
 Electronic copy available at: https://ssrn.com/abstract=2959472

DRAFT – FINAL VERSION FORTHCOMING

 Trust But Verify [April, 2017

TRUST BUT VERIFY:
A GUIDE TO ALGORITHMS AND THE LAW

BY
DEVEN R. DESAI* AND JOSHUA A. KROLL†

The call for algorithmic transparency as a way to manage the power
of new data-driven decision-making techniques misunderstands the
nature of the processes at issue and underlying technology. Part of the
problem is that the term, algorithm, is broad. It encompasses
disparate concepts even in mathematics and computer science.
Matters worsen in law and policy. Law is driven by a linear, almost
Newtonian, view of cause and effect where inputs and defined process
lead to clear outputs. In that world, a call for transparency has the
potential to work. The reality is quite different. Real computer systems
use vast data sets not amenable to disclosure. The rules used to make
decisions are often inferred from these data and cannot be readily
explained or understood. And at a deep and mathematically provable
level, certain things, including the exact behavior of an algorithm, can
sometimes not be tested or analyzed. From a technical perspective,
current attempts to expose algorithms to the sun will fail to deliver
critics’ desired results and may create the illusion of clarity in cases
where clarity is not possible.

At a high-level, the recent calls for algorithmic transparency follow a
pattern that this paper seeks to correct. Policy makers and
technologists often talk past each other about the realities of
technology and the demands of policy. Policy makers may identify
good concerns but offer solutions that misunderstand technology. This
misunderstanding can lead to calls for regulation that make little to no
sense to technologists. Technologists often see systems as neutral tools,
with uses to be governed only when systems interact with the real
world. Both sides think the other simply “does not get it,” and

* Associate Professor of Law and Ethics, Georgia Institute of Technology, Scheller College of Business;
J.D., Yale Law School; Affiliated Fellow, Yale Law Information Society Project; former Academic
Research Counsel, Google, Inc. I, and this Article, have benefitted from discussions with and input from
Solon Barocas, Ariel Feldman, Brett Frischmann, Andrew Selbst, and Peter Swire. I am grateful for
feedback on an early draft from participants at the Law and Ethics of Big Data Research Colloquium hosted
by The Department of Law and Ethics, Kelley School of Business, University of Indiana and the Virginia
Tech Center for Business Intelligence Analytics, and from participants at Privacy Law Scholars 2016
hosted by George Washington University Law School and UC Berkeley School of Law. This Article was
supported in part by summer research funding for me from the Scheller College of Business and an
unrestricted gift to the Georgia Tech Research Institute by Google, Inc. The views expressed herein are
those of the authors alone and do not necessarily reflect the view of those who helped with and supported
this work.
† Systems Engineer, Cloudflare, Inc., PhD, Princeton University; Affiliate, Center for Information
Technology Policy, Princeton.

 Electronic copy available at: https://ssrn.com/abstract=2959472

DRAFT – FINAL VERSION FORTHCOMING

 Trust But Verify [April, 2017

important problems receive little attention from either group. By
setting out the core concerns over the use of algorithms, offering a
primer on the nature of algorithms, and a guide on the way in which
computer scientists deal with the inherent limits of their field, this
paper shows that there are coherent ways to manage algorithms and
the law.

DRAFT – FINAL VERSION FORTHCOMING

 Trust But Verify [April, 2017

TRUST BUT VERIFY:
A GUIDE TO ALGORITHMS AND THE LAW

BY
DEVEN R. DESAI AND JOSHUA A. KROLL

INTRODUCTION ... 1	
I.	 ALGORITHMS, THE CONCERNS ... 9	

A.	 Algorithms, Public Sector Concerns .. 10	
B.	 Algorithms, Private Sector Concerns ... 15	

II.	 ALGORITHMS: A PRIMER ... 25	
III.	 TO HALT OR NOT TO HALT .. 33	
IV.	 PRACTICAL SOLUTIONS FROM COMPUTER SCIENCE 41	

A.	 Reviewing Algorithms, Software, and Decisions 42	
1.	 White Box Testing .. 44	
2.	 Black Box Testing ... 45	
3.	 A Third Way: Ex-post Analysis and Oversight 47	

B.	 Dynamic Systems and the Limits of Ex-Post Testing 50	

V.	 A TAXONOMY OF POTENTIAL SOLUTIONS 52	
A.	 Public Systems .. 52	
B.	 Private Systems .. 58	

1.	 Explicitly Regulated Industries ... 59	
2.	 Building Trust: Implicitly Regulated Industries or Activities 62	
3.	 The Challenge of Dynamic Systems ... 63	

C.	 Legislative Changes to Improve Accountability 71	

CONCLUSION .. 77	

DRAFT – FINAL VERSION FORTHCOMING

1 Trust But Verify [April, 2017

According to my definition, a number is computable if its
decimal can be written down by a machine.1

--Alan Turing

The next time you hear someone talking about algorithms,
replace the term with “God” and ask yourself if the
meaning changes. Our supposedly algorithmic culture is
not a material phenomenon so much as a devotional one, a
supplication made to the computers people have allowed to
replace gods in their minds, even as they simultaneously
claim that science has made us impervious to religion.2

--Ian Bogost

INTRODUCTION

Someone is denied a job.3 A family can’t get a loan for a car or a house.4

Someone else is put on a no-fly list.5 A single mother is denied federal benefits.6 None of

these people has an idea or reason why that happened other than the decision was

processed through some software.7 Someone commandeers a car, controls its brakes, or

even drives away with the car.8 A car company claims its cars have low emissions, but in

1 Alan Mathison Turing, On computable numbers, with an application to the Entscheidungsproblem, 42
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 230, 230 (1936).
2 Ian Bogost, The Cathedral of Computation, THE ATLANTIC, January 15, 2015,
http://www.theatlantic.com/technology/archive/2015/01/the-cathedral-of-computation/384300/
3 See e.g. FRANK PASQUALE, THE BLACK BOX SOCIETY: THE SECRET ALGORITHMS THAT CONTROL MONEY
AND INFORMATION 34-35 (2015) (describing use of software and online data to make hiring decisions).
4 Id. at 4-5 (discussing use of predictive analytics in credit scoring and loan decisions).
5 Danielle Citron, Technological Due Process, 85 WASH. U. L. REV. 1249, 1256-57 (2008).
6 Id.
7 See e.g., PASQUALE, supra 3 at 4-5 (2015) (one “will never understand exactly how [one’s credit score]
was calculated”); infra notes __ to __ (33-36) accompanying text.
8 At least two groups have shown ways to take over a Tesla and open its doors, open its sunroof, and enable
keyless driving so the car could be driven away, that is stolen. See Davis Z. Morris, Tesla Stealing Hack Is
About Much More than Tesla, FOTUNE.COM, November 26, 2016 at http://fortune.com/2016/11/26/tesla-
stealing-hack/. In one case, a group was able to take over the braking system and more from a great
distance. See Andrea Peterson, Reseachers Remotely Hack Tesla S, WASHINGTON POST, September 20,
2016.

DRAFT – FINAL VERSION FORTHCOMING

2 Trust But Verify [April, 2017

fact its cars pollute.9 A voting machine is supposed to count votes accurately, but no one

can tell whether the count is correct.10 An electric car’s battery seems not to have

sufficient capacity, so its software is updated, but no one knows whether the update has

fixed the problem or is compliant with government safety regulations.11 Searches for

black sounding names yield ads suggestive of arrest records.12 For each decision, it is

difficult both to learn precisely why these things happen and to determine whether the

actors using the software—companies or government agencies—have complied with

regulations or have committed fraud by only feigning compliance. A common concern is

that the software behind the decision or process is at fault for any negative outcomes,

either because it has bugs or because the algorithms, or methods for determining

outcomes, are incorrect or faulty.13 And often critics claim that those who are affected by

such decisions can’t understand or govern these outcomes, because the decision process

is a black box.14 The standard solution to this general problem is a call for transparency,

and in this context specifically a call for what critics have called algorithmic

transparency.15 We argue that although the problems are real, for important computer

9 See e.g., Russel Hotten, Volkswagen: The Scandal Explained, December 10, 2015 BBC NEWS,
(explaining the way Volkswagen used software to fake emissions results) at
http://www.bbc.com/news/business-34324772; Alex Davies, Here We Ago Again: EPA Accuses Chrysler
of Selling Dirty Diesels, January 12, 2017 WIRED.COM (noting EPA accused Fiat Chrysler of installing and
not disclosing software that hid nitrous oxide emissions in its diesel cars) at
https://www.wired.com/2017/01/epa-now-accusing-fiat-chrysler-selling-dirty-diesels/.
10 See e.g., J. Alex Halderman, Want To Know If the Election Was Hacked? Look at the Ballots, Nov. 23,
2016, MEDIUM.COM, at https://medium.com/@jhalderm/want-to-know-if-the-election-was-hacked-look-at-
the-ballots-c61a6113b0ba#.gzpyt1dat
11 Cf. Alex Davies, Tesla’s Plans To Kill Range Anxiety With A Software Update, WIRED.COM, March 19,
2015 at https://www.wired.com/2015/03/teslas-plan-kill-range-anxiety/.
12 See e.g., Latanya Sweeney, Discrimination in Online Ad Delivery, 56 COMMUNICATIONS OF THE ACM 44,
52 (2013) (“These findings reject the hypothesis that no difference exists in the delivery of ads suggestive
of an arrest record based on searches of racially associated names.”).
13 See infra Part I.
14 See PASQUALE, supra note 3, at 165.
15 See e.g., Katherine Noyes, The FTC Is Worried About Algorithmic Transparency, And You Should Be
Too, PC WORLD (April 9, 2015 8:36 AM) http://www.pcworld.com/article/2908372/the-ftc-is-worried-
about-algorithmic-transparency-and-you-should-be-too.html (noting Christian Sandvig’s view that

DRAFT – FINAL VERSION FORTHCOMING

3 Trust But Verify [April, 2017

science reasons, this proposed solution will not work. Nonetheless there is, and we offer,

a way to mitigate these problems so that society can continue to benefit from software

innovations.

Put simply, current calls for algorithmic transparency misunderstand the nature of

computer systems. This misunderstanding may flow in part from the religious, devotional

culture around algorithms Ian Bogost describes. Both critics and advocates can stray into

uncritical deference to the idea that the big data, mathematical models and algorithms

used to make decisions in software are somehow infallibly scientific. We believe this

problem is aggravated because, although algorithms are decidedly not mystical things or

dark magic, the details of how software systems work are not well understood outside the

technical community.16 This paper thus examines the idea of algorithmic transparency,

offers a primer on the construction and analysis of software as a way to bridge this gap,

and presents concrete options for managing the problems automated decision-making

presents to society.

Those who wish to rein in certain sectors’ power by forcing transparency raise

good questions about the structure of our society, fairness, and welfare, but as applied to

algorithms and automated decision-making, a call for transparency alone is misguided. A

consistent theme is that unaccountable machines have taken center stage and now “are

used to make decisions for us, about us, or with us,” in sensitive and subjective areas

transparency may not be viable because of the complexity of some algorithms and the data needed to test
the algorithms); accord Christian Sandvig, Kevin Hamilton, Karrie Karahalios, and Cedric Langbort,
Auditing algorithms: Research methods for detecting discrimination on internet platforms (2014) (using the
“social scientific study” auditing to investigate algorithmically driven platforms).
16 Bogost, supra note 2 (“The next time you hear someone talking about algorithms, replace the term with
“God” and ask yourself if the meaning changes. Our supposedly algorithmic culture is not a material
phenomenon so much as a devotional one.”); see also JOSHUA A. KROLL, ACCOUNTABLE ALGORITHMS 2,
n.1 (2015) (“The term ‘algorithm’ is assigned disparate technical meaning in the literatures of computer
science and other fields.”) available at https://www.cs.princeton.edu/~kroll/papers/dissertation.pdf.

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

4 Trust But Verify [April, 2017

such as health-care, employment, credit, national security, networked devices, news, and

more.17 Even before today’s fascination with big data, algorithms, and automated systems

legal scholars such as Paul Schwartz and Danielle Citron have noted that data processing

and software used in the administrative state can undermine or take away due process

rights.18 A related fear is that the human designer of a program could have bad intent and

seek to discriminate, suppress speech, or engage in some other prohibited act.19 A more

recent fear is that the rise of large data sets combined with machine learning (an area of

computer science that uses the automated discovery of correlations and patterns to define

decision policies that are not explicitly determined by humans) means that those who use

such techniques may be able to wield power in ways prohibited by law or disfavored

politically, but which would not be detectable.20 Further, if software yields undesired

results, its programmers may say that the system was not designed to act that way.

Transparency has been proposed as a solution to mitigating these possible

outcomes. The claim is that someone “ought to be able to ‘look under the hood’ of highly

advanced technologies like [] algorithms” as a way to police such behavior.21 There are

two interpretations of this position that raise different questions. On the one hand we

need to know that a system, such as one for counting votes or allocating visas in a lottery,

is doing what it is supposed to do and that there is a meaningful way to look under the

17 See e.g., Centre for Internet & Human Rights at European University Viadrina, Final Draft Background
Paper, The Ethics of Algorithms: From Radical Content to Self-Driving Cars; PASQUALE, supra note 3, at 4
(2015); cf. Bogost, supra note 2 (explaining deference to algorithms resembles idolatry rather than
following Enlightenment skepticism).
18 See Paul Schwartz, Data Processing and Government Administration: The Failure of the American Legal
Response to the Computer, 43 HASTINGS L.J. 1321 (1991); Citron, supra note 5, at 1249.
19 See infra Part I.
20 See e.g., FTC REPORT, BIG DATA A TOOL FOR INCLUSION OR EXCLUSION: UNDERSTANDING THE ISSUES,
(January 2016); Centre for Internet & Human Rights at European University Viadrina supra note 17;
PASQUALE, supra note 3, at 4; Solon Barocas & Andrew D. Selbst, Big Data’s Disparate Impact, 104
CALIF. L. REV. 671 (2016).
21 PASQUALE, supra note 3, at 165; but see Noyes, supra note 15.

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

5 Trust But Verify [April, 2017

hood.22 On the other hand, society may wish to ferret out undesired and possibly

unintended results such as the use of an algorithm to discriminate in a hiring decision.

Thus, critics audit parts of systems, decry apparent discrimination, and want to hold

someone responsible for disfavored outcomes. This approach is tantamount to saying we

need proof that the algorithm is not designed to engage in, nor has parts of it that lead to,

discrimination or other undesired or prohibited acts.23

Both views seek a type of transparency. And both views relate to a deep, unstated

and powerful view in the law; the builder of the proverbial better mousetrap will know

precisely how it was built and what will happen when one presses a trigger or button in

the invention. The device will do the same thing over and over until the springs wear out.

The same, so reasons the law, must be true of software. As we shall see, while in many

ways, it is, in some very important ways, it is not.

This view relates to more than just the machines used to make or aid in making

decisions. Entire decision-making processes fit this view, including discretionary and

rule-driven decisions whether made by people or by machines, and whether operated by

the state or by private entities. As Jerry Mashaw has argued for administrative state

systems, they should make “accurate,” “cost-effective” judgments, but also give

“attention to the dignity of participants.”24 The dignity element requires that those who

are subject to such a process know or understand what reasons are behind a decision.25

22 See e.g., Halderman, supra note 10.
23 See infra Part I.
24 See JERRY L. MASHAW, BUREAUCRATIC JUSTICE 26, 95-96; accord Schwartz, supra note 18, at 1348.
25 MASHAW, supra note 24, at 175; accord Schwartz, supra note 18, at 1349. Respecting and protecting
dignity is important as a practical matter given the EU’s approach to data processing. The current European
Data Protection Supervisor—the office responsible “under Article 41.2 of Regulation 45/2001 ‘With
respect to the processing of personal data… for ensuring that the fundamental rights and freedoms of
natural persons, and in particular their right to privacy, are respected by the Community institutions and
bodies’, and ‘…for advising Community institutions and bodies and data subjects on all matters concerning

Marcela Mattiuzzo
Realce

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

6 Trust But Verify [April, 2017

Thus, “attention to the dignity of participants” has a transparency dimension, as it relies

on the idea that one can see how the mousetrap or system worked and understand it. The

problem is that many recent implementations of decision-making in software—the ones

that have raised concerns—do not map well to this assumption.

