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Berkson’s bias

In 1984 one of us (N.P.) was living on the beach in New

Zealand. I was writing my PhD thesis, when I had a

football (‘soccer’) injury which gave me a severe back

problem for a week. After the first two days of lying

around on my back listening to music and not being able

to do much else, I woke up in the middle of the night with

nausea and dizziness apparently caused by an inner ear in-

fection. For the next five days I had severe back pain when

I stood up, severe nausea and dizziness when I lay down

and a mixture of the two when I sat in a chair. The purpose

of recounting this sorry story is not to relate my medical

history to readers of IJE, but rather because it is relevant

to the story of Berkson’s bias, which I had been studying at

the time. I didn’t get admitted to hospital, but it was a near

thing, and it gave me firsthand experience of how ‘persons

with two or more diseases have a higher probability to be

hospitalized than persons with only one disease—even if

these results are independent’.1 If I had been hospitalized

and recruited for a study of inner ear infections, and if

there had been enough other people like me, then we prob-

ably would have contributed to a false conclusion that
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football injuries (which caused my back problem) were a

cause of inner ear infections—this corresponds to the ‘in-

direct’ form of Berkson’s bias,2 as depicted in Figure 3a in

the paper of Snoep et al.1

Berkson’s bias (also termed ‘Berkson’s fallacy’) is per-

haps one of the best known, but least well understood,

forms of bias. The paper by Snoep et al1 clarifies what the

bias is, why it sometimes matters, but why it usually

doesn’t. We will comment on three aspects of the paper:

(i) the use of Directed Acyclic Graphs (DAGs); (ii) the

components of Berkson’s bias; and (iii) the likely strength

and direction of such biases.

Directed Acyclic Graphs (DAGs)

The paper of Snoep et al. clearly illustrates the power and

elegance of Directed Acyclic Graphs (DAGs). What we

previously used to try to understand using words, probabil-

ities and numerical examples, can now be explored much

more elegantly using causal diagrams. This represents a

real advance, and clarifies many aspects of Berkson’s bias.

More generally, DAGs have clarified the previously

murky relationship between selection bias and confound-

ing. Traditionally, selection bias has been described as bias

arising from inappropriate selection (or self-selection) of

study subjects from the source population.3 On one level

this is clear enough, but the use of the word ‘selection’ has

often led to the term being applied to inappropriate selec-

tion of a comparison group, thus leading to confusion as to

whether phenomena such as the healthy worker effect are

examples of selection bias4 or of confounding,5,6 The situ-

ation is further complicated because determinants of selec-

tion (e.g. age, gender, socioeconomic position) can

effectively become confounders and be controlled for in

the analysis, even if they were not confounders in the

source population. The use of DAGs clarifies this, and dis-

tinguishes between biases resulting from (inappropriate)

conditioning on common effects (‘collider bias’ or ‘selec-

tion bias’) and lack of conditioning on common causes of

exposure and outcome (confounding).6,7 The two phenom-

ena can occur together, e.g. when we condition on a col-

lider that is the effect of a cause of the outcome rather than

being an effect of the outcome itself. Some would label this

as selection bias,6 others would consider it to also be a type

of confounding.8,9

Thus, although the three terms are sometimes used

almost interchangeably, collider bias is the more general

phenomenon involving conditioning on common effects

(although Hernan et al.6 use the term ‘selection bias’ for

this more general phenomenon); selection bias is then a

particular type of collider bias in which the common effect

is selection into the study; Berkson’s bias is then a particu-

lar type of selection bias10 in which selection of cases into

the study depends on hospitalization, and the exposure is

another disease, or a cause of another disease, which also

results in hospitalization. It is unlikely that this would have

been so easily clarified without the use of DAGs.

