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In this paper, the authors incorporate sufficient-component causes into the directed acyclic graph (DAG) causal
framework in order to make apparent several properties of conditioning on a common effect. By incorporating
sufficient causes on a graph, it is possible to detect conditional independencies within strata of the conditioning
variable which are not evident on DAGs without the representation of sufficient causes. It is also possible to
determine the sign of the conditional covariance of two causes when conditioning on their common effect if some
knowledge of the sufficient-cause mechanisms for the common effect is available. The incorporation of sufficient
causes within the DAG framework also allows for the representation of interactions on DAGs and for the unification
of several different causal frameworks. For illustration, the results are applied to an example concerning the familial
coaggregation of two disorders.
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Directed acyclic graphs (DAGs) have been used in epide-
miology to represent causal relations among variables, and
they have been used extensively to determine which varia-
bles it is necessary to condition on in order to control for
confounding (1–4). In some cases, conditioning on a com-
mon effect can introduce bias even when none was present
without conditioning (2). Within the DAG framework, this
is referred to as ‘‘collider stratification bias.’’ Greenland (5)
argues that in many cases, collider stratification will induce
quantitatively less bias than will traditional confounding.
Beyond this, relatively little is understood about the conse-
quences of conditioning on a common effect.

In this paper, we demonstrate how Rothman’s sufficient-
component cause (SCC) model (6) can be represented on
a causal DAG and how doing so elucidates the properties of

conditioning on a common effect. We first review the SCC
and DAG frameworks. We then provide a motivating exam-
ple concerning familial coaggregation. Theory is then de-
veloped concerning the incorporation of sufficient causes on
DAGs and on conditional independence and conditional co-
variance properties of conditioning on a common effect.
Several previous papers have focused on how the SCC
framework is related to the potential-outcomes causal
framework (7–12). Here our focus will be on the relation
between the SCC framework and the DAG framework. We
furthermore discuss how the theory developed helps unify
these various causal frameworks. Finally, we return to the
motivating example and show how the methods developed
in this paper can be applied. We then conclude with some
additional discussion.
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OVERVIEW OF CAUSAL FRAMEWORKS AND
MOTIVATING EXAMPLE

Sufficient-component causes

Rothman’s SCC framework conceptualized causation as
a series of different causal mechanisms, each sufficient to
bring about the outcome (6). These causal mechanisms
Rothman called ‘‘sufficient causes.’’ He conceived of them
as minimal sets of actions, events, or states of nature which
together initiated a process resulting in the outcome. For
a particular outcome there would likely be many different
sufficient causes, that is, many different causal mechanisms
by which the outcome could come about. Each sufficient
cause involved various component causes. Whenever all
components of a particular sufficient cause were present,
the outcome would inevitably occur; within every sufficient
cause, each component would be necessary for that suffi-
cient cause to lead to the outcome.

We will use the following notation. An event is a binary
variable taking values in {0, 1}. The odds ratio operator, u,
is defined for two events A and B such that Au B¼ 1 if and
only if either A¼ 1 or B¼ 1. The complement of an event A
will be denoted by A. A conjunction or product of the events
X1, . . . , Xn will be written as X1 . . . Xn, so that X1 . . . Xn ¼ 1
if and only if each of the events X1, . . . , Xn takes the value 1.
Under the SCC framework (6), a series of events or condi-
tions or causes, F1, . . . , Fm, all of which are binary, is said to
be a sufficient cause for D if the series F1 . . . Fm ¼ 1 implies
that D¼ 1. If S1, . . . , Sn are all of the sufficient causes for D,
where each Si is made up of some product of components
which are binary, Si ¼ Fi

1 . . .F
i
mi

, so that D ¼ S1u . . .uSn,
then we will say that S1, . . . , Sn are determinative for D.

Directed acyclic graphs

A DAG is composed of variables (nodes) and arrows
between nodes (directed edges) such that the graph is
acyclic—that is, it is not possible to start at any node, follow
the directed edges in the arrowhead direction, and end up
back at the same node. A causal DAG is one in which the
arrows can be interpreted as causal relations and in which all
common causes of any pair of variables on the graph are also
included on the graph. If there is a directed edge from A to Y,
then A is said to be a parent of Y and Y is said to be a child
of A. Additional details concerning causal DAGs can be
found in the work of Greenland et al. (2). Greater formal-
ization is provided in Pearl’s work (1, 13), in which DAGs
are considered graphical representations of structural equa-
tions such that each variable is defined as a function of its
parents and a random error term.