Put differently, transparency is a powerful concept and has its place. After all who

can argue against sunlight? And yet to an extent, we will do exactly that, because from a

technical perspective general calls to expose algorithms to the sun or to conduct audits

will not only fail to deliver critics’ desired results but also may create the illusion of

clarity in cases where clarity is not possible.26

As part of a larger project on algorithms and the law, we argue that demands for

transparency must confront the realities of computer science when it comes to testing and

analyzing software. For example, because socially important computer systems have a

large range of possible inputs and outputs, social science auditing methods can only test

“a small subset of those potential inputs.”27 As legal matter, determining whether such

methods can capture whether a prohibited practice has occurred, and to an extent, which

is actionable, presents problems.

In addition, handing over code often will not yield the accountability results those

in favor of so-called algorithmic transparency desire. That does not mean those who use

the processing of personal data’—has stated that dignity must be protected as fundamental human right in
light today’s privacy and personal data processing issues. See GIOVANNI BUTTARELLI, TOWARDS A NEW
DIGITAL ETHICS: DATA, DIGNITY, AND TECHNOLOGY, Opinion 4/2015 of the European Data Protection
Supervisor, September 11, 2015 available at
https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Opinions/20
15/15-09-11_Data_Ethics_EN.pdf.
26 Cf. Jatinder Singh, Ian Walden, Jon Crowcroft, Jean Bacon, Responsibility & Machine Learning: Part of
a Process, (October 27, 2016) available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2860048
(“algorithmic selection not only impacts the quality of the ML model, but the degree to which the inner
workings of the ML algorithm and learned model can be interpreted and controlled depends on the
technique used.”).
27 See Joshua A. Kroll et. al., Accountable Algorithms, 165 U. PENN. L. REV. 633 (2016), available at
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2765268.

DRAFT – FINAL VERSION FORTHCOMING

7 Trust But Verify [April, 2017

computerized decision-making are ungovernable, but it does require that we understand

what is and is not possible when we seek to regulate or monitor the use of these

technologies.28 Many of the current calls for transparency as a way to regulate automation

do not address these limits, and so they may come up short on providing the sort of

accountability they desire, and which we also support.29 Instead, as software continues to

grow in importance, especially when it makes use of machine learning, which separates

the creation of algorithms and rules from human design and implementation, we argue

that identifying harms, prohibiting outcomes, and banning undesirable uses of data or

technologies are more promising paths.30 In addition, in some cases, requirements that

software be built to certain specifications that can be tested or verified will also be

necessary. We believe that these restrictions can be effectively promulgated in the law,

creating legal regulation of automated decision-making systems that is more powerful

than transparency requirements alone.

In contrast to the current approaches to governance by auditing to find

unacceptable behaviors or demanding algorithmic transparency, regulation via the law

will realize four benefits from being informed by the way software and algorithms are

tested and analyzed for correctness. First, legal regulation can avoid the problem of

applying inapt approaches from past regulatory regimes or demanding outcomes that are

not possible. Second, it can address the dynamism of the industry and the difficulties of

28 See infra Part II and III.
29 As one group of computer scientists has noted within machine learning “some algorithms are more
amenable to meaningful inspection and management than others.” Singh et. al., supra note 26 (offering that
decision trees, naïve Bayes, and rule learners were the most interpretable, k-Nearest Neighbors (kNN) was
in the middle, and neural networks and support vector machines were the least interpretable).
30 Cf. FTC REPORT, supra note 20 (acknowledging potential beneficial and negative outcomes from using
data analytics and noting that it is the use of data and data analytics in certain areas such as housing, credit,
and employment that triggers concerns and potential liability, not the use of application of data analytics
alone).

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

8 Trust But Verify [April, 2017

analyzing software by providing requirements that technologists and computer scientists

understand and can implement. Third, as with past regulation of housing, credit, and

employment, legal regulation of software and algorithms can offer clarity about what is

actionable and when, as well as what, evidence must be offered to regulators to show

compliance. Fourth, if those who are to be regulated object, the burden will be on them to

show why proposed technically-informed solutions don’t work. And that discussion will

use the framework and terms within which they already operate, avoiding charges that the

law creates unachievable mandates. As such, it should be less likely that objections based

on feasibility will succeed. In short, smart regulation via the law allows the many gains

from automation to be captured safely, while providing the assurances of governance

necessary to assuage critics.

We begin with a discussion of the law and policy concerns over software systems

that have been raised so far and some of the proposed approaches to addressing these

concerns. This discussion shows that there are many different issues at play, and many of

those issues are proxies for concerns about power and inequality in general, not software

specifically. After setting out an understanding of the claimed problems, we turn to some

fundamental questions about computer science such as what an algorithm is and whether

policy can be general enough to cover all software in the same way.31 Having set out a

brief primer on the underlying computer science, we turn to the question of determining

what a piece of software will do when it is run. It turns out that it is impossible to

determine this reliably and for all programs. With that in mind, we turn to the way in

which computer scientists have addressed this problem. Using that foundation, we offer

recommendations on how to regulate public and private sector uses of software and

31 See e.g., Sandvig et al. supra note 15 (“virtually any [piece of software] may deserve scrutiny.”).

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

9 Trust But Verify [April, 2017

propose a proposed legislative change to protect whistleblowers and allow a public

interest cause of action, which will aid in increasing detection of overt misdeeds in

designing software. In short, we conclude that a better understanding of how programs

work and how computer scientists address the limits of software analysis affords

policymakers the tools to manage the evolving world of algorithms and the law so that

society can address justice and safety interests while also enabling many actors to use

these new techniques to innovate and improve the world in which we live.

I. ALGORITHMS, THE CONCERNS

Software and algorithms have gained much attention under the premise that they

“exercise power over us,”32 because they “[govern selection of] what information is

considered most relevant to us, a crucial feature of our participation in public life,”33 are

“powerful entities that govern, judge, sort, regulate, classify, influence, or otherwise

discipline the world,”34 and are “black boxes.”35 In short, the general idea that computer

systems are powerful and opaque has led to claims “that virtually any [piece of software]

may deserve scrutiny.”36 Varying reports and studies raise concerns about complex

systems and point to a more general concern: the possible power and avenues of abuse or

32 See e.g., Nicholas Diakopoulous, Algorithmic Accountability Reporting: On the Investigation of Black
Boxes (Tow Center for Digital Journalism, Columbia Unversity 2014) (“What we generally lack as a public
is clarity about how algorithms exercise their power over us.”).
33 Tarleton Gillespie, The Relevance of Algorithms IN MEDIA TECHNOLOGIES: ESSAYS ON COMMUNICATION,
MATERIALITY, AND SOCIETY (Tarleton Gillespie, Pablo J. Boczkowski, and Kirsten A. Foot. eds., 2104).
34 Solon Barocas, Sophie Hood, and Malte Ziewitz, Governing algorithms: A provocation piece (2013) at
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2245322.
35 PASQUALE, supra note 3, at 17.
36 Sandvig et. al, supra note 15.

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

10 Trust But Verify [April, 2017

manipulation that go with practices that use computers. Despite their different methods

and concerns, many commenters look to transparency as a key part of managing this new

order, because we “cannot access critical features of [its] decision-making processes.”37

These issues arise in both the public and private sector context. And yet consensus on

what sort of scrutiny is needed, whether different areas affected by computers require

different solutions, and whether software, other factors, or both are the cause of the

claimed problems, is lacking. We start with some examples of the public sector concerns

and then turn to private sector ones.

A. Algorithms, Public Sector Concerns

Public sector concerns are about power but involve questions on how power is

governed that are different from private sector concerns. Public sector use of automated

decision-making raises larger questions, because society regulates public power

differently than the way it regulates the private sector.38 Legal scholars have looked at

37 PASQUALE, supra note 3, at 17. The call for or desire to have transparency as a way to resolve issues
around automated decision systems can be strong. For example, Professor Latanya Sweeney has done work
on racial discrimination and advertising. Although Sweeney’s final paper did not invoke transparency, a
draft claimed that answering why the advertising discrimination occurred “requires further information
about the inner workings of Google AdSense.” Latanya Sweeney, Discrimination in Online Ad
Delivery, (January 28, 2013) preprint available at http://dataprivacylab.org/projects/onlineads/1071-1.pdf.
We note this point only to indicate the draw of transparency, not to argue that Professor Sweeney advocates
one way or the other on that strategy.
38 Cf. EXECUTIVE OFFICE OF THE PRESIDENT, BIG DATA: SEIZING OPPORTUNITIES, PRESERVING VALUES at
10 (2014) https://www.whitehouse.gov/sites/default/files/docs/big_data_privacy_report_may_1_2014.pdf
(“Public trust is required for the proper functioning of government, and governments must be held to a
higher standard for the collection and use of personal data than private actors.”). That private actors are
taking on government functions in many areas is clear. Cf. Curtis Publ’g. Co. v. Butts, 388 U.S. 130, 163-
64 (1967) (Warren, C.J. concurring) (noting that policy is set by “a complex array of boards, committees,
commissions, corporations, and associations, some only loosely connected with the Government” rather

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

11 Trust But Verify [April, 2017

governmental use of computerized decision-making and identified several areas where

software can aid the way the administrative state functions but at the same time run afoul

of justice and due process requirements.

Twenty-five years ago, Paul Schwartz noted, “Computers are now an integral part

of government administration.”39 Given the rise of the administrative state in managing

and providing “social services,” the state requires “detailed information on the citizen as

client, customer, or simply person to be controlled. Moreover, the state gathers personal

information to better manage itself.”40 When the state uses data to administer services, we

want administration that “carries out legislative policy, acts in a just manner, and combats

fraud.”41 Schwartz examined the Aid to Families with Dependent Children Program and

Child Support Enforcement programs as exemplars of the administrative state. He argued

that the nature of data processing undermined the ability to attain bureaucratic justice as

developed by Jerry Mashaw and the ability to protect autonomy.42 In that vision, the

system should not only make “accurate,” “cost-effective” judgments, but also give

“attention to the dignity of participants.”43 The first two criteria relate to the use of data

and data processing in that one needs to show a “connection between a particular decision,

given the factual context, and the accomplishment of one or more of the decision maker’s

than by “formal political institutions.”); Deven R. Desai, Speech, Citizenry and the Market: A Corporate
Public Figure Doctrine 98 MINN. L. REV. 455, (2013) (“the distinction between commercial and political
has collapsed”). But whether a specific private actor (or sector) using a given piece of software is
performing a public function must be determined to see whether they should be held to the same standard
as the government.
39 Schwartz, supra note 18, at 1322.
40 Id. 1332; cf. FRANK WEBSTER, THEORIES OF THE INFORMATION SOCIETY 55 (John Urry ed., 3d ed. 1995)
(““[I]f we as a society are going to respect and support the individuality of members, then a requisite may
be that we know a great deal about them.”); Jack M. Balkin, The Constitution in the National Surveillance
State, 93 MINN. L. Rev. 1, 18 (2008) (arguing government needs to collect information “to ensure efficient
government and national security” but must have “justifiable reasons” and procedures to protect against
abuse of data collection and use).
41 Schwartz, supra note 18, at 1333.
42 Id. at 1351.
43 Id. at 1348.

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

12 Trust But Verify [April, 2017

goals.”44 The dignity element requires that those who are subject to such a process know

or understand what reasons are behind a decision. 45 Without that knowledge or

understanding those subject to the decision-making process lose self-worth, and over time

the legitimacy of the system will be in doubt, because of the lack of understanding and

loss of dignity.46

Danielle Citron’s work also calls out the way that computers have been used in

the administrative state.47 She focused on due process concerns.48 She describes the

“automated administrative state”49 as using software to determine whether someone

should receive “Medicaid, food stamp, and welfare” benefits, be on a no fly list, and be

identified as owing child support.50 According to Citron, “Automation jeopardizes the

due process safeguards owed individuals and destroys the twentieth-century assumption

that policymaking will be channeled through participatory procedures that significantly

reduce the risk that an arbitrary rule will be adopted.”51

Although these scholars use different metrics about why the use of software and

computers is a problem, both identify the problem sphere as the administrative state.52

And both Schwartz and Citron look to transparency, among other tools, as a way to

44 Id.
45 Id. at 1349.
46 Id.
47 Citron, supra note 5, at 1256-57.
48 Id.
49 Id. at 1281.
50 Id. at 1256-57.
51 Id. at 1281.
52 Work by computer scientists has looked at software and accountability and also found the administrative
state as a prime example of where algorithmic governance is needed. See generally Kroll et. al., supra note
27 (using government visa lottery programs and voting machines as examples where the use of algorithms
intersect with the application of specific rules for decision-making that affect individual rights).

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

13 Trust But Verify [April, 2017

determine whether the state uses data and software-based processes in a way that hinders

the ability of citizens to know what is happening within the system.53

Two other examples, voting machines and the auto industry illustrate a different,

but related, public sector concern: verifying that a system is accurate in implementing its

goals and works as desired. Voting machines track votes, and so the process in which the

machines are used must be accurate about at least four things. First, it must be accurate

about whether someone voted. That is, one might try to hijack an election by making it

seem like someone, or many people, voted, when in fact they never voted at all. Typically,

humans handle this step by asking voters to sign logbooks. The machines are not logging

who voted. Second, the process must also verify that the person voting was eligible to

vote. Third, the process needs to be accurate about recording for whom an eligible voter

cast their ballot. Finally, the process must be accurate about tallying the set of all

properly cast votes. Yet the machines and procedures used to make these guarantees are

quite susceptible to being subverted to give outputs that are not accurate.54 In one

example, computer scientists showed that they could make a voting machine play a video

game, Pac-Man, instead of tallying votes.55 The point was not that officials would play on

the machines or voters would be frustrated or enjoy a prank on election day, but that the

machine can be tampered with, contravening the intuition and presumption at law that the

53 Schwartz, supra note 18, at 1375 (calling for “The maintenance of transparent information processing
systems”); Citron, supra note 5, at 1295 (noting lack of ability for “meaningful review” of rules and system
put in place to deliver administrative state services).
54 It is important to distinguish the very real problem of whether the machines and processes in use can be
deliberately subverted from the distinct problem, never observed in the real world, of whether any elections
have actually been subverted in this way. The mere fact that the process is subject to corruption is enough
to undermine its legitimacy.
55 See Kim Zetter, Touchscreen E-Voting Machine Reprogrammed to Play Pac-Man, August 24, 2010,
WIRED.COM (two computer scientists “swapped out the machines PCMCIA card—where the voting
software is stored—and replaced it with one loaded with Pac-Man. They pulled this off without disturbing
the tamper evident seals on the machine.”) at https://www.wired.com/2010/08/pac-man/.

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

14 Trust But Verify [April, 2017

machine is specialized for a purpose and cannot be made to do other things. Given this

flexibility in the machine’s behavior, a way to verify that the system had not been

tampered with—or at least that the accuracy requirements described above are met—is

vital.

Almost any industry in which devices are regulated and must behave in certain

ways raises issues about software and verification. The auto industry provides a good

overview of the issues. Cars have had software governing their operation for some time,

but as software grows in importance for cars, so does the importance of accountability

and analyzability for that software. Automobiles are subject to safety and environmental

regulation. Part of that regulation involves knowing that cars work as claimed by

automakers and required by law.

Two recent events in the auto industry—one involving Volkswagen, the other

Tesla—illustrate the challenge. First, the recent fraud by Volkswagen illustrates how

software can aid a company in evading regulations. Volkswagen used software that

allowed the company to make its diesel cars seem to have low emissions when in fact the

cars did not.56 The ability to have accountable and analyzable algorithms in this sector

would aid in detecting such fraud.57

Second, as Tesla and other car makers offer cars that are networked so that

software can be updated after the car is purchased, the integrity and inviolability of

software increases in importance. An automaker may claim that the software running in a

vehicle performs as promised, but regulators will need ways to verify that the software

56 See e.g., Russel Hotten, Volkswagen: The Scandal Explained, December 10, 2015 BBC NEWS, at
http://www.bbc.com/news/business-34324772.
57 See infra Part IV.A.3 (explaining how to build accountable and analyzable algorithms).

