly undefined. Weak positive susceptibility.

AS32 – AMS vs. AAMR

AS32 – Magnetic characteristics

AS32 – Directional Acquisition of ARM

29

Example 2: CS34 – Site location

CS34 – Site view

CS34 – AMS vs. AAMR

CS34 – Magnetic characteristics

CS34 – Directional Acquisition of ARM

Example 3: JH10 – Location

Courtesy of Jaroslava Hajna, Prague

JH10 – Magnetic susceptibility

JH10 – AMS vs. AAMR

JH10 – Magnetic characteristics

JH10 – Directional Acquisition of ARM

JH10 – AARM in various bias DC field

JH10 – AIRM in various DC field

Piepjohn et al., 2016, J. Geol. Soc.

VIK01 – Site view

Courtesy of Katarzina Dudzisz, Warsaw, Poland

VIK01 – AMS vs. AAMR

VIK01 – Magnetic characteristics

VIK01 – Directional Acquisition of ARM

VIK01 – Directional Acquisition of ARM

4<u>9</u>

VIK01 – AARM in various coercivity windows

VIK01 – AARM in various bias DC fields

VIK0103 – AIRM in various DC fields

- 1. Acquire a **coercivity spectrum** of some representative sample(s) to decide which coercivity window is of interest (controlled by **AC field**).
- 2. DC bias field controls how much a particular coercivity sub-population is magnetized. Test whether acquired ARM is linear as a function of DC field and try to set the highest DC field which still falls within a linear range. Note that by selecting higher DC field, one may reach up to two orders of magnitude difference between the magnetized and demagnetized states.
- 3. Test whether acquired ARM is **stable in time** (effect of viscous decay), if not, each directional ARM should be measured in the same time after ARM has been acquired or long time after that to allow the viscous magnetization to relax.
- 4. Try to reach the optimum balance between precision and speed (number of magnetizing directions). The precise fitting of AARM tensor strongly depends on the residual magnetization. Prior to any directional ARM acquisition, demagnetize a sample using the highest AC field possible. If the strength of the residual magnetization is in the same order of magnitude as that of magnetized states, one is strongly advised to use magnetizing design employing pairs of antipodal magnetizing directions (A- or C-modes) where the constant residue is compensated.
- 5. If the residual magnetization is comparable or higher than that of magnetized states, AAMR tensor fitting may be very imprecise even when the antipodal magnetizing directions are used.

Literature

Tarling, D.H. & Hrouda, F. 1993. The Magnetic Anisotropy of Rock. *Chapman & Hall*, 217 pp.

Lanza, R. & Meloni, A. 2006. The Earth's Magnetism: An Introduction for Geologist. Springer, 278 pp. (Chapter 5).

- Jackson, M., 1991. Anisotropy of magnetic remanence: a brief review of mineralogical sources, physical origins, and geological applications, and comparison with susceptibility anisotropy. Pure and Applied Geophysics, 136: 1–28.
- Hirt, A. 2007. Magnetic Remanence, Anisotropy. Encyclopedia of Geomagnetism and Paleomagnetism. *Springer*. 535-540.
- Jackson, M. 2007. Magnetization, Isothermal Remanent. Encyclopedia of Geomagnetism and Paleomagnetism. Springer. 589-594.
- Moskowitz, B. 2007. Magnetization, Anhysteretic Remanent. Encyclopedia of Geomagnetism and Paleomagnetism. *Springer*. 572-580.
- Gilder, S.A., K. He, M. Wack, and J. Ježek (2019), Relative paleointensity estimates from magnetic anisotropy: Proof of concept, Earth and Planetary Science Letters, 519, 83-91.

Cautionary note!!!

Thanks for your attention!

www.agico.com

agico@agico.cz chadima@agico.cz

ADVANCED GEOSCIENCE INSTRUMENTS COMPANY