Statistical associations on causal DAGs can arise in
a number of ways. Two variables, A and B, may be statisti-
cally associated if A is a cause of B or if B is a cause of A.
Even if neither is the cause of the other, the variables
A and B may still be statistically associated if they have
some common cause C. Finally, the variables A and B
may be statistically associated if they have a common
effect K and the association is computed within strata of K.

We will graphically represent conditioning by placing a box
around the variable on the graph upon which we are condi-
tioning.

More formally, the statistical association between varia-
bles can be determined by blocked and unblocked paths. A
path is a sequence of nodes connected by edges regardless of
arrowhead direction; a directed path is a path which follows
the edges in the direction indicated by the graph’s arrows. A
collider is a node on a particular path such that both the
preceding and subsequent nodes on the path have directed
edges going into that node—that is, both the edge to and the
edge from that node have arrowheads into the node. Note
that a collider is relative to a particular path: A node that is
a collider on one path may not be a collider on another
path. A path between A and B is said to be blocked given
(i.e., conditioning on) some set of variables Z if either
there is a variable in Z on the path that is not a collider or
there is a collider on the path such that neither the collider
itself nor any of its descendants are in Z. If all paths between
A and B are blocked given Z, then A and B are said to be
d-separated given Z. It has been shown that if A and B are
d-separated given Z, then A and B are conditionally inde-
pendent given Z (14–16).

Motivating example

Consider a study in which each observation consists of
two persons within the same family for whom data are avail-
able regarding two diseases: bipolar disorder, denoted by P,
and binge eating, denoted by B. Suppose further that the
two diseases are such that P could cause B but B could
not cause P. For example, it is possible that bipolar disorder
may lead to binge eating but rather implausible that binge
eating would lead to bipolar disorder. The presence of
bipolar disorder in persons 1 and 2 is denoted by P1 and
P2, respectively. Similarly, the presence of binge eating in
persons 1 and 2 is denoted by B1 and B2, respectively. Let Ei

denote a certain factor particular to individual i. Let GP

denote some factor common to the family which is a cause
of bipolar disorder but not of binge eating; let GB denote
some factor common to the family which is a cause of binge
eating but not of bipolar disorder; and let F denote some set
of factors common to the family which are causes of both
bipolar disorder and binge eating. These causal relations are
summarized in the causal DAG given in figure 1. The pres-
ence of factors F is said to constitute familial coaggregation
(17, 18). Further detail concerning this specific example is
given elsewhere (James Hudson et al., Harvard University,
unpublished manuscript).

Suppose that data are available only on P1, P2, B1, and B2

and we wish to test the null hypothesis of no familial coag-
gregation (i.e., the null hypothesis that there are no directed
edges emanating from F). Suppose further that E1 and E2

are never preventive for P1 and B1 or for P2 and B2, respec-
tively, and that GP is never preventive for P1 or P2 and that
GB is never preventive for B1 or B2. Later in this paper, we
will show how tests for the null hypothesis of no familial
coaggregation can be derived from the theory developed
herein.
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SUFFICIENT CAUSATION STRUCTURES ON DAGS

If some node D is such that D and all of its parents are
binary and the sufficient causes for D are known, it is pos-
sible to construct a new causal DAG with the sufficient
causes for D on the DAG. Consider the causal DAG given
in figure 2.

Suppose that the node D and all of its parents, E1, . . . , E5,
are binary. Suppose further that E1E2 and E2E3E4 and E4E5

are a determinative set of sufficient causes for D. Then it can
be shown (see Result 1 below) that the diagram given in
figure 3 with all of the sufficient causes for D as new nodes is
also a causal DAG. To indicate that the set of sufficient
causes is determinative, we will add to the diagram an el-
lipse around the sufficient-cause nodes.

The example we have given is legitimized by and is a spe-
cial case of the result presented below. The proof of this
result can be found elsewhere (19).

Result 1. Consider a causal DAG G with some node D,
such that D and all of its parents are binary. If a determina-
tive set of sufficient causes for D, say S1, . . . , Sn, can be
constructed from the parents of D and their complements,
then a new causal DAG J can be formed by adding to G the
nodes S1, . . . , Sn, removing the directed edges into D from
the parents of D on G, adding directed edges from each Si
into D, and adding directed edges into each Si from every
parent of D on G which appears in the conjunction for Si.