DRAFT – FINAL VERSION FORTHCOMING

15 Trust But Verify [April, 2017

and logs have not been altered from the version, which has been reviewed.58 For example,

Tesla now updates its cars regularly, claiming that these updates improve performance

such as the range its cars can drive on a full battery charge. Regulators must be able to

track whether those updates are described accurately to consumers, whether the new code

functions as described, and whether that functionality adheres to safety and other kinds of

regulations.59 Furthermore, as self-driving or autonomous cars continue to be put on the

road and evolve, regulating their software will be even more important. For example, if

there is a standard that requires a self-driving car to obey traffic laws about how long to

signal before changing lanes, , what happens when the automaker pushes an update to the

fleet? How can regulators be sure that the updated software complies with the standard?

Unlike an update to a computer or mobile phone game, the automaker’s change affects

not only the user but others on the road. The automaker may, in good faith, assert that the

update is within the standards already approved, but the regulating agency—and anyone

using the roads—needs a way to verify that claim. Further, regulators may want to ensure

that only approved, standards-compliant updates can be installed in vehicles already on

the road.

B. Algorithms, Private Sector Concerns

58 Id. (explaining audit logs and verification of such logs).
59 Issues with cars’ software updates and security have been revealed in at least two cases. See Morris,
supra note 8 (reporting that a security group took over a Tesla and opened its doors, opened its sunroof, and
enabled keyless driving so the car could be driven away or stolen) at http://fortune.com/2016/11/26/tesla-
stealing-hack/; See Peterson, supra note 8 (describing researchers able to take over the braking system and
more remotely).

DRAFT – FINAL VERSION FORTHCOMING

16 Trust But Verify [April, 2017

Although the private sector is regulated differently than the public sector, calls for

transparency as it relates to software-based decision-making in the private sector abound.

For example, in light of the importance of recent technologies, Frank Pasquale has argued

that the code for important software such as Google’s search algorithm or a broadband

carrier’s method for network management “should be transparent to some entity capable

of detecting” the potential misdeeds or harms these services may create.60 In the same

vein, other studies and investigations have identified a range of examples where software

was part of undesired or troubling outcomes and have called for methods to detect such

issues.

An important area of concern is whether certain software is enabling or

aggravating illegal discrimination on the basis of a protected attribute such as race or

gender. One study by Professor Latanya Sweeney looked at online search and advertising

to test whether a search for “racially associated names” returned “ads suggestive of an

arrest record.”61 The study rejected the hypothesis “that no difference exists” in the

delivery of such ads, because under its method, a search for a “black-identifying first

name,” yielded an ad for a company that sold public records and included the word

“arrest” in the ad text for “a greater percentage of ads … than [a search] for white-

60 Frank Pasquale, Beyond Innovation and Competition: The Need for Qualified Transparency in Internet
Intermediaries, 104 NW. U. L. REV. 1, 166 (2010). Faced with the challenges of data processing and
computation a quarter century ago, Paul Schwartz argued that a key factor in managing problems from
those practices required, “the establishment of a government body capable of studying the effects and
implications [of software-based decisions].” Schwartz, supra note 18, at 1379. That approach was part of
addressing state actions, and the approach looked at transparency as a feature to limit government action
and to make the system “open and understandable to the data subject.” Id. at 1375. The connection between
Pasquale and Schwartz is conceptual: Both seek transparency as a way to enable a third party to aid in
scrutiny and to aid the ability to challenge a practice.
61 Sweeney, supra note 12, at 52 (“These findings reject the hypothesis that no difference exists in the
delivery of ads suggestive of an arrest record based on searches of racially associated names.”).

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

17 Trust But Verify [April, 2017

identifying first names.” 62 According to Sweeney, this finding intersects with

discrimination problems, because when one competes for many things such as “an award,

a scholarship, an appointment, a promotion, or a new job … or [is] engaged in any one of

hundreds of circumstances for which someone wants to learn more about you,” ads

appear in online searches.63 Another study on search, webpage visitation history, and

advertising found that when ad preference settings were set to female, a user saw “fewer

instances of an ad related to high paying jobs than [when preferences were set] [] to

male.”64 The specific ad was for a career coaching service promising to aid someone in

obtaining a job that paid more than $200,000 a year.65 These studies have identified some

outcomes that may not meet the legal66 or “normative” definition of discrimination but

62 Sweeney, supra note 12, at 52.
63 Id. at 44.
64 Amit Datta, Michael Carl Tschantz, and Anupam Datta, Automated Experiments on Ad Privacy Settings,
1 PROCEEDINGS ON PRIVACY ENHANCING TECHNOLOGIES 92, 92 (2015).
65 Id.
66 As Peter Swire has observed in an initial investigation of online, data-driven marketing, several statutes
prohibit discrimination in specific sectors such as lending, housing, and employment. PETER SWIRE,
LESSONS FROM FAIR LENDING FOR FAIR MARKETING AND BIG DATA (2014),
https://www.ftc.gov/system/files/documents/public_comments/2014/09/00042-92638.pdf. These statutes
apply to online practices but how they apply for each sector and which practices within each sector are
prohibited is not settled. Id. Sweeney’s study may not fit into these sectoral approaches as they appear to be
about an indirect, yet possibly powerful, way to affect hiring decisions. That is, the ads at issue in
Sweeeny’s study are not about an employment opportunity; rather they may affect an employer’s
impression of or decision about someone without being the explicit criteria on which the decision is made.
In contrast, the employment ads in the other study fall under Title VII which governs employment ads. Yet,
as Swire explains even when an advertisement falls under a statute:

One important statutory issue, which is a subject for future research, is what would meet
the statutory requirement that the advertisement “indicates any preference, limitation, or
discrimination” concerning a protected class. For online advertising, this issue will be
important for [] advertisement campaigns that narrowly target a specific population. For
instance, it will be important to clarify whether and when the Act covers advertisement
purchasing decisions that will reach members of a protected class far more or less often
than other demographic groups.

Id.

DRAFT – FINAL VERSION FORTHCOMING

18 Trust But Verify [April, 2017

raise questions about “the pervasive structural nature of [] discrimination in society at

large.”67

The studies cannot, however, find one party to blame in part because of the many

factors at play.68 As Sweeney states, “We do not yet know” “why” [this type of

discrimination] is “occurring” or whom to blame. The source of the problem could be the

ad buyer, the ad seller, or “society.”69 The other study also admitted that it could not

assign blame or determine the cause of the outcomes as being from the advertising

network (Google), “the advertiser, or complex interactions among them and others.”70 As

such, Sweeney turns to technical solutions to address the issues and argues, “we can use

the mechanics and legal criteria described [in her paper] to build technology that

distinguishes between desirable and undesirable discrimination in ad delivery.”71 The

other study offers a tool to allow the ad network and the advertiser “to audit [each] other”

to detect undesired ad behaviors.72 That study suggests that in the future there may be

“machine learning algorithms that automatically avoid discriminating against users in

67 Datta et. al supra note 64, at 105. In addition, advertisers and marketers can be deemed credit reporting
agencies under the Fair Credit Reporting Act. The FTC has brought claims for violating the Fair Credit
Reporting Act against at least two companies that used data profiles from a range of sources for marketing
and advertising activities. See United States v. Spokeo, Inc., No. 2-12-cv-05001-MMM-SH (C.D. Cal. June
12, 2012), https://www.ftc.gov/sites/default/ files/documents/cases/2012/06/120612spokeoorder.pdf;
Instant Checkmate, No. 3:14-cv-00675-H-JMA (S.D. Cal. Apr. 1, 2014),
https://www.ftc.gov/system/files/documents/cases/1 40409instantcheckmateorder.pdf. See also Press
Release, Fed. Trade Comm’n, Spokeo to Pay $800,000 to Settle FTC Charges Company Allegedly
Marketed Information to Employers and Recruiters in Violation of FCRA (June 12, 2012),
http://www.ftc.gov/news-events/press-releases/2012/06/spokeo-pay-800000-settle-ftccharges-company-
allegedly-marketed; Press Release, Fed. Trade Comm’n, Two Data Brokers Settle FTC Charges That They
Sold Consumer Data without Complying with Protections Required under the Fair Credit Reporting Act
(Apr. 9, 2014), https://www.ftc.gov/news-events/press-releases/2014/04/two-data-brokers-settle-ftc-
charges-they-sold-consumer-data.
68 Datta et. al supra note 64, at 105 (“blaming one party may ignore context and correlations that make
avoiding such discrimination difficult”).
69 Sweeney, supra note 12, at 52.
70 Datta et. al supra note 64, at 105.
71 Sweeney, supra note 12, at 53.
72 Datta et. al supra note 64, at 106.

Marcela Mattiuzzo
Realce

Marcela Mattiuzzo
Realce

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

19 Trust But Verify [April, 2017

unacceptable ways and automatically provide transparency to users.” 73 Of course,

whether these techniques will be convincing to users, will require their own interrogation

for correctness, or can provide convincing evidence of non-discrimiation while still

serving the purpose of identifying relevant advertisements remain to be seen. Insofar as

the techniques are based on machine learning, the irony may be that the techniques will

be as inscrutable as the systems they mean to analyze and thus will fall short of providing

accountability. And while there is an emerging class of “interpretable” machine learning

models meant to provide explanations of their decisions, it is not known whether such

models would function effectively in these cases or could provide sufficient evidence of

fairness. Regardless, it is important that actors deploying systems of concern (e.g., search

engines, advertising networks, and other users of discrimination-prone automated

decision making) be able to understand the requirements placed upon them and the

workings of tools used to enforce or surface compliance with those requirements. That is,

we seek convincing evidence that such systems function without undesirable

discrimination, and evidence generated in inscrutable ways can fail to be sufficiently

convincing.

Academics are not the only ones to think about normative concerns as applied to

software. Journalists have also investigated the use of automation with similar results and

conclusions. Rather than investigating questions about ad networks, where several actors

are involved and each may or may not be responsible for outcomes, journalists and

technologists have looked at personalization of commerce and search features to see

whether a single actor’s implementation of an algorithm poses problems.

73 Id. at 106.

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

20 Trust But Verify [April, 2017

An investigation by Wall Street Journal reporters found that the e-commerce they

examined lends itself to a legal practice known to economists as price discrimination—

the practice of trying to match the price for a good or service to specific market segments

or people. Several companies “were consistently adjusting prices and displaying different

product offers based on a range of characteristics that could be discovered about the

user.”74 For example, Staples, Inc., the office supply company, charged different prices

for the same item depending on where Staples thought the consumer was.75 Although the

practice of altering prices based on whether a good is online, in-store, and the geography

of the shopper is common, it can reinforce inequality if it allows retailers to charge lower

prices (or choose to offer certain services only) to those who lived in ZIP codes with

higher weighted average income and charge higher prices (or choose not to offer certain

services) to those in ZIP codes with lower weighted average income.76 Even if one

accepts the argument that a retailer accounts for different costs at local, physical stores, if

the orders are fulfilled and shipped from a central warehouse, costs associated with

physical retail stores should not be an issue. Although the outcomes of price

discrimination would seem to indicate that inequality could be reinforced, the price

discrimination is not illegal in the retail sector. If personalization is used, however, by a

credit card or other regulated, financial company to steer people to more expensive

financial services based on race, gender, or other protected class status, price

74 Jennifer Valentino-Devries, Jeremey Singer-Vine, and Ashkan Soltani, Websites Very Prices, Deals
Based on Users’ Information, THE WALL STREET JOURNAL, (DEC. 24. 2012) (“The Journal identified
several companies, including Staples, Discover Financial Services, Rosetta Stone Inc. and Home Depot Inc.,
that [engaged in the activities]”)
HTTP://WWW.WSJ.COM/NEWS/ARTICLES/SB10001424127887323777204578189391813881534.
75 Id.
76 Id. This situation could occur naturally if the retailer or its competitors had no stores in the lower-income
ZIP codes, but charged based on the proximity to its own or its competitors’ stores, as Staples did.

Marcela Mattiuzzo
Realce

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

21 Trust But Verify [April, 2017

discrimination becomes prohibited discrimination,77 and so public sector regulation will

be triggered, and the need to understand the system behind the outcome becomes like our

discussion of other regulated industries above.

Another investigation tried to test the autocomplete feature for Google’s and

Bing’s search services to see how each one handled searches for sensitive topics such as

“illicit sex” and “violence.”78 At the time of the report, Bing’s autocomplete did not offer

autocomplete suggestions for “homosexual,” and both Bing and Google did not offer

autocomplete suggestions for “110 sex-related words.”79 According to the author, this

blacklisting raises the specter of censorship, because “we look to algorithms to enforce

morality.”80

This position is puzzling, because whether users of a product should defer to

algorithms and/or a company’s manual choices about what to blacklist for morality

enforcement (assuming they do that) is answered as, “No,” by us and by most who

discuss the issue.81 In addition how much anyone truly “look[s] to algorithms to enforce

morality” is unclear. Some may believe algorithms should be constructed to provide

moral guidance or enforce a given morality. Others claim that moral choices are vested

with a system’s users and that the system itself should be neutral, allowing all types of

use and with moral valences originating with the user. In either case, choices about

morality demand certain outcomes from computer systems such as search engines. Such

77 Swire, supra note 66, at 7-8 (discussing Fair Housing Act prohibition on “steering”—the practice of
“deliberately guiding loan applicants or potential purchasers toward or away from certain types of loans or
geographic areas because of race.”).
78 Nicholas Diakopoulos, Sex, Violence, and Autocomplete Algorithms, SLATE (August 12, 2013, 11:43
AM) http://www.slate.com/articles/technology/future_tense/2013/08/words_banned_from_bing_and_
google_s_autocomplete_algorithms.html.
79 Id.
80 Id.
81 See e.g., Bogost, supra note 2; Deven R. Desai, Exploration and Exploitation: An Essay on (Machine)
Learning, Algorithms, and Information Provision, 47 LOYOLA U. CHICAGO L. J. 541 (2015).

DRAFT – FINAL VERSION FORTHCOMING

22 Trust But Verify [April, 2017

deference to technology as the source of morality creates precisely the problems a

demand against censorship seeks to address. In that sense the author’s deference to

algorithms is a type of “worship” that reverses the skepticism of the Enlightenment.82

Asking algorithms “to enforce morality” is not only a type of idolatry, it also presumes

we know whose morality they enforce and can define what moral outcomes are sought.83

That is another path to censorship and control.84 Even allowing a neutral use of a

technology is itself is a moral choice, because for example a computer system can allow

uses that its operators or users might consider abusive. Nonetheless, in its best light, the

argument seems to be that society defers in a default way to morality enforcement by

algorithm; and so we must cope with that fact. This view is, however, subverted by the

fact that those algorithms will not be perfect at enforcing their chosen values, because

“filtering algorithms will always have some error margin where they let through things

we might still find objectionable.”85 The somewhat circular logic is that because society

defers to algorithms to enforce morality, “with some vigilance we can hold such

algorithms accountable and better understand the underlying human (and corporate)

criteria that drive such algorithms’ moralizing.”86 Of course, the better step is not to defer

to such systems, and even if such deference is inevitable—as the study seems to

believe—exactly what sort of accountability and understanding is possible is not

answered by the critique.

82 See Bogost, supra note 2.
83 Cf. Desai, supra note 81, at 571-573 (explaining the difficulty for online information providers to show a
given user a “good” song or correct entry for a term such as Darwin because of the range of users and each
one’s view of what a correct result is).
84 See Desai, supra note 81, at 561-562 (noting that someone has to choose what to show users and the
history of politicians using media content rules to filter information rather than expand access to it).
85 Diakopoulos, supra note 78.
86 Id.

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

23 Trust But Verify [April, 2017

These investigations also assume that the personalization is well-controlled by the

party personalizing the content, but that is not always the case. As one group of computer

scientists has noted regarding the use of machine learning algorithms, the notion of what

constitutes control and transparency in a given system varies depending on a range of

things.87 As the authors explain, a given application of machine learning is better

understood as consisting of abstract “machine learning techniques,” “training and

operational data,” “machine learning outputs,” and “the broader systems context; i.e. the

workflows, processes, and system supply chains surrounding and integrating the ML”

that work together as a system and so each component offers different possibilities for

control and responsibility.88

Focusing on only one part of such a system, the data, shows the ways the idea of

control becomes nuanced. Using “data in the wild”—that is deploying a system into the

world at large, even if it was known to have been accurate and useful when built—

requires ongoing monitoring and evaluation to ensure the model remains accurate given

that the real world changes.89 These changes can create what is called “concept drift”

where the “once accurate model [is] obsolete.”90 The change may be because of a general

change in the world, or because of active work to defeat the model such as in “spam,

intrusion and fraud detection.”91 Inputs can also lead a benign program to render

undesired outputs such as what happened with Microsoft’s Twitter bot, Tay. That system

was designed to have a teenage millennial persona and use slang, but when it was fed

87 See e.g., Singh et. al., supra note 26, at 3-4; see also id. at 11-12 (noting how using data in the wild
requires ongoing monitoring and evaluation to ensure the model remains accurate given that real world
changes and that input in the wild can lead a benign program to render undesired outputs).
88 See e.g., Id. at 3-4.
89 Id. at 11-12.
90 Id.
91 Id.