The components of Berkson’s bias

In its bare essence, Berkson’s bias can be seen as a biased

estimation of the odds of exposure among the cases be-

cause exposed cases are identified with greater probability

than non-exposed cases, when the hospitalization rate for

the cases is less than 100% and the exposure is another

disease, or a cause of another disease, which results in hos-

pitalization. It is possible to illustrate with numerical

examples the different steps involved in Berkson’s bias. Let

us start with the population reported in Table 5 of

Berkson’s paper2 where the odds ratio is 1.0 (Table 1).

We now assume that the study compares hospitalized

cases with general population controls (corresponding to

Figure 1b of Snoep et al.1). We use the same probabilities

of hospitalization for Disease 1 (the exposure—0.15), and

Disease 2 (the cases—0.05) of the Berkson’s paper. We

also assume (differently from Berkson2 and from Snoep

et al.1) that the whole population has a prevalence of 0.2

and a hospitalization rate of 0.025 for any other disease

than D1 and D2 (these different assumptions mean that

our numbers are slightly different from those of Berkson2

and Snoep et al.1). If the study compares hospitalized cases

with general population controls sampled from non-cases

with a sampling fraction of 10%, the corresponding find-

ings are shown in Table 2. The estimated odds ratio is now

Table 1. Association in the general population as reported in

Berkson2

Exposed Unexposed Total

Cases 3000 97 000 100 000

Non-cases 297 000 9 603 000 9 900 000

Total 300 000 9 700 000 10 000 000

Odds ratio¼ 1.0.

Table 2. Association using hospitalized cases and general

population controls

Exposed Unexposed Total

Cases 590 5311 5901

Controls 29 700 960 300 990 000

Total 30 290 965 611 995 901

Odds ratio¼ 3.59.
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3.59, because of higher exposure odds in the hospitalized

cases (compared with all cases). This is caused by collider

bias as shown in Figure 1b of Snoep et al.1

The corresponding findings from a study conducted

among hospitalized patients in the same population are

shown in Table 3. The bias is now in the opposite direction,

because the increase in the exposure odds in the cases (com-

pared with all cases) is more than offset by an even greater

increase in the exposure odds in the non-cases (compared

with the general population). This is again caused by the

collider bias, as depicted in Figure 1a of Snoep et al.1

Table 4 shows an example more similar to that of

Berkson,2 in which one particular disease has been chosen

for selection of controls and the control disease has a 0.20

probability of hospitalization and a prevalence of 0.005;

the odds ratio is now 2.26, and the bias is now in the op-

posite direction to Table 3, because the hospitalization rate

for the control disease is greater than the hospitalization

rate for the case disease (and therefore the increase in the

exposure is greater in the cases than in the controls).

Thus, when using general population controls,

Berkson’s bias will tend to produce elevated odds ratios

(when the hospitalization rate for the case disease is less

than 100%); when using hospital controls, the bias can be

in either direction.

The strength and direction of bias

The paper by Snoep et al. not only clarifies these underly-

ing mechanisms of Berkson’s bias; it also provides

estimates of its strength and direction in a variety of cir-

cumstances (see Snoep et al., Table 31). This reveals that,

when Berkson constructed a scenario similar to Table 4 in

which the rate of hospitalization in the control disease (re-

fractive errors) was considerable higher than in the case

disease (diabetes)—0.2 compared with 0.05—the odds

ratios were strongly biased upwards (line 1 of Snoep et al.,

table 31); when the rate of hospitalization is lower in the

control disease, the odds ratio is biased downwards (lines

4–5 in Table 3 of Snoep et al.1), whereas there is no bias

when the rate of hospitalization is the same for the two dis-

eases and patients who have both the case and the control

disease are counted only as cases (lines 8–9, Table 3 of

Snoep et al.1).

So Berkson’s bias can certainly occur, but does it really

matter? As Snoep et al.1 note, Berkson’s example was

based on a hypothetical study involving the association

between prevalent cases and another prevalent disease

(the exposure). When exposure is not a direct reason for

hospitalization in itself, only the indirect form of Berkson’s

bias is relevant—like the example about the back problem

caused by a football injury (see above). This bias is largely

attenuated by using incident cases and can be prevented

completely by excluding cases that were hospitalized

because of another disease. This can be seen from the ex-

ample described above—many people with incident middle

ear infections would have to be hospitalized for concurrent

football injuries for material bias to occur. Thus, in many

(or perhaps most) plausible situations, the bias will be

extremely small, particularly if incident cases are used.