When we construct these new causal DAGs with the
sufficient causes, we will generally replace the sufficient-
cause nodes Si with the conjunctions that constitute them.
We will call the resulting diagram a causal DAG with a
sufficient causation structure. We will say that the node D
admits a sufficient causation structure. One criticism of
the causal DAG framework is that it does not allow
for the representation of interactions among variables (9).
However, causal DAGs with sufficient causation structures
overcome this criticism by allowing for the graphical repre-
sentation of interactions on a DAG. For example, in figure 3,
E1 and E2 interact synergistically in their effects on D be-
cause they are both present in a single sufficient cause. The
nodes E2 and E3 interact antagonistically in their effects on
D, since E2 and E3 are both present in a single sufficient
cause. Thus, in the case of binary variables, causal DAGs
with sufficient causation structures overcome a major short-
coming in the traditional DAG causal framework.

If it is not possible to form a determinative set of suffi-
cient causes for D from the parents of D and their comple-
ments, it may be possible to add nodes to the DAG so that on
the larger causal DAG a determinative set of sufficient
causes for D can be constructed from the parents of D and
their complements. We will use the term background causes
or co-causes to refer to the additional parents of D, say
A0, . . . , Au, which are added to the graph so as to be able to
construct a determinative set of sufficient causes for D from
the parents of D and their complements. Unless it is known
that the set of parents A0, . . . , Au have no common causes,
then a variable U with directed edges into each of A0, . . . , Au

must also be added to the graph. It can be shown that it is
always possible to find such additional nodes A0, . . . , Au. In
the Appendix, we show that it is always possible to find such
additional nodes for two binary causes. The proof of the
more general result can be found elsewhere (19).

The result given above provides a link between all four
of the causal model frameworks discussed by Greenland
and Brumback (9): graphical models, potential-outcome
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FIGURE 1. Acausal directed acyclic graphwith familial coaggregation.
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FIGURE 2. A causal directed acyclic graph without a sufficient
causation structure.
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FIGURE 3. A causal directed acyclic graph with a sufficient causa-
tion structure.
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(counterfactual) models, SCC models, and structural-equation
models. The four are linked through structural equations.
Graphical models can be interpreted as diagrammatic short-
hand for structural equations (1). Structural equations can be
interpreted as sets of counterfactual relations (1, 7). The result
presented above provides the final link by relating SCC mod-
els to graphical models and thereby also structural-equation
models. In fact, the structural equation for each sufficient-
cause node Si is given by the product of components that
constitute the sufficient cause Si ¼ Fi

1 . . .F
i
mi

, since all of
the components are needed for the sufficient cause to be
realized. The structural equation for D is given by the dis-
junction of the sufficient-cause nodes D ¼ S1u . . . uSn,
since any of the sufficient causes suffices for the outcome D.
Structural equations may thus be seen as a framework en-
compassing all four of these approaches to representing
causal relations.

The construction of determinative sets of sufficient con-
junctions for D will generally not be unique. For example, if
D ¼ A0uA1E, it is also the case that D ¼ B0uB1E, where
B0 ¼ A0 and B1 ¼ A0A1. This non-uniqueness of the suffi-
cient causes for D is discussed further in the following
section. If the parents of D on the original DAG are labeled
E1, . . . , Em, then each sufficient cause Si must include either
the variable Ei in its conjunction or Ei in its conjunction or
must include neither Ei nor Ei in its conjunction; clearly it
cannot include both. There are thus 3m possible combina-
tions of the Ei’s and their complements that may appear in
sufficient causes.

Conditional independence when conditioning on
a common effect

Because a causal DAG with a sufficient causation struc-
ture is itself a causal DAG, the d-separation criterion applies
and allows one to determine independencies and conditional
independencies. A sufficient causation structure will often
make apparent conditional independencies within strata of

the conditioning variable which were not apparent on the
original causal DAG. This is so because if some node D on
a causal DAG admits a sufficient causation structure, then
conditioning on D¼ 0 also conditions on all sufficient-cause
nodes for D on the causal DAG with the sufficient causation
structure. For example, consider a causal DAG with the
sufficient causation structure given in figure 4.