DRAFT – FINAL VERSION FORTHCOMING

24 Trust But Verify [April, 2017

data by Internet trolls became “foul-mouthed and racist”92—an outcome quite different

than intended or expected.

Computer scientists have also looked at personalization and documented the

ability for a third-party to launch a “pollution attack”—which “allows third parties to

alter the customized content the services return to users who have visited a page

containing the exploit.” 93 The study examined Amazon, Google, and YouTube’s

personalization offerings and showed that they were vulnerable to such an attack. In the

specific cases one could increase the visibility of YouTube channels, “dramatically

increase the [Google] ranking of most websites in the short term” and manipulate

Amazon recommendations to display “reasonably popular products of the attacker’s

choosing.”94 Although the attack was not “powerful, broadly applicable, or hard to defeat,”

the larger implication is that other sites that use personalization could be vulnerable in

similar ways. As the authors put it, “With increasingly complex algorithms and data

collection mechanisms aiming for ever higher financial stakes, there are bound to be

vulnerabilities that will be exploited by motivated attackers. The age of innocence for

personalization is over; we must now face the challenge of securing it.”95

To summarize, there are broad descriptive claims of a range of differing problems

appearing in the public and private sectors and flowing from a range of applications of

software techniques. Some of these criticisms assume more control over the systems at

issue than may exist. All of these criticisms converge on the notion of transparency as

part of a viable solution and yet have different visions of what the term entails and how it

92 Id.
93 Xinyu Xing, et. al., Take This Personally: Pollution Attacks on Personalized Services, 2013 USENIX
SECURITY 671, 671 (Aug. 14, 2013).
94 Id.
95 Id.

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

25 Trust But Verify [April, 2017

would work in practice. In contrast, we argue that whether transparency is useful in a

particular case or part of a viable solution turns on the context of a given automated

process at issue. The next section addresses the nature of the algorithms—or rather the

nature of the software—underlying these systems as a step to show why that is so.

II. ALGORITHMS: A PRIMER

The word, algorithm, conjures dark wizardry, but that is because algorithms are

not well understood outside the technical community; not because they are a dark art.96

Some are simple, and some are complex.97 Regardless, an algorithm is a step-by-step

process and “each of the steps must be precise, requiring no human intuition or

guesswork.”98 Thus we can call the steps for brushing teeth an algorithm. However, most

of the time, including in the concerns addressed in this work and most of the work we

describe, we are concerned not with the conceptual steps but with their reduction to

practice as an implementation in computer code. Indeed, there is a difference between

96 Bogost, supra note 2 (“The next time you hear someone talking about algorithms, replace the term with
“God” and ask yourself if the meaning changes. Our supposedly algorithmic culture is not a material
phenomenon so much as a devotional one.”); see also KROLL, supra note 27, at 2, n.1 (2015) (“The term
‘algorithm’ is assigned disparate technical meaning in the literatures of computer science and other fields.”)
97 Ian Bogost has pointed out that just as manufacturing seems “automated” but requires “confluence” of
raw materials, machines, human labor, and transportation to reach consumers, algorithms such Google’s
search is a “confluence of physical, virtual, computational, and non-computational stuffs—electricity, data
centers, servers, air conditioners, security guards, financial markets.” Bogost, supra note 2.
98JOHN MACCORMICK, NINE ALGORITHMS THAT CHANGED THE FUTURE at Kindle loc. 113 (2012); accord
THOMAS H. CORMEN, ALGORITHMS UNLOCKED at Kindle loc. 129, 147 (2013).

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

26 Trust But Verify [April, 2017

when humans follow instructions and a computer does.99 Humans “might be able to

tolerate it when an algorithm is imprecisely described, but a computer cannot.”100

The idea of an algorithm as a recipe shows the problem. Recipes seem to be quite

precise, but they are not.101 As Brain Kernighan explains, the “Joy of Cooking says that to

poach an egg, ‘Put in a small bowl: 1 egg’ but fails to specify that the egg should be

broken and the shell removed first.”102 Humans can handle this ambiguity, because

humans are apt to fill in details or otherwise guess at what to do when presented with a

partially specified process, while, as a machine, a computer can only follow precise

instructions from the set of operations wired into it. Software is simply a long sequence

of these instructions.103

As Thomas Cormen puts it, “given an input to a problem, [a computer algorithm]

should always produce a correct solution to the problem.”104 Correctness, however, is not

so simple; an algorithm’s correctness can only be established relative to a specification of

its behavior.105 This point raises two issues. One can fail to choose as one’s specification

99 CORMEN, supra note 98, at Kindle loc. 135.
100 Id. 147-48 (2013). As Thomas Cormen puts it, “We want two things from a computer algorithm: given
an input to a problem, it should always produce a correct solution to the problem, and it should use
computational resources efficiently while doing so.” Id.
101 Cf. DOMINGOS, supra note 123, at 3 (“A cooking recipe is not an algorithm because it doesn’t exactly
specify what order to do things in or exactly what each step is.”).
102 BRIAN D. KERNIGHAN, BRIAN. D IS FOR DIGITAL at Kindle loc. 1149-1150 (2012).
103 An irony is that the machine learning and neural network software behind many critiques of algorithms
arguably came about because of the specification problem. Specification, until recently, was a wall to
advances in artificial intelligence. For example, humans are rather good at making visual distinctions such
as between a dog and cat and between one type of cat and another. Computer software was limited in such
tasks in part because the specifications could not be precise for each instance or picture of a cat in such a
way that software could process well. Recent advances in machine learning and neural networking have
allowed software systems to take less precise specifications combined with large data sets so that now the
systems can accomplish the distinction task almost as well as a human.
104 CORMEN, supra note 98, at Kindle loc. 147. To be clear, Cormen’s full point is that we want a computer
algorithm to be correct and efficient, but correctness is the key concern for our discussion here. Id. (we
want an algorithm to “use computational resources efficiently” while reaching the correct solution).
105 See e.g. Douglas D. Dunlop & Victor R. Basili, A Comparative Analysis of Functional Correctness, 14
ACM COMPUTING SURVEYS 229, 229 (June 1982) (defining “functional correctness [as] a methodology for
verifying that a program is correct with respect to an abstract specification function”).

Marcela Mattiuzzo
Realce

Marcela Mattiuzzo
Realce

Marcela Mattiuzzo
Nota
This is very important.

DRAFT – FINAL VERSION FORTHCOMING

27 Trust But Verify [April, 2017

the correct solution to one’s problem or one might fail to implement the solution

faithfully. Software that provides directions on GPS systems illustrates the problem.

If one thinks of a GPS navigation system giving a route, there may be several

criteria for what the correct route should be.106 Although people may not often alter how

their GPS computes routes, many GPS systems allow one to do so, and in that sense

accommodate the driver’s preferred approach to determining the correct route. In many

cases, a driver simply wants the fastest route given all possible routes.107 But some

drivers will instead want the shortest route, as in least distance, which may not be the

fastest.108 Still others will want the fastest route that also avoids highways or toll roads.109

Regardless, all correct routes will connect the origin to the destination. But which of the

many possible routes is “correct” depends on which of the above options we have

selected.

Yet after choosing from the above options, we run into a new problem. Suppose

we choose, as our definition of the “correct” route, the fastest route given all possible

routes criterion. The routing algorithm must have a way to determine fastest, which

means without real time traffic data, the algorithm and its outputs will be incorrect.110

Correctness is generally determined with respect to the specification alone, and

independently of the correctness of data used as input. Suppose that, instead of real-time

traffic data, we provide as input to the algorithm traffic data from the day before. Some of

the time, changes in traffic will mean that the algorithm gives a result which is not

106 CORMEN, supra note 98, at Kindle loc. 157-64.
107 Id.
108 Id.
109 Id.
110 Id.

Marcela Mattiuzzo
Realce

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

28 Trust But Verify [April, 2017

actually the fastest route. The algorithm is nonetheless correct given the input it had.111

The routing algorithm itself “is correct,” even if it does not return the fastest result,

because “even if the input to the algorithm is not [correct]; for the input given to the

routing algorithm, the algorithm produces the fastest route.”112 Thus, the algorithm itself

is correct regarding the specification, which in this case is to produce the fastest route

given traffic data. However, given incorrect input data, the algorithm may produce an

incorrect output.

Software can also have bugs as it implements an algorithm. Staying with our GPS

example, suppose that the software sometimes returned the shortest route by distance

instead of the fastest route given traffic. Here, the specification is precise and correct (we

want the system to return the fastest route, taking traffic conditions into account), and the

algorithm we have chosen to implement that specification is correct (it produces the

fastest route given traffic data), but the software itself is incorrect with respect to the

specification (it occasionally gives an incorrect answer, namely a shorter distance route

that was slower because of traffic, because of a bug).

Thus, a computer system can be incorrect either because the approach is incorrect

(that is, the specification does not describe a solution to the problem at hand), because the

input data are incorrect (that is, the system would be correct if given the right data, but

different data were provided), or because a programmer introduced a bug when

converting it to computer code. In sum, correctness is not as precise as policy critics

would like. We must ask whether a solution has been specified correctly and whether that

111 Id.
112 Id.

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

29 Trust But Verify [April, 2017

specification has been correctly reduced to practice, both when data are chosen and when

software implementing the solution is written.

As such, to ask that an algorithm not “discriminate” or yield some other result

prohibited by legal rules, requires that a precise statement, or specification, be provided

so that the request is workable for computer scientists and can be effectively translated

into software.113 And yet the policy process is rarely prepared to provide a complete

specification for any rule, let alone thorny questions such as discrimination.114 Even in

the possibly simpler realm of administrative law where rules abound, the administrator

“faces decisions for which external standards provide no binding, perhaps no relevant,

guidelines.”115 Thus some argue that the “administrative process, like the judicial and

legislative process, [is] somehow in pursuit of justice and the general welfare; [and]

‘administration,’ like ‘democracy’ and the ‘rule of law,’ [should be understood] as a

motivating ideal.”116 In short, there are ideals that guide the law, but the precise way

those ideals manifest themselves is a bit messy and particular to a given application. This

dynamic appears in computer science as well.

The idea that all computer systems are designed by first deciding on a precise set

of steps, which are completely specified, and then mechanically reducing this precise idea

113 Accord Kroll et. al., supra note 27, at 2 (“[C]omputer scientists tend to want a full, technical
specification of all the desired properties of an algorithm, but policy processes tend not to declare such
precise rules in advance.”).
114 Although some rules, such as the 80/20 rule for employment discrimination, may be precise enough to
be a workable specification, it is not clear that other areas of discrimination are as precise. In addition,
when one considers claims of censorship versus free speech or whether posting a video clip is fair use, rules
or tests are broad and imprecise. Nonetheless, as we argue later, when a clear rule is set by the state, we can
ask whether that rule is faithfully reflected in software. Even simple rules, such as rules about how to
record and count votes, can be subject to interpretation and challenge, and do not lend themselves to precise
specification in all scenarios.
115 MASHAW, supra note 24, at 16.
116 Id, at 14.

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

30 Trust But Verify [April, 2017

to software is wrong. Many systems spring more simply from an “informal notion.”117

Instead of a single formula that can set out or describe a specific result (e.g., E=MC2),

large modern computer systems often are developed based on on high-level goals that

“generally describe how to solve a problem.”118 For example, it would be difficult or

impossible to write a complete recipe for serving a targeted advertisement or arranging

posts on a social network timeline. While, at base, these activities are executed by well-

specified mechanized processes—similar to administrative law as put into practice—the

outcomes came to be through abstract and messy processes that are often reflected in

their complexity and in unexpected, unplanned behaviors.119

As a colleague in robotics and machine learning put it to one of us, imagine

engineers building a robotic arm. Part of the approach applies physics and mechanical

engineering to figure out how to drive the arm. But for the arm to work well in the field,

where its movements are not precisely determined ahead of time, other engineers and

computer scientists apply machine learning and develop models of movement—

discovering a specific algorithmic approach to solving the underspecified problem of

controlling the arm’s movements outside the lab.

The algorithms and models help define a rule for how to move, but it is a rule that

is not coded directly by a programmer or designed with the intent to reach the precise rule

117 MACCORMICK, supra note 98, at Kindle Loc. 122; accord JAMES GLEICK, THE INFORMATION at Kindle
Loc. 3652-3654 (2011) (“An example of an intellectual object that could be called mechanical was the
algorithm: another new term for something that had always existed (a recipe, a set of instructions, a step-
by-step procedure) but now demanded formal recognition. Babbage and Lovelace trafficked in algorithms
without naming them. The twentieth century gave algorithms a central role.”).
118 MACCORMICK, supra note 98, at Kindle Loc.122.
119 Cf. Singh et. al., supra note 26, at 12 (“large-scale computing environments, for example IoT-enabled
smart cities, that entail ‘systems of systems’ [] have many ‘moving parts’ – including a range of different
software, services, agents (and people!) – all of which might use or be affected by a range of ML models.
Managing responsibility in these environments presents a significant challenge. There will be feedback
loops between systems, where the outputs/actions of one system can feed into others in real-time. The
interactions can be direct, e.g. competing for resources, or more indirect, through ‘butterfly effects’, where
(subtle) actions of a system can (potentially dramatically) affect others.”).

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

31 Trust But Verify [April, 2017

discovered. Rather, the discovery of the particular rule eventually put in place is

happenstance, although ideally would always generate very similar, very useful rules.

The arm movement is not coded based only on a simple equation about force, mass, and

acceleration. Instead, a model of the arm’s movement comes either from the use of

machine learning or simply by capturing sequences of movements of the actuators (for

example, when the arm is operated by remote control). This model then defines the

control of the arm. While the model is, ultimately, a precise algorithm, it is not one that

the arm’s creators specified directly. Nor, in many cases, could the arm’s creators

precisely specify the algorithm in use by the model after-the-fact. The best they can do is

specify the process used to create it. This lack of direct coding is especially useful when

the arm is to move and interact within a dynamic environment.120 In fact, some models

are developed by guessing parameters at random and testing the model’s performance. It

can also be beneficial to incorporate randomness into a system’s rules (at the time they

are run, in addition to the process used to discover them) to address the limits of a static

system.121 None of which is to say that the underlying physics don’t matter and aren’t

used to control the arm. In practice, the physics provide the scaffolding for the arm’s

movements, defining how settings of the actuators within the arm will change its position

or cause it to move, while learned models provide finesse, control, and intelligence to

achieve goals, such as how to reconfigure the actuators to move the arm’s tip from one

place to another.122 The arm’s movements are a combination of formulaic physics and

120 Accord Kroll et. al supra note 27, at 21.
121 Accord Id. (noting if one “hard-coded” the movement of a robot like the Roomba vacuum, “an unusual
configuration” might end up with the device trapped in a corner but “randomized motion allows it to escape
these patterns and work more effectively.”).
122 The use of learned models solves yet another problem, that of interpolation. A precisely specified rule
would have to account for how to move the arm from any configuration to any other, while a model can fill
in details or learn to move the arm around obstacles in its environment.

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

32 Trust But Verify [April, 2017

models that do not correspond to a pre-written formula, but rather are extracted by

discovering patterns in large sets of data.

The key is to optimize the arm’s movement, which is done by learning.123 The

arm starts with a model that has unknown parameters. The initial parameters might be set

to a good guess of the final model, or they might be chosen at random. The goal of

learning, then, is to find the optimal parameters. But as conditions change, the model

encounters situations with which it cannot yet deal. When the model gives less-than-

optimal results, a learning algorithm will modify the model’s parameters and measure

whether that modification improves performance in that situation.