Although it is theoretically interesting, in practice it has

largely been ‘much ado about nothing’.

Perhaps the main message here is that it is not sufficient

merely to demonstrate that a bias could occur; it is neces-

sary to also assess the likelihood that it will occur, and its

likely strength and direction. Epidemiological studies are

frequently criticized on the basis of the potential for infor-

mation bias or residual confounding. In some instances

these potential problems are real and important; in others

they are trivial. Bayesian methods are becoming increas-

ingly available to assess the likely strength and direction of

such biases.11

Which brings us to the limitations of DAGs. Berkson’s

paper produced extreme results because it was based

on prevalent cases, a situation which cannot be easily

represented by DAGs. If we change from prevalent cases to

incident cases, all of the DAGs in figures 1–6 in Snoep

et al.1 still look the same, but the biases have generally

become trivial. This illustrates a more general problem of

DAGs—they can show that a bias could occur, but do not

provide estimates of its likely strength and direction.

Without this, it is easy to succumb to ‘analysis paralysis’

Table 3. Association using hospitalized cases and controls

from patients hospitalized for any disease, with a 0.2 popula-

tion prevalence and a 0.025 probability of hospitalization for

any disease other than D1 (exposure) or D2 (cases)

Exposed Unexposed Total

Cases 590 5311 5901

Controls 45 812 48 015 93 827

Total 46 402 53 326 99 728

Odds ratio¼ 0.12.

Table 4. Association using controls hospitalized with a par-

ticular disease, with a 0.005 population prevalence and a 0.20

probability of hospitalization for the control disease

Exposed Unexposed Total

Cases 590 5311 5901

Controls 480 9757 10 237

Total 1070 15 068 16 138

Odds ratio¼ 2.26.
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which stems from the fear of adjusting for a potential

confounder (which could also be a collider in another

path) because to do so might result in collider bias

(‘collider anxiety’). In some situations, collider bias may be

comparable in size with uncontrolled confounding.7 In

others it will not, and the benefit from controlling con-

founding will far outweigh the effects of collider bias. It all

depends.
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We thank Snoep et al. for their commentary1 offering valuable

perspective on Berkson’s classic and important paper2 and the con-

troversies that followed. We wish here to mention what we feel is an

important point arising from their discussion, and use this to high-

light some interesting features of using directed acyclic graphs

(DAGs) to discuss issues relating to selection bias and missing data.

The non-hospitalized subpopulation

An interesting point made by Snoep et al. is that, even in

the simplest setting in which Berkson’s fallacy may occur

(Snoep et al. Figure 1b), where two independent diseases

are found to be associated in hospitalized patients, ‘one

would not expect a spurious association between [two dis-

eases] in a study restricted to non-hospitalized patients.’ In

Snoep Figure 2, a patient is not hospitalized (H¼ 0) if and

only if she is not hospitalized for disease 1 (H1¼ 0) and

not hospitalized for disease 2 (H2¼ 0); a patient is hospi-

talized (H¼ 1) if she is hospitalized for disease 1 (H1¼ 1)

or hospitalized for disease 2 (H2¼ 1). Restricting to non-

hospitalized patients therefore implies jointly conditioning

International Journal of Epidemiology, 2014, Vol. 43, No. 2 524

Downloaded from https://academic.oup.com/ije/article-abstract/43/2/521/680183
by Universidade de Sao Paulo - EESC user
on 24 May 2018

http://www.oxfordjournals.org/

	dyu022-FN1
	dyu022-FN2
	l
	dyu022-TF1
	l
	dyu025-TF1
	dyu025-TF2
	dyu025-TF3
	dyu025-TF4
	dyu023-TF3
	dyu023-TF2
	dyu023-TF1