Conditioning on D ¼ 0 also conditions on E1E2 ¼ 0 and
E3E4 ¼ 0, and thus we have by the d-separation criterion
that, for example, E1 is conditionally independent of E4

given D ¼ 0. This is because any path from E1 to E4 passes
through E1E2, which is in the conditioning set, and therefore
all paths between E1 and E4 are blocked given D ¼ 0. If the
causal DAG did not have the sufficient causation structure so
that the causal relations were simply those given in figure 5,
the conditional independence of E1 and E4 givenD¼ 0 would
no longer be apparent from the causal DAG. This is because
the path from E1 to E4 through D is no longer blocked given
D ¼ 0, since we are conditioning on the collider D.

Our results provide the theoretical framework for and the
generalization of the conditional independence example of
Hernán et al. (20). To ensure that the DAG with the suffi-
cient causation structure is itself a causal DAG, it is impor-
tant that the set of sufficient causes for D on the graph be
a determinative set of sufficient causes—that is, that the
sufficient causes represent all of the pathways by which
the outcome D may occur. Otherwise certain nodes may
have common causes which are not on the graph, and the
graph will then not be a causal DAG. For instance, appendix
figure 2 in the paper by Hernán et al. (20) presents an ex-
ample in which the causal structures are those indicated in
figure 6.

In this example, a surgical procedure E affects survival
through the removal of a tumor, and haplotype U affects
survival through increasing levels of low density lipoprotein
cholesterol, resulting in an increased risk of heart attack
(regardless of whether a tumor is present). There are two
cause-specific mortality variables: death from a tumor D1A

and death from a heart attack D1B, either of which is suffi-
cient for death D. Hernán et al. (20) claim that if death by
tumor and death by heart attack are independent in the sense
that they do not share a common cause and if surgery E is

E1

E2

E3

E4

E1E2

E3E4

D

FIGURE 4. A sufficient causation structure with conditional inde-
pendencies within the D ¼ 0 stratum.

E1

E2

E3

E4

D

FIGURE 5. A causal directed acyclic graph with conditional inde-
pendencies within the D ¼ 0 stratum that are not evident from the
d-separation criterion.
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independent of haplotype U, then E and U will be condi-
tionally independent given D ¼ 0 (i.e., among the survi-
vors). They make this claim on the basis of the DAG
given in figure 6. The d-separation criterion would imply
that E and U are conditionally independent given D ¼ 0,
since conditioning on D ¼ 0 also conditions on D1A ¼ 0 and
any path from E to U must pass through D1A. However, even
under the assumptions of Hernán et al. (20), the DAG in
figure 6 may not be a causal DAG; this is because the nodes
D and D1A may have common causes even if E and U are
independent and if D1A and D1B have no common causes;
similarly, D and D1B may have common causes. Consider,
for example, the causal DAG with a sufficient causation
structure given in figure 7, with D1A ¼ A1E and D1B ¼ A2U.

Here A0 represents the causes of death other than tumor
and heart attack; A1 represents the causes of death by tumor
other than surgery E; A2 represents the causes of heart attack
other than haplotype U. In figure 6, D1A and D1B are mar-
ginally independent and have no common causes, the back-
ground causes A1 and A2 are marginally independent, and E
and U are marginally independent. However, the back-

ground causes A0 and A1 have the common cause C1 and
the background causes A0 and A2 have the common cause
C2. Conditioning on D¼ 0 also conditions on A0 ¼ 0, A1E¼
0, and A2U ¼ 0, but, conditioning on D ¼ 0, there is still an
unblocked path from E to U, namely E – D1A – A1 – C1 –
A0 – C2 – A2 – D1B – U. The example thus illustrates a case
not considered in the conditional independence example of
Hernán et al. (20). It further demonstrates the importance of
ensuring that the set of sufficient causes for D displayed on
the graph is a determinative set of sufficient causes so that
the resulting diagram is in fact a causal DAG—that is, so
that all common causes of any two variables on the graph are
also on the graph. If the sufficient causes which are added to
the DAG are not a determinative set, the resulting diagram
may not in fact be a causal DAG.

We noted above that the set of determinative sufficient
causes for D will not generally be unique. Consider the
causal DAG with the sufficient causation structure indicated
in figure 8.