Thus we see that the idea that all algorithms are designed when a programmer

chooses a precise set of steps is limited, especially in the case of machine learning and

other model-driven approaches. While the steps for training the model and for computing

its predictions are precisely specified, the model’s parameters, which control what

guidance it gives, are not specified directly by a programmer. Rather, they are optimized

given a set of training data.124

Even the environment matters for explaining how a system operates. Suppose we

have a program that measures how long it takes for some function to run. Let’s say we

wish to test how long an algorithm that sorts a large list of numbers takes to run. To test

this, a program implementing the algorithm starts a timer before sorting a large list of

numbers and then checks how much time has elapsed when the sort is complete. Now,

123 There are several different approaches to machine learning. For a short overview of the approaches see
Singh et. al., supra note 26, at 4-8; see generally PEDRO DOMINGOS: THE MASTER ALGORITHM: HOW THE
QUEST FOR THE ULTIMATE LEARNING MACHINE WILL REMAKE OUR WORLD (2016).
124 Cf. Singh et. al., supra note 26, at 9 “ML is data driven: (1) the data involved in the training/learning
phases determines the model, and (2) the live data on which the model is applied determines the
results/outcomes”).

Marcela Mattiuzzo
Realce

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

33 Trust But Verify [April, 2017

suppose the program is run on two computers, one where it is the only program running

and one where there are 1000 other programs running, all of which are demanding many

resources and reading/writing the disk heavily. Clearly, this one program will behave in

two very different ways depending on its environment.

Another feature of algorithms and software that might surprise policymakers is

that even if we can posit that both a precise specification and a complete system are

available for review, it can nonetheless be impossible to analyze or test whether the

system will yield a certain outcome. Although a program is a precise description of its

own behavior, it can nonetheless be impossible in some cases to interpret from a

description of that program whether it has specific behaviors. This fact runs contrary to

the law’s mechanistic, Newtonian view of engineering, making it critical to policy

discussions about governing algorithms. At a high level, recognizing these boundaries

will clear cognitive dissonance between computer scientists and non-computer scientists

about the nature of the practices under scrutiny. With such an understanding in hand,

critics will be better placed to offer concerns and solutions that computer scientists

appreciate as based in sound science. As a practical matter, this fact implies that a general

testing program that tests other programs to show that they do not “discriminate” or yield

some other result prohibited by legal rules cannot be workable. To support this argument,

we turn in Part III to a core part of mathematical theory having to do with decidability

and computer science known as the Halting Problem.

III. TO HALT OR NOT TO HALT

Marcela Mattiuzzo
Realce

DRAFT – FINAL VERSION FORTHCOMING

34 Trust But Verify [April, 2017

The halting problem implies that some interesting problems are impossible to

solve because of fundamental limits that challenge many aspects of computer science.

These limits indicate that insofar as law and policy seeks a general transparency tool that

analyzes disclosed algorithms for compliance with desired norms, one will not be

possible.125 This challenges the classic view of policymakers that disclosure of a system’s

internals will lead to a complete understanding of its behavior. The halting problem does

not mean algorithms cannot be governed; rather, understanding these limits enables

policymakers to craft demands that are workable and achieve the desired ends of policy.

There are certain questions for which there is no algorithm; these questions are

called undecidable. That is “[T]here are problems for which it is provably impossible to

create an algorithm that always gives a correct answer.”126 It is possible to prove such

things, because computer science at its core is a kind of “mathematical reasoning.”127 In

that sense, the deepest ideas in computer science are not about programming software or

designing hardware, but abstract concepts and issues that exist beyond real-world

instantiations.128 Understanding what can and cannot be computed abstractly gives

insight into the practical question of why demanding software code and input data to test

for hidden agendas or prohibited outcomes will not work in at least some cases, perhaps

important ones.

125 When one discusses the idea of algorithmic transparency with computer scientists, there can be a
palpable rejection of the idea. The law professor author of this paper encountered versions of this response
numerous times, and it was part of what stimulated his interest in this project.
126 CORMEN, supra note 98, at Kindle loc. 4106 (emphasis added).
127 MACCORMICK, supra note 98, at Kindle Loc. 2794-2795.
128 Id. at Kindle Loc. 132 (2012).

Marcela Mattiuzzo
Realce

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

35 Trust But Verify [April, 2017

We can think of prohibited outcomes such as unlawful discrimination as

crashes—problems any programmer wishes to avoid.129 That is, “Very occasionally, even

high-quality, well-written software [will have a bug and therefore] can do something it

was not intended to do.” That unintended outcome can be thought of as a crash, whether

it actually terminates the program or not. So if in fact we could detect when a program is

discriminating, any program could be turned into one that crashes when it discriminates

simply by running a routine that detects discrimination and crashing if that routine finds

discrimination. And then to ask if the original program discriminates, we would only

have to ask whether the modified program crashes. One might guess that it would be

possible to write an analytic tool which could find just these sorts of bugs. But that hope

is a false dream. Software testing has improved such that today many bugs are caught,

but it is still impossible to catch all bugs after a program is written.130 It is, however,

possible to write bug-free programs using advanced technical tools that prevent

programmers from writing bugs in the first place.131

Indeed, for the question of whether a program has bugs that will cause it to crash,

society desires the precision of the physicist, mathematician, logician, and critic of the

power of algorithms, but it turns out that one precise thing that can be shown is that we

cannot show certain things about software programs including whether a specific

129 Id. at Kindle Loc. 2775-2778.
130 Id. at 2782-2785 (“A natural question to ask would be: will the automated software-checking tools ever
get to the point where they can detect all potential problems in all computer programs? This would
certainly be nice, since it would eliminate the possibility of software crashes once and for all. The
remarkable thing that we'll learn in this chapter is that this software nirvana will never be attained.”);
accord MICHAEL SIPSER, INTRODUCTION TO THE THEORY OF COMPUTATION, 3d Ed., 165, 201 (2013) (“The
general problem of software verification is not solvable by computer.”). However, there are approaches to
building software such that it has no bugs in the first place. While it is provably impossible to detect all
bugs in an existing program, it is demonstrably possible to build programs that have no bugs at all.
131 This is only one of the common approaches in software verification, the area of computer science
concerned with the development of bug-free software. Another is to design the program so that it is
possible to test exhaustively all of the states it can ever take and to evaluate the desired property in each of
these states, rejecting the program as buggy if the desired property is ever untrue.

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

36 Trust But Verify [April, 2017

program will crash. In the specific case of software, detecting a potential crash is an

undecidable problem,132 meaning that “it is provably impossible for any software-

checking tool to detect all possible crashes in all programs.”133 But given that such a tool

is very desirable, and to counter the argument that this limit is narrow, it is important to

see how it applies to computing and software in general and to the problems we are

concerned with here in specific.

A more general framing of this problem, and a more powerful theorem about what

is undecidable, originates in work by Alan Turing and is known as the halting problem.134

Turing, often considered “the founder of theoretical computer science” was not writing

software or testing for bugs as “no electronic computer had even been built yet.”135 When

Turing discovered the proof in 1937, he was “interested in whether or not a given

computer program would eventually produce an answer.” 136 Specifically, he was

interested in determining what was computable, or possible to generate with a computer.

Because this work applies to what can be known about algorithms in general, it matters to

those who wish to regulate them.

Turing offered an abstract, ideal machine that can stand in for any “digital

computer” as a way to answer whether there are numbers that are “nameable, definable,

132 MACCORMICK, supra note 98, at Kindle Loc. 3128-3131 (“We proved the undecidability of the Crashing
Problem, but you can use essentially the same technique to prove the Halting Problem is also undecidable.
And, as you might guess, there are many other problems in computer science that are undecidable.”).
133 Id. at Kindle Loc. 2784-2785.
134 Id. at Kindle Loc. 3123-3126 (“A closely related question is: will a given computer program ever
terminate— or, alternatively, will it go on computing forever, without producing an answer? This question
of whether a given computer program will eventually terminate, or “halt,” is known as the Halting Problem.
Turing's great achievement was to prove that his variant of the Halting Problem is what computer scientists
call “undecidable.’”).
135 Id. at Kindle Loc. 3121-3123.
136 Id.

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

37 Trust But Verify [April, 2017

and not computable.”137 Turing’s machine, called U, as in universal, represents a simple

yet powerful model of computing machines.138 In short, “A Turing machine can do

everything that a real computer can do.”139

By connecting the idea of writing down a machine’s description with the

operation of his universal machine, Turing gave a definition of computation and related it

to the definition of algorithm used in computer science; in fact, a Turing machine

“capture[s] all algorithms.”140 By extension, whatever applies to Turing machines and the

algorithms they can run, applies to the real-world software and machines at issue here.

Because Turing machines completely encompass the functionality of real computers,

anything a Turing machine cannot do is also a limitation on real computers. That is,

Turing machines circumscribe the limits of real computers, and abstract limits on what a

Turing machine can do cannot be circumvented by building a bigger or more powerful

computer or writing better software.141 The limit we care about here is called the halting

problem.

The halting problem captures the problem of decidability for software, answering

the question of whether all problem statements which have answers also have the

137 GLEICK, supra note 117, at Kindle Loc. 3683-3684, 3738-3740.
138 Turing, supra note 1, at 241-242; accord SIPSER, supra note 130, at 202 (“The Turing machine U is
interesting in its own right. It is an example of the universal Turing machine first proposed by Alan Turing
in 1936. This machine is called universal because it capable of simulating any other Turing machine from
the description of the machine. The universal Turing machine played an important early role in the
development of stored-program computers.”).
139 A Turing machine has “unlimited and unrestricted memory,” and “is a much more accurate model of a
general purpose computer” than earlier models had been. SIPSER, supra note 130, at 165. In particular,
Turing machines are a more similar theoretical model to modern electronic computers than even equivalent
earlier logical models such as Alonzo Church’s Lambda Calculus. Id.; accord GLEICK, supra note 117, at
Kindle Loc. 3740-3742 (“No matter how complex a digital computer may grow, its description can still be
encoded on tape to be read by U. If a problem can be solved by any digital computer—encoded in symbols
and solved algorithmically—the universal machine can solve it as well.”).
140 SIPSER, supra note 130, at 184; accord GLEICK, supra note 117, at Kindle Loc. 3687 (Turing “defined
calculation as a mechanical procedure, an algorithm.”).
141 SIPSER, supra note 130, at 165 (“even a Turing machine cannot solve certain problems. In a very real
sense, these problems are beyond the theoretical limits of computation.”).

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

38 Trust But Verify [April, 2017

property that those answers can be computed algorithmically. Specifically, the halting

problem is an example of a well-defined problem for which no algorithm can find the

answer. The halting problem asks whether there is some method which analyzes a given

program running on a certain input and determines whether the input program “halts” or

“runs to completion;” Turing proved that no such analysis exists.142 That is, there is no

Evaluator we can use to test a set of instructions (the Standard Description or “S.D” [sic])

on a Machine and see whether a specific outcome will occur.143 Cormen illustrates the

problem this way:

In the halting problem, the input is a computer program A and the input x
to A. The goal is to determine whether program A, running on input x,
ever halts. That is, does A with input x run to completion? Perhaps you’re
thinking that you could write a program—let’s call it program B—that
reads in program A, reads in x, and simulates A running with input x.
That’s fine if A on input x actually does run to completion. What if it
doesn’t? How would program B know when to declare that A will never
halt? Couldn’t B check for A getting into some sort of infinite loop? The
answer is that although you could write B to check for some cases in
which A doesn’t halt, it is provably impossible to write program B so that
it always halts and tells you correctly whether A on input x halts.144

We can convert the problems in which we are interested into Turing’s halting problem by

considering the sort of misbehavior we are concerned with as a kind of crash, which

causes a program never to halt,145 as described above. Given that reformulation, we

discover that there does not exist an analysis that will always correctly identify the

misbehavior we wish to limit simply by reviewing an algorithm’s source code and inputs.

142 CORMEN, supra note 98, at Kindle loc. 106-4117; SIPSER, supra note 130, at 216-217.
143 Turing, supra note 1, at 248. In Turing’s more general language, “We can show further that there can be
no machine E which, when applied with the S.D [sic] of an arbitrary machine M, will determine whether M
ever prints a given symbol (0 say).” Id. For a detailed description of the theorem of undecidablity and step-
by-step ideas that lead to the proof see SIPSER, supra note 130, at 202-209.
144 CORMEN, supra note 98, at Kindle loc. 4106-4117; accord SIPSER, supra note 130, at 216-217.
145 By convention, computer scientists consider a program to “halt” if and only if it runs to completion and
returns an answer. If the program gets into an infinite loop (i.e., repeats the same set of instructions over
and over again forever) or crashes, the program has not “halted” even though it is no longer making any
progress towards an answer. Instead, such conditions are often described as the program being “stuck”.

Marcela Mattiuzzo

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

39 Trust But Verify [April, 2017

Yet these are precisely the elements for which advocates of transparency demand

disclosure, so that someone can “look under the hood” of an algorithm.

Put more simply, if the goal or dream is to test, for example, an online ad network,

and see whether a specific outcome—like race or gender discrimination in the placement

of an ad—will occur, there is no analysis that will always determine that. At this point, it

might seem that the author of a piece of software could say that any outcome is

unintended, and they could not have done anything to predict that outcome. That is not so.

In the Cormen example, B is an analysis program that simulates input program A

on its input x. If A halts, B can just report that. But if A does not halt, B doesn’t know

when to declare that A is stuck. It’s not that B is hopeless—it’s that there’s always some

input pair (A, x) such that B will be confused. That is, the system for representing

programs and describing their behavior is rich enough to provide a representation that is

always inscrutable in this particular way. Turing’s theorem says that such a

program/input pair exists. And that’s a very different proposition from the theorem saying

that no analysis can be done. It’s just that any analysis will not work in general. That is,

any sufficiently complicated analysis will be wrong (or unable to reach a conclusion) at

least some of the time. Thus, as Cormen puts it, as a general matter we cannot create a

program “that determines whether another program meets its specification.”146

Computer science has met this reality in part by looking for weaker tools that are

still useful. Although we cannot compute certain things, we can estimate those things in a

way that will be wrong some of the time. In particular, we can limit the failures of

146 CORMEN, supra note 98, at Kindle loc. 4113-4115. A related undecidable problem comes from Rice’s
theorem, which states that “determining any non-trivial property of the languages recognized by Turing
machines in undecidable.” See SIPSER, supra note 130, at 219, 240 Problem 5.16. For Rice’s paper see
Henry Gordon Rice, Classes of Recursively Enumerable Sets and Their Decision Problems, 74
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY 358 (1953).

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

40 Trust But Verify [April, 2017

analysis methods in two ways. First, we can demand that the analysis be complete,

meaning that all cases of a particular misbehavior will be detected by the analysis.

Because the analysis must be wrong some of the time, any complete analysis of an

undecidable problem will have false positives, or cases where it reports misbehavior

where there is none. False positives can cause users of such a tool to become frustrated

with it, so minimizing the number of false positives is of paramount importance when

building such unsound analyses. Second, we can demand the property of soundness,

which says that any reported misbehavior truly will be misbehavior. Sound analysis

methods will, of necessity, miss some cases of misbehavior. No undecidable problem has

an analysis that is both sound and complete; many sound and complete analysis methods

may exist for problems which are computable, however. It is therefore important to

understand whether a property of policy interest is computable, since it will affect

whether that property can be established based on the disclosure of software source code,

the system’s operating environment, and input data.

Put differently, despite the halting problem and issues of undecidability, all is not

lost. It is possible to write programs (and their specifications) in sufficiently restricted

languages that it is possible to prove that they meet their specifications. In short,

computer science has found ways to control for the effect of the limits we have described

both in theory and in applications. The next section draws on the stable of techniques

with which computer scientists address these challenges to see what policy can learn

from those methods and how those solutions can address the regulatory issues critics

have raised.

Marcela Mattiuzzo

Marcela Mattiuzzo

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

41 Trust But Verify [April, 2017

IV. PRACTICAL SOLUTIONS FROM COMPUTER SCIENCE

Returning to the idea of a result that we do not want, we can use technology to

mitigate such outcomes. For example, one might ask for a guarantee that certain software

was built a specific way and to have a way to verify that promise. As one of the authors

has argued, such a promise is possible if one starts with the goal of building programs

that are analyzable, and a sense of for what properties those programs should be

analyzed.147 That is, one must build software with an eye to what must be analyzed, and

by whom, because it may be impossible, difficult, or unconvincing to show those things

otherwise. Systems must be constructed to produce evidence that they operate as desired,

either by doing the things we want or by not doing the things we do not want. Such

evidence may involve the disclosure of aspects of the system, but it is often possible

without such disclosures.

With a design that enables the production of such evidence, computer science

offers ways to give a complete guarantee that something is true about a piece of software

under certain circumstances. The problem is that such certainty is impossible for software

that shows up from an unknown source, such as malware or software disclosed under a

transparency regime and which was developed without regard for the need to produce

convincing evidence.

In addition, although we cannot discover 100% of bugs in existing software, we

can write software that provably meets a specification and is therefore provably 100%

bug-free. Further, it is often possible to achieve high confidence outcomes for properties,

147 See generally, Kroll et. al supra note 27.

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

42 Trust But Verify [April, 2017

which are difficult or expensive to specify—such as the high availability or reliability

guarantees software companies now offer in some areas.148 These options should work to

address many concerns about software. And, we argue these goals are the ones law and

policy should pursue when appropriate.

Nonetheless, these options may still not assuage worries that a computer system

will be able to avoid using a specific, prohibited method such as using gender or race in a

hiring decision—and so meet the high threshold for legal compliance—and yet still

discriminate or otherwise generate unacceptable outcomes. Instead, to demonstrate that

the evidence tying a computer system’s behavior to its specification is meaningful for

policy goals, auditing software systems and the algorithms underlying them using in-the-

field tests and social science methods after the systems are deployed can test whether

these systems generate undesired outcomes.149 Although these methods have a history of

uncovering discrimination, or at least signs of disparate impact that require an

explanation, reliance on these methods faces some difficulties when applied to computer

systems. The next section explains when and how certain testing methods can allow

someone to test a given computer system and the limits—technical and practical—of

those techniques.150

A. Reviewing Algorithms, Software, and Decisions

148 Cf. CORMEN, supra note 98, at Kindle loc. 3149 (“[U]ndecidability has limited practical effects: it turns
out that we can often do a good job of solving undecidable problems most of the time.”). Beyond
undecidability, some desirable properties (such as a system always being available, or a system being
sufficiently secure) may be specifiable and decidable but hard to analyze, test for, or achieve in practice.
149 Sandvig et. al., supra note 15.
150 See supra notes __.

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

43 Trust But Verify [April, 2017

The practical issues computer scientists face in evaluating software and

algorithms show the limits of transparency as a solution on its own151 and that different

instantiations and applications of algorithms require different approaches to regulation.

There are two common settings in which one tests software, white-box and black box. In

white-box settings, the analyst has access to the source code. While that is the dream

scenario of advocates for source code disclosure, approaches using white-box testing still

have limits. Black-box settings, in which the analyst is restricted to only see the inputs

and outputs of the system but not its internal operation, pose more problems. Some

limitations apply in both settings. In either setting, there are two categories of analysis:

static analysis, which examines the program’s structure or code without actually running

it; and dynamic analysis, which runs the program and observes its behavior on certain

inputs.

All dynamic analysis is only as good as the “number of input–output pairs that are

available to be observed or tested.”152 Once one considers that many of the algorithms of

concern can operate across a massive number of inputs, it becomes apparent that one can

only test a (perhaps insignificantly) small subset of those inputs.153 And the inputs and

outputs available for review or generated by such testing may or may not match the set of

inputs and outputs that matter for policy analysis.154

151 This discussion is indebted to and draws on Kroll et. al’s paper. In addition, we offer thanks to Ariel
Feldman, for his generosity in exploring these issues.
152 Cf. Kroll et. al, supra note 27, at 16.
153 Id.
154 For example, in the black-box studies of search engines and advertising networks mentioned above
(supra, notes 60-67), while researchers could view problematic outputs of particular queries, they could not
see the output for every search query or every possible advertisement considered by the system. Because of
this, they could not conclude what the cause of the problematic behavior was, nor recommend a specific
remedy.

Marcela Mattiuzzo

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

44 Trust But Verify [April, 2017

Finally, testing is impotent to determine whether some result came from a

particular system in the field. Consider again the problem of securing the voting process.

While vote counting is a very simple operation requiring no complex specification and

admitting to straightforward testing and even full verification to produce software with no

bugs, there is no way to turn the output of such software alone into evidence that it

resulted from the inputs (i.e., ballots) approved by the surrounding voter verification

processes (e.g., id verification, log books, comparison to voter registration data, etc).

Instead, evidence of the correctness of the count must in some way relate the inputs to the

final result. Otherwise, there is no telling whether the approved, correct software was

swapped out with different, possibly malicious software in the voting machines.

1. White Box Testing

White-box testing is commonly done during the development of software systems,

but can be done at any time. Kroll et. al describe the ways one may test a program in a

white-box setting:

Computer scientists evaluate programs using either static methods—which
look at the code without running the program—or dynamic methods—
which run the program and see how the program behaves for certain inputs.
Dynamic methods can be subcategorized into 1) methods that rely on
observation of how to program operates in the field with naturally
occurring inputs and 2) more powerful methods that include testing, where
an analyst chooses inputs and submits them to the program.155

Although powerful, these testing and analysis methods do not solve all the issues around

algorithmic transparency. Static methods are not “perfect.” Experts can easily miss

simple problems hidden in complicated code, and there is a theoretical limit on all

155 Id. 13.

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

45 Trust But Verify [April, 2017

program analysis, both static and dynamic, that the halting problem implies: one cannot

always predict whether a certain outcome will occur.156

In addition, while white-box testing is more powerful than black-box testing

(since any black-box test can also be run in a white-box setting), it may not be obvious

which input/output pairs will provide the most information to a dynamic analysis, since

nearly any interesting static analysis is not computable and therefore will either be

unsound or incomplete, as described above. For this reason, it is generally necessary

when developing software to limit the scope of what inputs a program will allow, if only

to make that program more easily testable.

Another problem is that the fact that software is discrete and so testing what

happens for an input x tells you essentially nothing about what happens for input y—it

might be completely, radically different. Unless you happen to know something about the

structure of the program, you’d have to test all possible inputs, which is rarely feasible

for programs of interest.157 No amount of sophistication in the testing process or tools,

nor any unstructured disclosure of information from the creator or operator of a piece of

software, can circumvent these fundamental limits of software bug testing.158

2. Black Box Testing

156 Kroll et. al, supra note 27, at 16.
157 Still, this approach is sometimes done in the form of “model checking.”
158 Id.

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

46 Trust But Verify [April, 2017

Black-box testing suffers all of the limits on white-box testing, with the additional

limitation that the software source code cannot be inspected. A further limit concerns the

difference between analysis, in which a reviewer looks at the behavior of a system on

naturally occurring inputs, and testing, in which the reviewer has the power to introduce

new, synthetic inputs in order to observe differences in the system’s behavior between

inputs. Many large systems of interest, such as search engines and social networks, are

hybrid between these scenarios: to interrogate the system, some inputs will be able to be

changed or have new choices inserted, while others will stay the same. For example, it is

possible to change the queries submitted to a search engine, but not possible to replace

the results it has crawled from the Internet at large.

As Kroll et al. explain, for black box testing, because of the “astronomical number

of hypotheses about the behavior the program that [] fit the observed or tested input

output pairs,” “it is impossible to use inductive reasoning to determine the decision

procedure generating outcomes or to predict the behavior of the program for inputs that

have not been observed or tested.”159 Even if one combined static and dynamic testing

methods, “Not every algorithm will be able to be fully analyzed” because of the intrinsic

limit of the halting problem, as described above.160 As they note, if an algorithm was not

“designed with future evaluation and accountability in mind,” no amount of software

testing—even aided by total transparency—will always work to elucidate any particular

159 Id.
160 This point comes more directly from a close cousin of the halting problem, Rice’s Theorem, which
holds that for any non-trivial property of a language (or program) of a Turing machine, “determining any
property of the language[] … is undecidable.” See SIPSER, supra note 130, at 219; accord Kroll et. al at 5, n.
14. For Rice’s paper see Rice, supra note 146. For a statement of theorem see SIPSER, supra note 130, at
240, problem 5.16. For the proof see Id. at 243, Solution 5.16.

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

47 Trust But Verify [April, 2017

question.161 To combat the problems and limits of transparency and testing, Kroll et. al

offer a different solution, but it, too, has limits.

3. A Third Way: Ex-post Analysis and Oversight

In simple terms, the goal of governing automated decision making is to review a

software-driven action after-the-fact of the action, to see if it comports with applicable

social, political, or legal norms. That goal runs into the problems of transparency and

software testing we have described, as well as the problem of determining whether the

action originated from a specific piece of software. There are many options to meet those

problems. One option is full transparency – a computer is, after all, a precise machine,

and with a full understanding of its construction, inputs, programming, and operating

state, we can reproduce its actions. But transparency is only one way to achieve the

evidence necessary to explain how and why a computer system produced a certain

decision. Other methods create convincing evidence without complete disclosure of a

system’s internals. Full transparency, including transparency of a program’s operating

environment, can yield complete explanations for a system’s behavior (or at least be able

to reliably reproduce that behavior simply by running the disclosed system again). But

such complete transparency is rarely possible or desirable. Often such systems may be

subject to trade secret or other concerns that run counter to full transparency. And even

when it is possible, we run into the limits discussed in Part II above, for full transparency

will in many cases require disclosing significant detail about a program’s operating

environment, such as the full contents of databases a program interacts with and

161 Kroll et. al, supra note 27, at 24.

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

48 Trust But Verify [April, 2017

information about other programs running on the same computer.162 Again, such detail is

rarely desirable, or even feasible, to disclose. But we do not need such detail to achieve

the goals of governing software systems.

Insofar as reviewing an outcome after-the-fact is about the ability to evaluate

properties of the software being used, we do not need full transparency. Instead as Kroll

et. al point out, one can use a suite of technical tools including cryptographic

commitments163 and zero-knowledge proofs164 to allow for an automated decision process

to be used and at the same time “provide accountability” in the sense that a reviewer can

check that even undisclosed elements are duly recorded, or are applied equally among

decision subjects as appropriate (e.g., all decisions are rendered from the same decision

policy).165 These techniques allow for ex-post verification even when the entire system is

not transparent, or not transparent to all concerned parties, functioning as a kind of self-

executing software escrow. Skeptical decision subjects, oversight entities, and concerned

citizens can later verify that the software which was meant to be used and which was

committed to—or, in the escrow analogy, was deposited into escrow—was actually used

for a decision. Further, these techniques allow selective transparency: a system may not

need to be transparent to everyone, so long as members of the public are confident that

the system’s decisions about them correspond to the version of the system reviewed by a

162 See supra Part II.
163 See Kroll et. al, supra note 27, at 30 (“A cryptographic commitment is the digital equivalent of a sealed
document held by a third party or in a safe place. … Commitments are a kind of promise that binds the
committer to a specific value for the object being committed to (i.e., the object inside the envelope) such
that the object can later be revealed and anyone can verify that the commitment corresponds to that digital
object.”).
164 Id. at 32 (“A zero-knowledge proof is a cryptographic tool that allows a decisionmaker, as part of a
cryptographic commitment, to prove that the decision policy that was actually used (or the particular
decision reached in a certain case) has a certain property, but without having to reveal either how that
property is known or what the decision policy actually is.”).
165 Kroll et. al, supra note 27, at 27.

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

49 Trust But Verify [April, 2017

reviewer with the authority to compel transparency—and again, in the escrow analogy, a

trusted agent could determine that these conditions were met without actually disclosing

the escrowed software. Finally, these techniques directly verify the relationship between

inputs, policy, and decision output, sidestepping the need to disclose or record the entire

operating environment of a computer system. Thus, they allow disclosure of only the

relevant facts (such as the particular inputs and decision policy used) to only the relevant

parties (such as only competent oversight authorities, e.g. a court issuing a duly executed

order for discovery) without compromising the ability of others (i.e., decision subjects,

the public at large) to verify that oversight can occur. These techniques also reduce the

scope of disclosure, replacing the need for certain disclosures with direct evidence.

If one wants to review any action after-the-fact, one needs an audit log or audit

trail, that is a time-stamped record that documents actions that affect an operation,

procedure, or event.166 In human-driven, bureaucratic processes, the audit log serves to

identify who did what when, and why any intermediate decisions were taken. However, it

is not possible to reconstruct a human’s precise thought process simply from notes. On

the other hand, digital audit logs can improve on the governance of decision making

because the process that led to a decision can be precisely reconstructed and analyzed. If

one wants to know that the audit log in a computer system corresponds to what actually

happened, one can either re-run the entire system (disclosed via a suitable transparency

regime) and compare the inputs and outputs or one can use these cryptographic methods

to receive and verify direct evidence of how the outcome was generated. In addition, even

a passive observer who is a member of the public (and not just privileged regulators with

166 The reliance on such trails is known and used in the law. For example, the Food and Drug Act requires
the use of such trails in electronic record keeping. See 21 C.F.R. § 11.10(e).

Marcela Mattiuzzo

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

50 Trust But Verify [April, 2017

the power to compel disclosure of all or parts of the system) can determine that the audit

log is correct if it is created properly at the time the decision is made. Further, with

sufficient evidence, an observer will be able to determine that the actions recorded in the

audit log correspond to the system disclosed to a regulator. These methods can also show

an outsider that the audit log corresponds to a process with certain desirable properties,

e.g., showing that the same decision policy was applied in all cases.

B. Dynamic Systems and the Limits of Ex-Post Testing

Although the above techniques hold promise for many areas of concern, they do

not cover all problems that might undermine public trust in computer systems. Dynamic

systems that change over time pose two problems for ex-post review. First, even if such

systems are created with the above requirements in mind, whatever analysis is possible

may aid in determining whether, when, and how things changed and to isolate the effects

of changes. But how well these approaches could aid such analysis remains an open

research area. Second, dynamic systems already in place but not designed to support this

sort of review remain difficult to interrogate.

The systems that of most concern—those that govern “search engine rankings,

spam filters, intrusion detection systems, … website ads, … [and which] social media

posts to display to users”167—are not covered by these solutions. That is, software that

uses certain types of machine learning or is modified frequently by its operators to

167 Kroll et. al, supra note 27, at 24-25.

Marcela Mattiuzzo

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

51 Trust But Verify [April, 2017

respond and adapt to dynamic inputs and user behavior does not lend itself to a tidy

analysis of a single, coherent policy uniformly applied. Many systems change often,

either because of “regular” changes by designers (for example, to enhance their

functionality or combat abuse) or because they use automated processes such as online

machine learning models “which [can] update their [. . .] predictions after each decision,

incorporating each observation as part of their training data.”168 The approach of creating

an audit log showing that everyone is subject to the same decision policy is less useful

when systems are dynamic and change over time, because the system may (desirably)

change between decisions.

As a general matter, Kroll et. al’s solutions address issues looking forward,

requiring that decision makers decide on a single policy and publish it in advance of

making any decisions. These methods, at least as described, do not directly apply to

situations where the decision policy changes often. Instead, these methods must be

adapted to address the idea that the decision policy changes over time, as we discuss

below in Part V, Section 3.

Algorithms and the software systems that bring them to the real world vary, and

regulatory approaches to controlling their power must be shaped by who uses them, how

they are used, and for what purpose they are fielded. As such, we next look at the sort of

systems and contexts where the approaches offered by Kroll et al. fit well and then turn to

the open questions of systems already in place or that may be less amenable to these

approaches.

168 Id. at 25.

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

52 Trust But Verify [April, 2017

V. A TAXONOMY OF POTENTIAL SOLUTIONS

Given that software-based decision-making appears to be here to stay and that there

are limits to traditional transparency solutions for such decision-making, this section sets

out a taxonomy of when certain approaches for accountable algorithms work well from

both a technical and legal standpoint. The nature of the appropriate mechanism for

accountability will depend on the nature of the software system at issue. In some cases,

the extent to which accountability is needed will turn on whether and how the use of such

systems is regulated. In some cases, robust accountability will be a law and policy

requirement; in others, building accountability into software systems will be a best

practice, at least under current policy. We begin this Part by looking at public sector

decision-making and explain why accountability is necessary as matter of due process.

We then turn to private sector, regulated industries which also require accountability.

Next we examine unregulated industries and offer best practices for accountability. In

addition, we offer a possible statutory change—the passage of law to encourage and

protect whistleblowers who know of prohibited practices—to aid in policing the use of

software in decision-making.