Suppose that A, B, and C represent three toxic exposures
such that A and B jointly or C alone is sufficient for the
outcome D, death. Conditioning on D ¼ 0 conditions also
on AB ¼ 0 and C ¼ 0, and by the d-separation criterion, A is
conditionally independent of C given D ¼ 0. Suppose that
the causal mechanisms are as follows: The presence of A
and B jointly always causes heart failure resulting in death;
and in the absence of B, the toxic exposure C always causes
respiratory failure resulting in death; but in the presence of
B, C causes a failure of the nervous system, again resulting
in death. We then have three distinct causal mechanisms for
death: AB, BC, and BC. This implies that we can represent
these causal mechanisms by means of the causal DAG with
sufficient causation structure given in figure 9.

Both figures 8 and 9 are causal DAGs that correctly de-
scribe the causal relations among the variables; they differ
in the level of detail present. In figure 9, conditioning on
D ¼ 0 also conditions on AB ¼ 0, BC ¼ 0, and BC ¼ 0, but
the d-separation criterion no longer implies that A and C are
conditionally independent given D ¼ 0, because on the
causal DAG there are two unblocked paths between A and
C conditioning on D ¼ 0, namely A – AB – B – BC – C and
A� AB� B� BC � C. Thus, from the causal DAG given
in figure 8, it was possible to use the d-separation criterion to

E

U

D1A

D1B

D

FIGURE 6. An example of the effects of surgery E and haplotype U
on death D, from appendix figure 2 in the paper by Hernán et al. (20).

E

A1

U

A2

D1A

D1B

D

A0

C1

C2

FIGURE 7. A sufficient causation structure in which E and U are
independent and have independent co-causes but are not condition-
ally independent given D ¼ 0.

A

B

C

AB

C

D

FIGURE 8. A sufficient causation structure with conditional inde-
pendencies within the D ¼ 0 stratum that are evident from the d-
separation criterion.
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identify the conditional independence of A andC givenD¼ 0.
However, from the causal DAG given in figure 9, the d-
separation criterion would not identify this conditional in-
dependence relation, even though the two DAGs describe
the same causal structure and even though the conditional
independence relation truly does hold. The difficulty arises
because on the graph in figure 9 we are representing suffi-
cient causes which are not minimally sufficient. The mech-
anisms BC and BC are distinct—death due to failure of the
nervous system versus death due to respiratory failure—but
in neither mechanism is B or B necessary; C itself is always
sufficient for death, regardless of whether the toxic exposure
B is present. We see then that allowing sufficient causes
which are not minimally sufficient on a causal DAG can
sometimes obscure conditional independence relations. It
may thus be desirable to use the causal DAGs given in both
figures 8 and 9: the first to make clear the conditional in-
dependence relations and the second to represent the distinct
causal mechanisms, which (interestingly) need not be min-
imally sufficient.

Conditional covariance when conditioning on
a common effect

If some knowledge of the sufficient causes for an outcome
D is available, it will sometimes be possible to determine the
sign of the conditional covariance of two causes when con-
ditioning on a common effect. First, however, we must in-
troduce the concept of a monotonic effect. Consider an
outcome D with two causes of interest, E1 and E2. We will
say that E1 has a positive monotonic effect on D if interven-
ing to increase E1 will never decrease D for any person,
regardless of the level to which E2 is set. We can define
a monotonic effect for E2 on D similarly. Negative mono-
tonic effects are also defined analogously. Thus, the defini-
tion of a monotonic effect essentially requires that the effect
of some intervention be in a particular direction for every
person in the population, not merely on average. The re-
quirements for the attribution of a monotonic effect are thus
considerable. However, whenever a particular intervention

is always beneficial or neutral for all individuals, one will be
able to attribute a positive monotonic effect; whenever the
intervention is always harmful or neutral for all individuals,
one will be able to attribute a negative monotonic effect.

We now consider the relation of a monotonic effect to the
sufficient causes of D. When D and all of its parents are
binary, the presence of a monotonic effect of E on D implies
that there exists a determinative set of sufficient causes for D
such that E never appears in the conjunctions for any of the
sufficient causes (19). Thus, if two parents of D, say E1 and
E2, both have monotonic effects on D, then there exists
a determinative set of sufficient causes for D such that the
sufficient causes for D may have among their components
E1 or E2 or E1E2 or neither E1 nor E2, but never E1 or E2 or
E1E2. If E1 and E2 are independent of one another and have
positive monotonic effects on D, the sufficient causation
structure for the causal DAG can be described by the graph
given in figure 10.

With this definition of a monotonic effect, we can now
give Result 2.

Result 2. Suppose that D and all of its parents are binary,
and suppose that two parents of D, say E1 and E2, are
independent and also independent of all other parents of D
on the causal DAG. Suppose further that E1 and E2 have
a positive monotonic effect on D. Then, for any deter-
minative set of sufficient causes D such that D ¼
A0uA1E1uA2E2uA3E1E2, the following hold:

1. If A0 ¼ 0, then Cov(E1, E2|D) � 0.

2. If A0 ¼ 0 and A1 and A2 are independent, then
CovðE1;E2jDÞ � 0.

3. If A1 ¼ 1 or A2 ¼ 1, then Cov(E1, E2|D) � 0 and
CovðE1;E2jDÞ ¼ 0.

4. If A1 ¼ 0 or A2 ¼ 0, then Cov(E1, E2|D) � 0 and
CovðE1;E2jDÞ � 0.

A

B

C

AB

BC

BC

D

FIGURE 9. A sufficient causation structure with conditional inde-
pendencies within the D ¼ 0 stratum that are not evident from the
d-separation criterion.

A0

A1

E1

A3

E2

A2

A0

A1E1

A3E1E2

A2E2

D
U

FIGURE 10. A sufficient causation structure in which E1 and E2 are
independent and have positive monotonic effects on D.
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5. If A3 ¼ 0, then Cov(E1, E2|D) � 0.

6. If A3 ¼ 0 and if A1 and A2 are independent and
additionally A0 is independent of either A1 or A2, then
CovðE1;E2jDÞ ¼ 0.

The assumption that A0 ¼ 0 is essentially the assumption
that one of E1 or E2 is always necessary for the outcome D;
that is, D cannot occur without either E1 or E2. The assump-
tion that A1 ¼ 1 is the assumption that E1 is itself always
sufficient for D; similarly, the assumption that A2 ¼ 1 is the
assumption that E2 is itself always sufficient for D. The
assumption that A1 ¼ 0 is the assumption that E1 by itself
is never necessary for D; that is, if E1 ¼ 1 and D¼ 1, it must
be the case either that E2 ¼ 1 or that D ¼ 1, even if E1 ¼ 0.
Similarly, the assumption that A2 ¼ 0 is the assumption that
E2 by itself is never necessary for D; that is, if E2 ¼ 1 and
D ¼ 1, it must be the case either that E1 ¼ 1 or that D ¼ 1,
even if E2 ¼ 0. The assumption that A3 ¼ 0 is essentially that
there is no synergism in the SCC sense between E1 and E2;
that is, if D¼ 1 and E1 ¼ E2 ¼ 1, then either E1 ¼ 1 alone or
E2 ¼ 1 alone would be sufficient for D. If any of these
assumptions can be made, we can draw conclusions about
the conditional covariance between E1 and E2. Result 2 can
be generalized if E1 and E2 are not independent. The state-
ment of this generalization and its proof are provided in
supplementary material posted on the Journal’s website
(http://www.aje.oxfordjournals.org). The result can also be
generalized when the conditional covariance of two nodes
which are not parents of D are considered (19). We give
an example of one such generalization, Result 3, in the
Appendix.

MOTIVATING EXAMPLE REVISITED

We now return to the motivating example introduced at
the beginning of this paper and show how Results 2 and 3
can be used to derive a statistical test for the presence of no
familial coaggregation. We will graphically represent the
monotonic-effects relations indicated earlier by signs on
the appropriate edges. The null hypothesis of no familial
coaggregation can then be represented by the signed causal
DAG given in figure 11 with no arrows out of F.

Under the null hypothesis of no familial coaggregation,
by Result 2, Cov(E1, GP|P1 ¼ 1) � 0 if E1 and GP do not
exhibit synergism. By Result 3 (see Appendix), we have
sign(Cov(B1, P2|P1 ¼ 1)) ¼ sign(Cov(E1, GP|P1 ¼ 1)). Thus,
under the null hypothesis of no familial coaggregation,
sign(Cov(B1, P2|P1 ¼ 1)) ¼ sign(Cov(E1, GP|P1 ¼ 1)) � 0
if there is no synergism between E1 and GP in the SCC sense.
Consequently, a test of the null Cov(B1, P2|P1 ¼ 1) � 0
is a joint test of no familial coaggregation and no syner-
gism between E1 and GP. Similarly, a test of the null
Cov(B2, P1|P2 ¼ 1) � 0 is a joint test of no familial
coaggregation and no synergism between E2 and GP.