A. Public Systems

DRAFT – FINAL VERSION FORTHCOMING

53 Trust But Verify [April, 2017

We start with the easier case, public systems. As described above, in general

accountable public systems promote the dignity of citizens and support a well-

functioning society. By extension, citizens need some ability to verify that public systems

operated in a certain way, and complied with social norms, political realities, and legal

obligations. Recall that a large barrier to accountability and evaluation occurs when a

system is built without the requirement to generate this evidence in mind from the start.

The easiest approach to a solution is that when the government chooses to use or

purchase software, it must use software that meets the standards the government sets and

the standards should include full transparency.169 And while full transparency of the

software source code used to build government systems would certainly be useful, both

for understanding software-mediated decision-making by the government and as an end

in itself, such disclosure is insufficient on its own to provide governance. Indeed, as we

have argued, calls for transparency often miss the point, going too far for some

requirements and not far enough for others.

We offer instead that when the state is using software for sensitive decision-making

that raises due process concerns or where the integrity of the state’s process may be

questioned (e.g., when using voting machines) the state must use software that allows for

accountability to the public and evaluation by citizens at large. The state may build such

software in-house or buy it, but the requirement applies in both cases. Given that the

169 Citron, for example, advances a more complete view of this argument, describing how it would be
achieved and saying that “open code governance provides a means to make agency decisions bound up in
information systems more transparent, democratic, and legitimate” in her article “Open Code Governance”,
University of Chicago Legal Forum 355 (2008). Citron goes further than transparency, arguing that
government-procured code should be made open-source, enabling “new opportunities for participation by a
broad network of programmers, who can contribute to the development of accurate and secure systems.”
Indeed, many scholars and advocates have proposed that government-procured software should be open
source, both for reasons of transparency and also because openness fosters participation and treats such
software as a public resource, consonant with the doctrine that government works are not entitled to
copyright protections.

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

54 Trust But Verify [April, 2017

government, especially at the state or local level, may not be able to build the software it

needs. When using outside vendors to provide the software or software based-analysis in

these areas, the government can and should define complete requirements for procured

systems based on the goals those systems are meant to fulfill. In addition, it should

demand in procurement requirements and contracts that the resultant system be able to

generate evidence verifiable to a competent observer that it satisfies those goals. This

evidence could be generated per-decision or once for the entire system if the application

scenario allows it. Further, what constitutes sufficient evidence will depend on the goals

of the system overall. For example, in electronic voting an auxiliary voter-reviewed paper

record may suffice as evidence of correctness, as counts can later audit the

correspondence between electronic and paper ballots. Conversely, in another counting

application such as the census, paper records alone cannot describe sampling procedures

or interpolation from returned questionnaires, and do not constitute sufficient evidence of

the system’s correctness for its designated purpose. To have sufficient accountability, it

must be possible to review the correctness of every individual decision produced by the

system.

Given that the government already vets software for security and privacy issues

among other criteria, it is hardly peculiar to demand that systems produce evidence of the

correctness of each decision they make. Private sector companies already employ testing

regimes to convince themselves that software (both for internal use and for sale to

customers) operates as expected. And in many cases, software vendors must provide

evidence beyond simply attesting to the correctness of their software. For example, many

online service providers specify an application programming interface (API) which

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

55 Trust But Verify [April, 2017

describes precisely how software operating remotely on the provider’s computers is

meant to operate (deviations from the promised behavior in the API are thus clear bugs).

In addition, enterprise software vendors create custom software built to client-specified

requirements all the time. The government is a large, albeit somewhat special, customer,

but it is nonetheless a customer that can list its needs for the market to meet. Indeed, at

least one agency, the Food and Drug Administration, sets out technical requirements by

requiring those who “create, modify, maintain, or transmit electronic records shall

employ procedures and controls designed to ensure the authenticity, integrity, and, when

appropriate, the confidentiality of electronic records, and to ensure that the signer cannot

readily repudiate the signed record as not genuine.”170 The FDA also specifies that audit

trails be a part of “such procedures and controls.”171 Our argument is that Kroll et. al’s

approach enhances such requirements, by helping to ensure that the audit trails have not

been tampered with or faked and tying the evidence in them to the actual actions taken.

Those assurances help to fulfill Mashaw’s three demands for bureaucratic justice.

Thus we argue the state must still adhere to Mashaw’s three points: making

“accurate,” “cost-effective” judgments, while giving “attention to the dignity of

participants,”172 but a modification of the demands of dignity is needed. Although the

subject of such a process may not have the literal ability to know or understand what

reasons are behind a decision,173 when a sensitive decision is being made—or as Mashaw,

Schwartz, and Citron have stated in different ways, when the state is making decisions

170 See 21 C.F.R. § 11.10.
171 See 21 C.F.R. § 11.10 (“Such procedures and controls shall include the following: … Use of secure,
computer-generated, time-stamped audit trails to independently record the date and time of operator entries
and actions that create, modify, or delete electronic records. Record changes shall not obscure previously
recorded information. Such audit trail documentation shall be retained for a period at least as long as that
required for the subject electronic records and shall be available for agency review and copying.”).
172 Schwartz, supra note 18, at 1348.
173 Id. at 1349.

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

56 Trust But Verify [April, 2017

that raise due process concerns—the state must use software that produces sufficient

evidence to allow for accountability and evaluation by a competent authority after the

fact of the decision. Further, it must be possible even without oversight for a decision

subject to verify the integrity of this evidence (i.e., that it is correct, corresponds to the

decision, and does not contradict itself). In general, this requirement assures that the

subject of any such processes can determine that the rules and procedures have been

followed. Thus, even if a subject cannot know or fully understand the software and data

behind a process, she can know and understand the rules and procedures were followed in

a way that protects her dignity, as Mashaw has developed that idea.

Further examining this approach illustrates its benefits. At the general level,

software firms will have a requirement that they can build against—the production of

specific evidence that allows for accountability and evaluation of the system’s

performance with respect to specific goals by customers and, ultimately, end users and

decision subjects. Insofar as the government claims that a process uses certain methods,

meets certain legal requirements, etc., the government can offer clear requirements that a

vendor can implement. Of course as Citron notes “Policy is often distorted when

programmers translate it into code.”174 That problem is real. The benefit of accountability

mechanisms is that they provide a way to test the code ex post and see whether such a

problem has occurred so that it can be fixed. Government programs that Schwartz and

Citron critiqued or that Kroll et. al offer as good cases for accountability have limits on

which factors they can and cannot consider and on the methods they can and cannot use

to make a decision. When an agency is deciding who should receive “Medicaid, food

stamp, and welfare” benefits, whether someone should be on a no fly list, who should be

174 Citron, supra note 5, at 1261.

Marcela Mattiuzzo

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

57 Trust But Verify [April, 2017

identified as owing child support,175 who should be granted a Visa, whom to audit for tax

compliance, whom to search for security checks at airports, and so on, it can set out what

criteria were expected to be used and show that in fact it used those criteria (and only

those criteria) if software was part of the decision-making.

Of course, many decisions in this area involve the discretion of an agency employee,

a person, rather than vesting the full agency of the decision in software. But that does not

change the need for having sufficient evidence to analyze the software component or to

hold the entire process accountable. 176 Insofar as the parameters of a particular

application allow for little discretion, when they are set out and applied via software with

audit-logs and the sort of direct evidence Kroll et. al describe, citizens can have better

assurance that the decision-maker followed the parameters. Even if the decision-maker

has discretion, if software was used to process data within prescribed limits for how a

decision was made, the decision-maker can show that the stages up to her discretionary

decision adhered to required criteria and thus meet the demands of due process. Further,

the decision-maker can record in an audit log what information was present at the stage

where discretion was applied, and any details about how and why discretion was applied.

Later, this information can be used to adjudicate any dispute about the appropriate

application of discretion in a particular case.

175 Citron, supra note 5, at 1256-57.
176 See MASHAW, supra notes 115-116, and accompanying text (noting difference between exact rules and
demands of justice for administrative law).

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

58 Trust But Verify [April, 2017

B. Private Systems

Although due process concerns explain why government use of software for

certain decision-making applications requires the creation of the sort of evidence we have

described, whether the same is true for private sector uses turns on the nature of the

private activity at issue. Private sector actors may want to offer, of their own accord,

evidence of how a decision was made to engender trust with their customers. However,

the extent to which a given actor or area of industry will be required by law to do so

varies depending on the actor or industry.

Whether software making decisions in the private sector must produce evidence

of its correct operation turns on a few issues. If the private sector industry in question is

regulated, such as the transportation or pharmaceutical industry, the creation of evidence

by automated decision processes is a natural requirement. If the sector in question is not

regulated, it would seem that the accountability such evidence would enable is not

required, but it is certainly a useful best practice and may be a de facto requirement under

current policy. Given that the Federal Trade Commission or other consumer protection

agencies may have questions about how a process worked or the truthfulness of a claim

about the quality of an offering, we argue that any company should consider their

requirements for designing software to produce evidence or audit trails of how decisions

were made as a best practice, since it can improve trust in their products and services. In

addition, we offer that, to the extent that disclosing such evidence explains how a system

works, such an approach can allow community feedback and encourage the identification

of unexpected errors in ways that can help companies built better products. In the security

Marcela Mattiuzzo

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

59 Trust But Verify [April, 2017

space, bug testing challenges, open-source development, and bug bounty programs

currently already fulfill this role. Last, we offer that whistleblower protection may be

useful to aid in revealing whether a company is intentionally using prohibited

discriminatory methods, such as criteria based on race or gender in software making

decisions where these factors are proscribed.

1. Explicitly Regulated Industries

The use of software by the private sector in regulated industries raises a tension

between trade secrets and the need to know whether a system adheres to agreed-upon or

required standards. The recent discovery that Volkswagen used software so that its cars

passed emissions tests but performed differently on the road is one example of a problem

where evidence of how the software operates would enable evaluation, promote

accountability, and ensure compliance. An automaker could be required to provide the

software to a government tester. The software could be required to be designed to

produce sufficient evidence of how it operates to make it straightforward for the tester to

analyze the software and determine if it complies with the standard under test. Using

Kroll et. al’s idea about zero-knowledge proofs, the automaker could accomplish this

while keeping proprietary methods secret, yet still be required to commit to using certain

methods and to produce sufficient evidence so that testers could verify that the system

performed as promised.

A larger problem arises with networked systems, which turn almost anything into

a PC or browser that can be updated often if not daily. For example, Tesla announced it

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

60 Trust But Verify [April, 2017

would address issues about the range its cars can travel on one battery charge by a

software update. The update is designed to allow the range meter (which indicates how

far one can go before needing to recharge the battery) to be more accurate by accounting

for real time driving conditions such as terrain and wind and by checking the distance

from a charging station to let drivers know whether they are moving out of range of the

closest station. And while that new functionality is important and useful, updates can

radically change the behavior, and therefore compliance properties, of a computer system.

The key point is that Tesla, and other automakers pursuing the next generation of

automotive functionality, are treating the car more like a computer than previous vehicles,

in the sense that features are implemented as software running on generic hardware rather

than as dedicated-to-a-purpose mechanical components that would have to be physically

swapped out to change their behavior. Tesla alone issues updates every few months to

improve 0 to 60 performance and add safety features such as “active safety features like

automatic emergency braking, blind spot warning, and side collision warning” on models

that have the hardware needed for the systems to work.177 Other updates claim to improve

radio reception and create a guest or “valet” driver mode to limit the way the car can be

driven and access to confidential information.178 And the so-called auto-pilot mode was

delivered as a software upgrade too. Future Teslas, Volkswagens, and really any

automaker’s cars will rely more and more on software for most of the way the car

operates, and on network connections to the world outside the vehicle for updates and

real-time data. This calls out a problem for any networked, software driven device—what

is often called “the Internet of Things”—that requires some approval before being

177 See Davies, supra note 11.
178 Id.

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

61 Trust But Verify [April, 2017

deployed or which must comply with some safety standard, since software-driven

features of such devices can change radically when the software is updated.

Insofar as any device makes a claim about performance or adds a feature in a

regulated context, that device must be tested before being put into the stream of

commerce and should be built to provide the requisite level of evidence and assurance to

facilitate accountability and evaluation. If a company wants to update systems that

normally undergo review by a regulatory agency such as the NHTSA or FDA, it must not

be allowed to push the update until the agency has analyzed the changes and verified the

continued compliance of the updated device, subject to the original, approved parameters.

This includes verifying that sufficient procedures are in place to allow the agencies to

review the operation of devices in the field or on an interaction-by-interaction basis (if

this is necessary). One ancillary benefit of carefully defining evidence for showing key

compliance properties of a piece of software is that—unless an update transgresses the

limits of the agreed-upon original testing parameters—companies can update rapidly as

long as they can demonstrate that their update falls within those parameters. Further,

clarity about what a device must do (and must show it does) can help companies focus

their software development efforts. With such guarantees from a company in place, an

agency will be able to test and approve updates faster than it could in a world where

every product revision had to be reviewed de novo. Thus, updates could be pushed out

more quickly, because oversight bodies will have the technical evidence showing whether

the updated product was still within the regulations, or has changed sufficiently to require

a more robust period of testing and approval.

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

62 Trust But Verify [April, 2017

2. Building Trust: Implicitly Regulated Industries or Activities

Battery life for cell phones shows how the question of transparency is different in

unregulated sectors. Like a car battery range indicator, the charge indicator on a cell

phone is based on a model, rather than reporting a measurement determined in hardware.

Like a car battery charge, the way one uses the device affects the length of the charge. As

a general matter, users and non-users, will want to know whether the indicator is accurate

within certain parameters, and may want a way to check the truthfulness of the indicator

as part of consumer protection. As with the Tesla example, if a company makes a claim

about the length of time a charge lasts, the more third parties that can verify the claim, the

better. Again, insofar as a system is somewhat unchanging and the public wishes to know

whether the system adheres to certain methods and practices, the Kroll et al. criteria

should work well. And if a company wishes to update or enhance a feature that does not

require government testing and approval before launch, but the company wishes later to

argue that its logs and data indicate all was well with a system or operation under scrutiny,

it will need to offer a way for third parties to verify that evidence proffered to this end is

as it was when the issue arose, and has not been doctored.

Thus, starting with the goal of producing evidence of chosen desired properties, to

support accountability to customers or regulators and evaluation by the public, as

software is developed and deployed aids a company in two ways. First, the approach

allows a company to address the growing trend of journalists, online communities, and

perhaps cranks (i.e., purveyors of fake news) to be provocative with grand claims of

Marcela Mattiuzzo

Marcela Mattiuzzo
Antitrust - same logic.

DRAFT – FINAL VERSION FORTHCOMING

63 Trust But Verify [April, 2017

failure or misdeeds. Second, should criticisms catch the attention of an agency like the

FTC or a class action suit be filed, companies will be in a better place to respond to

legitimate inquiry without having to stick their head in technical sand and claim that trade

secrets, complexity, technical infeasibility or some combination of these issues means the

public must simply defer to and trust the company that they are being honest and obeying

rules.

Although designing software that gives evidence that it meets chosen

requirements is a powerful solution to problems stemming from software-based decision-

making, two issues pose a problem for this approach. We turn to those next.

3. The Challenge of Dynamic Systems

At this point we must turn to a problem that affects both public and private sector

uses of software: highly dynamic systems, especially those relying on online machine

learning techniques, may not be amenable to the accountability and evaluation criteria for

which we argue. As above, whether such systems should be allowed in certain contexts or

in what way they may be used turns on whether the public or private sector is using such

systems and the purpose for which they are deployed.

 The baseline reasons for requiring that public sector uses of software generate

evidence that they can be evaluated by oversight entities and so provide accountability

for decision-makers, namely concerns around due process, mean that the government

may not be allowed to use such dynamic systems for certain purposes. Regardless of

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

64 Trust But Verify [April, 2017

whether the government builds or outsources the creation of the software in question,

even when accountability and evaluation are possible and the software adequately

addresses compliance requirements, due process and justice concerns specific to the

application of these tools by government indicate that such systems cannot be used. The

counter-argument that preventing the government from using the latest and greatest

techniques in machine learning means that government is hampered and will be unable to

do its job well is, of course, an overstatement. If an agency wants to use a highly dynamic

system, the agency will bear the burden of proving that the system satisfies due process

and justice concerns. And even if there is a case where the is no system that satisfies

these requirements, the agency would have to show that in that extraordinary case, the

trade off means it should be allowed to use it nonetheless It also misses the point of

Mashaw’s triumvirate for government decision-making. Decisions must strive to be

accurate, cost-effective, and to give attention to the dignity of the subject, and although

those three criteria may “compete with one another, [] bureaucratic justice becomes

impossible without respect for all three of them.”179 Sometimes, ongoing modification of

a rule is desirable and falls within the requirements of bureaucratic justice. Thinking

about airlines and anti-terrorist safety measures shows the problem.