DISCUSSION

The primary contributions of this paper are a number of
theoretical advances in representing and reasoning about

causal relations. Specifically, we have provided a link be-
tween and have helped unify several different causal mod-
els: SCC, counterfactual, graphical, and structural-equation
models. Doing so allowed us to derive a number of proper-
ties of conditioning on a common effect. We have shown
that representing sufficient causes on a DAG can allow for
the detection of conditional independence relations within
strata of the conditioning variable that are not evident on
traditional causal DAGs. We have also stated conditions
which allow a researcher to draw conclusions about the sign
of the conditional covariance of two causes when condition-
ing on a common effect. Finally, we have shown how suf-
ficient causes and synergistic interactions can be graphically
represented on causal DAGs.

For the theory presented in this paper to be applied to
epidemiologic problems, relatively strong assumptions are
needed: binary outcomes and exposures, the conditional in-
dependence assumptions of DAGs, knowledge of or conjec-
tures about determinative sets of sufficient causes, and
monotonic effects. These assumptions limit the applicability
of the theory. We will discuss each of these assumptions in
turn.

Although the theory is limited to binary outcomes and
exposures, many outcomes and exposures of interest in
epidemiologic research are binary. Furthermore, for ordinal
or categorical exposures, the theory developed can be applied
by recoding the exposure as a series of binary variables;
however, the outcome would still need to be binary in order
for Results 2 and 3 to be applied. Our results made use of the
various conditional independence assumptions entailed by
DAGs. Many medical and epidemiologic systems can be
usefully represented by DAGs, as testified to by the increas-
ing occurrence of DAGs in the epidemiologic literature. The
structure of the DAG itself implies the conditional indepen-
dence assumptions which we made use of in our results. The
requirement that the researcher have knowledge of or con-
jectures about a determinative set of sufficient causes can be
relaxed somewhat, but the details are beyond the scope of
the current paper (19). Monotonic effects assume that a par-
ticular exposure affects all persons the same way (i.e., the
effect points in the same direction for everyone); although
this is a strong assumption, it is one that may apply to
a number of epidemiologic exposures, such as the effect
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FIGURE 11. A causal directed acyclic graph with monotonic effects,
under the null hypothesis of no familial coaggregation.
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of smoking on lung cancer risk or the effect of certain genes
or environmental exposures. Furthermore, the assumption of
monotonic effects can sometimes be weakened to assump-
tions about the ordering of intervention distributions, as
discussed in other work (21).

Although the assumptions required to apply the theory in
this paper are considerable, they are not insurmountable, as
our example from psychiatric epidemiology demonstrates.
Moreover, our results perform an important cautionary func-
tion: They define the number, type, and strength of the as-
sumptions that are required in order to succeed in using
epidemiologic data to draw conclusions from sufficient
causes on causal DAGs.

The DAG framework has proven to be a useful tool for
causal thinking in epidemiologic research. Several recent
papers have extended the applicability of DAGs to new
types of problems (20–24). The contributions in this paper
concerning sufficient causes and the properties of condition-
ing on a common effect extend further the scope of the types
of problems which DAGs can address.
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APPENDIX

Construction of Co-Causes for Two Binary Causes and
a Binary Outcome

Suppose that E1 and E2 are the only parents of D on the
original causal directed acyclic graph (DAG), as in appendix
figure 1.

We will show that it is possible to construct co-causes
which can be added to the DAG so that a determinative
set of sufficient causes can be formed from E1;E2;E1;E2

and the co-causes. The construction we give will work even
if E1 and E2 have common causes. We construct A0, . . . ,
A8 so that D ¼ A0uA1E1uA2E1uA3E2uA4E2uA5E1E2

uA6E1E2uA7E1E2uA8E1E2 by defining the variables
A0, A1, A2, A3, A4, A5, A6, A7, and A8 as follows. Let Dij(x)
be the counterfactual value of D for individual x if E1 were
set to i and E2 were set to j. Then:

let A0(x) ¼ 1 and Ai(x) ¼ 0 for i 6¼ 0 if D00(x) ¼ D01(x) ¼
D10(x) ¼ D11(x) ¼ 1;

let A1(x) ¼ A3(x) ¼ 1 and Ai(x) ¼ 0 for i 6¼ 1, 3 if D00(x) ¼
0, D01(x) ¼ D10(x) ¼ D11(x) ¼ 1;

let A2(x) ¼ A3(x) ¼ 1 and Ai(x) ¼ 0 for i 6¼ 2, 3 if D10(x) ¼
0, D00(x) ¼ D01(x) ¼ D11(x) ¼ 1;
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let A3(x) ¼ 1 and Ai(x) ¼ 0 for i 6¼ 3 if D00(x) ¼ D10(x) ¼
0, D01(x) ¼ D11(x) ¼ 1;

let A1(x) ¼ A4(x) ¼ 1 and Ai(x) ¼ 0 for i 6¼ 1, 4 if D01(x) ¼
0, D00(x) ¼ D10(x) ¼ D11(x) ¼ 1;

let A1(x) ¼ 1 and Ai(x) ¼ 0 for i 6¼ 1 if D00(x) ¼ D01(x) ¼
0, D10(x) ¼ D11(x) ¼ 1;

let A5(x) ¼ A8(x) ¼ 1 and Ai(x) ¼ 0 for i 6¼ 5, 8 if D01(x) ¼
D10(x) ¼ 0, D00(x) ¼ D11(x) ¼ 1;

let A5(x) ¼ 1 and Ai(x) ¼ 0 for i 6¼ 5 if D00(x) ¼ D01(x) ¼
D10(x) ¼ 0, D11(x) ¼ 1;

let A2(x) ¼ A4(x) ¼ 1 and Ai(x) ¼ 0 for i 6¼ 2, 4 if D11(x) ¼
0, D00(x) ¼ D01(x) ¼ D10(x) ¼ 1;

let A6(x) ¼ A7(x) ¼ 1 and Ai(x) ¼ 0 for i 6¼ 6, 7 if D00(x) ¼
D11(x) ¼ 0, D01(x) ¼ D10(x) ¼ 1;

let A2(x) ¼ 1 and Ai(x) ¼ 0 for i 6¼ 2 if D10(x) ¼ D11(x) ¼
0, D00(x) ¼ D01(x) ¼ 1;

let A6(x) ¼ 1 and Ai(x) ¼ 0 for i 6¼ 6 if D00(x) ¼ D10(x) ¼
D11(x) ¼ 0, D01(x) ¼ 1;

let A4(x) ¼ 1 and Ai(x) ¼ 0 for i 6¼ 4 if D01(x) ¼ D11(x) ¼
0, D00(x) ¼ D10(x) ¼ 1;

let A7(x) ¼ 1 and Ai(x) ¼ 0 for i 6¼ 7 if D00(x) ¼ D01(x) ¼
D11(x) ¼ 0, D10(x) ¼ 1;

let A8(x) ¼ 1 and Ai(x) ¼ 0 for i 6¼ 8 if D01(x) ¼ D10(x) ¼
D11(x) ¼ 0, D00(x) ¼ 1; and

let Ai(x) ¼ 0 for all i if D00(x) ¼ D01(x) ¼ D10(x) ¼
D11(x) ¼ 0.

The causal DAG with this sufficient causation structure is
then that given in appendix figure 2.

Result 3. Suppose that E1, E2, and D are binary variables,
that E1 and E2 are the only parents of D, that F and G are d-
separated given {E1, E2, D}, that F and E2 are d-separated
given {E1, D}, and that G and E1 are d-separated given {E2,
D}. Suppose also that E1 is a parent of F, that E1 has a mono-
tonic effect on F, that there are no intermediate variables
between E1 and F, and that E1 and F have no common
causes; and suppose that E2 is a parent of G, that E2 has
a monotonic effect on G, that there are no intermediate
variables between E2 and G, and that E2 and G have no
common causes. Then sign(Cov(F, G|D)) ¼ sign(Cov(E1,
E2|D)).
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APPENDIX FIGURE 2. A sufficient causation structure for D with
two binary causes, E1 and E2.

E1

E2

D

APPENDIX FIGURE 1. A causal directed acyclic graph with two
causes and no sufficient causation structure.
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