Other than perpetrators, no one is in favor of hijacking or blowing up a plane, and

a goal of national security efforts is to prevent such actions. New machine learning

techniques may be better than humans alone at detecting patterns that indicate someone

may be trying to hijack or blow-up a plane. Such a system might create or take as input

from human analysts a list of suspect people, either for enhanced security review or to be

banned from flying. On the one hand, the process must be cost-effective. Given the

179 Schwartz, supra note 18, at 1349.

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

65 Trust But Verify [April, 2017

hundreds of millions of people who travel within just the United States each year, having

humans try to cull through just the passports and visas would be an enormous task. Even

if society had enough people to do that work, it is unlikely that they could be trained to

pick up patterns, do so consistently, and do so fast enough that the pattern found is still

relevant to the task of finding terrorists the next day or week. In addition, the raw dollar

cost of such manual review would be quite high. If the task further requires cross-

referencing the paper trail with pubic online social media posts, facial recognition, and

more, we see that the task is not at all a good one for humans but an excellent candidate

for automation. In particular, such a task seems well suited for a machine learning system.

But if such a list of suspected people is generated, and yet no one can explain how the list

came to be, the goals of bureaucratic justice are not served. Even if a model can claim to

satisfy requirements of due process by applying to all potential suspects in an equal way,

no “ground truth” exists for the criterion of the list (an unmeasurable risk), so testing

whether the list is accurate is an open question. Furthermore, if someone is on the list,

believes that he or she should not be, and wants to challenge the choice, any lack of

analyzability of the model which generates the list undermines the dignity interest that

completes the triumvirate. Thus, to satisfy the requirements of bureaucratic justice,

government should not be able to use a technique that does not meet the three criteria and

by extension, a technique that does not allow for the evaluation of how decisions are

made and accountability for these justifications. Yet following our approach saves the

process.

Although a system that created a dynamic rule for selecting passengers would

facially raise concerns about the dignity of screened passengers, it could conceivably be

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

66 Trust But Verify [April, 2017

constrained to update its rule in a way that ensures desirable properties. For example, a

system might guarantee that the chance of having to undergo more stringent security

procedures was independent of certain protected statuses, such as age, gender, or

ethnicity. As long as updates to the rule do not violate this requirement and do not stray

outside the envelope defined by a sufficient rulemaking, small updates to the rule to

detect new patterns indicating risk might be allowable.

Private sector uses of such systems will run into problems insofar as they are

regulated or need to show that they adhere to a certain set of rules or procedures. This is

especially true of the many systems under scrutiny already built, in place, and working.

Four areas—social networking, search, online news, and online advertising—have come

under sustained criticism for several years and reveal the problem. We will not restate

claims from the literature, as they are varied and proffered objections to automated

practices are disparately accurate and substantive. For the purposes of this Paper, we

remark only that companies in any of these areas have been accused of misdeeds, and a

key question in all the cases is whether a given system behaves in a certain way. This

question highlights the problem with highly dynamic systems, because such systems

evolve the rule in effect for any given decision, creating challenges in determining why a

system behaved as it did. That is, whether a company using dynamic systems will be able

to work within the criteria for which we have called, namely for accountability and the

creation of evidence as to how a system functions, will depend on precisely how and

when the decision rules are updated.

As in the public sector example, so long as decision rule updates can be shown

not to change an acceptable rule into an unacceptable one, or to change a rule too fast for

Marcela Mattiuzzo

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

67 Trust But Verify [April, 2017

others to adapt to, rule changes may be acceptable and even desireable. For example,

information providers such as search engines and social networks often change their

ranking algorithms to combat abuse by low-quality sites or posts that want to show up

higher in the results. These changes benefit both users, who see better results, and

legitimate site owners or posters, who need not worry that their place will be usurped by

dint of others’ bad behavior. However, large changes to the ranking algorithms invariably

demote some legitimate sites which were naturally better suited to the rules prior to the

changes. In search, because many websites use advertising as their primary revenue

source, large changes in traffic can have commensurate effects on sites’ bottom lines.

Naturally, sites which are demoted in ranking updates suffer corresponding decreases in

the number of visitors they see, and thus generate less revenue for their owners. Website

operators therefore often see large rule changes as arbitrary and capricious. For social

networks, users may believe their posts ought to be seen by their contacts, and so changes

to the way posts are ranked and displayed which alter that expectation are often greeted

with skepticism. Changes can raise questions about fake news or bias about which news

or posts are promoted. If, however, the changes by information providers happened in

small steps over time or could be shown to only change the rules within certain bounds or

could explain to users how and why the changes affect content rankings, rule changes

would be more palatable and could be weighed against the surplus created by changing

the rule.

Until recently the need to assess such systems has not been urgent, but as they

become more common, the people they affect are demanding the ability to assess them.

The terms “machine learning” and “artificial intelligence” suffer from a problem similar

DRAFT – FINAL VERSION FORTHCOMING

68 Trust But Verify [April, 2017

to the term algorithm: there is an almost mystical or monolithic view of what the terms

mean. Artificial intelligence seeks to build systems that solve general and abstract

problems in the way humans do, or in yet-undiscovered better ways. However, AI

remains in the distant future and the stuff of science fiction, even as the complexity of

systems that do not generalize their approaches makes computers seem ever smarter.

These seemingly intelligent systems can often generalize to apply to data they have not

encountered yet through machine learning, but not to new approaches to problems or to

general reasoning. For example, a voice recognition system can interpret phrases it has

never heard before, but cannot (without significant modification) learn an entirely new

language or grammar. But artificial intelligence will continue to grow its reach as ever

more specific models are constructed and stitched together. Machine learning is the stuff

of these models, and the best path known to build artificially intelligent systems (whether

those systems have specific intelligence like a speech recognition engine or general

intelligence like Commander Data). As a field, machine learning employs many specific,

non-mysterious algorithmic tools such as decision trees; rule learners; and classification

techniques such as naïve Bayes, nearest-neighbor classification, neural networks, and

support vector machines180 because “in practice [] each of these algorithms is good for

some things but not others.”181 And as a general matter, one group of computer scientists

has noted within machine learning “some algorithms are more amenable to meaningful

inspection and management than others.”182 Decision trees, naïve Bayes classification,

and rule learners were the most interpretable, kNN was in the middle, and neural

180 Singh et. al., supra note 26, at 4. A full explanation of these techniques is beyond the scope of this Paper.
For a general background on these techniques and their limits see DOMINGOS supra note 123.
181 DOMINGOS supra note 123, at Kindle Loc. 179.
182 Singh et. al., supra note 26, at 4.

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

69 Trust But Verify [April, 2017

networks and support vector machines were the least interpretable.183 We offer generally

that machine learning systems need not be inscrutable.

Even if a system was not built with the goal of supporting analysis to start, there

are ways to mitigate this fact. Any company using a machine learning approach to

building some system needs to understand how that system works so that the company

can manage the system and see how it performs in the field. This need opens the door to a

type of evidence that can support outside analysis: the evidence the company uses to

convince itself that the system is operating as desired could be reviewed for disclosure or

made available to oversight entities. Along with evidence about how the software is built

and run, this evidence can be convincing as to what system made a particular. In some

cases a company may use an approach such as neutral networks that is not easy to

interpret, even if its internals are fully disclosed. Nonetheless, the company could reduce

that complexity by translating the inscrutable internals of the complicated model into a

more interpretable decision tree system providing sufficiently similar decisions so that

the company can work with and interpret the output more easily.184 A related area of

work looks to make machine learning interpretable.185 This approach seeks to offer a way

“to explain the predictions of any classifier or regressor” by “presenting textual or visual

artifacts that provide qualitative understanding of the relationship between the instance’s

183 Id.
184 While it is known that models designed for interpretability have only slightly lower performance than
their inscrutable cousins, it is not known whether the additional errors are distributed evenly across all
inputs or are biased towards a particular subgroup. That is, the interpretability meant to help the public
understand whether the model is discriminating unduly may itself be a cause of discrimination in some
cases. Research continues in this area, but we note that it should be possible to characterize the distribution
of errors in any particular application, particularly in cases where more complex-but-inscrutable models
already exist.
185 For an example, see Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin, “Why Should I Trust
You?”: Explaining the Predictions of Any Classifier, arXiv:1602.04938 [Cs, Stat], 16 February 2016,
available at http://arxiv.org/abs/1602.04938.

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

70 Trust But Verify [April, 2017

components (e.g. words in text, patches in an image) and the model’s prediction.”186 In

addition, companies are constantly updating and building their software systems, and that

provides the chance to modify the software as it evolves in ways that produce evidence to

support outside analysis and ultimately promote accountability for automated decisions.

Even when that is not possible, insofar as a company may need to explain what its system

does, it should either use a method that is amenable to “meaningful inspection and

management” or “interpretation,” or—if using a method that is not as amenable—reduce

that method to one that is better suited to “meaningful inspection and management” or

“interpretation” while being careful to maintain fidelity to the original system both for

actual decisions and for the distribution of errors.

There is an additional reason companies should offer ways for third parties to test

and understand a company’s software and its outputs. It may be that a dynamic system

designed in the best of faith will yield an undesired result. If, however, a company finds

ways for third parties to test its software and offers bounties for finding such outcomes

(much as is done for security bugs), rather than an antagonistic policing game of

“Gotcha!”, in which critics cry foul in public, a more constructive norm of helping

improve the system could emerge. For example, one popular image sharing site

accidentally classified photos of African Americans under the tag “gorillas” using an

automated system intended to determine the contents of a photograph.187 A system of

testing and bounties could ferret out such problems before they become problematic

product issues and negative news stories.

186 Id.
187 See e.g., Alastair Barr, Google Mistakenly Tags Black People as ‘Gorillas,’ Showing Limits of
Algorithms. DIGITS BLOG. WALL STREET JOURNAL. 1 July 2015 at
http://blogs.wsj.com/digits/2015/07/01/google-mistakenly-tags-black-people-as-gorillas-showing-limits-of-
algorithms/

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

71 Trust But Verify [April, 2017

Of course, the use of evidence as a way to describe what systems are doing

presupposes consensus on what the system should be doing. And absent methods for

defining these characteristics precisely ahead of time, critics will still cast aspersions at

systems they believe still act to produce discriminatory or illegal outcomes. For that

possibility we offer that a whistleblower and public interest right of action law may be

needed.

C. Legislative Changes to Improve Accountability

Even with robust technical controls, companies using software-driven decision-

making might still design their software to cause negative, discriminatory, or unfair

outcomes while hoping that no one would know or that the perpetrators could deny that

intent. Indeed, the precise outlines of what constitutes illegal or discriminatory behavior

will always be the purview of messy, after-the-fact debates. Actors who wish to skirt the

boundary of acceptable behavior may in some cases take liminal actions open to

legitimate interpretation. Thus, we offer that, in addition to technical measures, policy-

based controls are also appropriate. In particular, we propose that a whistleblower and

public interest cause of action law would improve accountability.

Taken together, improving whistleblower protection and enabling a private right

of action would help build a legal system to manage the problem of intentional, yet

difficult to detect, discrimination via software. Given the federal government’s roles as

regulator and buyer, a federal whistleblower statute modeled on Sarbanes-Oxley gives

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

72 Trust But Verify [April, 2017

one way to think about whistleblower protection. Part of the reason for passing Sarbanes-

Oxley was that unlike government employees, employees of publicly traded companies

had no protection when they “act in the public interest by reporting wrongdoing, [that is]

who blow the whistle.”188 Further, the Senate stated that “[w]ith an unprecedented portion

of the American public investing in these companies and depending upon their honesty,

this distinction does not serve the public good.”189 Similarly, with an unprecedented

portion and an increasingly important portion of decision-making being processed

through or influenced by software, with due process and vital verification interests at

stake, there needs to be protection for employees who blow the whistle on software

companies who knowingly violate the law. Other reasons behind passage of Sarbanes-

Oxley further support a similar provision in the software context. First, without a federal

law, a potential whistleblower is governed by whatever law, or lack of law, addresses the

action in a given state or country where the whistleblower is.190 Just as financial services

companies can and do work across borders and set up subsidiaries or use other structures

to shield against liabilities or prosecution, so too do software companies. Second, making

retaliation a felony would increase protection for whistleblowers.191 That protection

won’t by itself prevent negative repercussions such as blacklisting, but it may be possible

to set up a bounty system so that a whistleblower will be able to cope with the difficulty

in getting a new job after reporting violations.192 When software that makes important

decisions is faulty, issues of civil rights, due process, and the integrity of our democratic

188 148 Cong. Rec. S7418-01, S7420 (daily ed. July 26, 2002) (statement of Sen. Leahy).
189 Id.
190 Id.
191 Sarbanes-Oxley Act of 2002 § 1107, 18 U.S.C. § 1513(e) (2012).
192 See Dodd-Frank Wall Street Reform and Consumer Protection Act, § 922(a), 15 U.S.C. § 78u-
6(b)(1)(A)-(B) (2012); see also Stavros Gadinis and Colby Mangels, Collaborative Gatekeepers, 73 WASH.
& LEE L. REV. 797, 829 (2016) (explaining the problems of blacklisting and Dodd-Frank bounty system
design as a way to mitigate that problem).

DRAFT – FINAL VERSION FORTHCOMING

73 Trust But Verify [April, 2017

systems affect the United States government. First, the government is affected directly in

its pocketbook (in that the government would have paid for illegal software, lost time and

money, and have to remedy the failure). Second, the government suffers generally in its

perception with U.S. citizens and even people around the world when it uses faulty

software to make important decisions or when it stands by while such practices occur in

the private sector. Protecting whistleblowers at a federal level shows a commitment by

the government to take these issues seriously and to stop them.

On top of whistleblower protection, a public interest cause of action that balances

the government’s interest in pursuing a case against a private citizen’s ability to do so,

would aid governing the use of software.193 Our model derives from qui tam actions

under the False Claims Act of 1863,194 which allows “any person to prosecute a civil

fraud—in the name of the United States—against any person who allegedly makes a false

193 Some argue that such an approach causes an “explosion” of or “gold rush” effect on litigation, but a
recent empirical study indicates such claims are overstated. See David Freeman Engstrom, 114 COLUMBIA
L. REV. 1913, 1922 (2014).
194 See Julie Ann Ross, Citizen Suits: California’s Proposition 65 and the Lawyer’s Ethical Duty to the
Public Interest, 29 U.S.F. L. REV. 809, 810 n.4 (1995) (noting relationship of qui tam to “modern day
citizen suit”); accord Michael Ray Harris, Promoting Corporate Self-Compliance: An Examination of the
Debate Over Legal Protection for Environmental Audits, 23 ECOLOGY L.Q. 663, 710, n. 317 (“A growing
trend in environmental law is the use of the qui tam provisions of the False Claims Act of 1863 (FCA) to
force corporations to abide by environmental reporting requirements.”). The False Claims Act is codified at
31 U.S.C. §§ 3729-3732. It should be noted that the use of qui tam actions is subject to some debate and
criticism. See Trevor W. Morrison, Private Attorneys General and the First Amendment, 103 MICH. L. REV.
589, 607-618 (2005) (examining private attorney general actions and noting pro arguments--“[P]rivate
attorneys general are a cost-effective means of both pursuing the public welfare and returning power to the
people themselves. For legislatures that value cheap, robust regulatory enforcement, private attorneys
general may present an attractive option.” Id. at 610. Arguments against include: private attorneys may be
self-interested and motivated by financial gain, may free-ride by waiting to follow the government’s lead
for opportunistic litigation rather than being true investigators, may accept settlements too easily, and may
undermine the provision of consistent agency or government enforcement. Id. at 607-619 (finding “no
definitive resolution to the policy debate over private attorneys general” and that legislatures resolve the
matter differently based on context.)); John Beisner, et. al., Class Action Cops: Public Servants or Private
Entrepreneurs?, 57 STAN. L. REV. 1441, 1457-1460 (2005) (comparing class action private attorney
general actions to qui tam suits and noting that though qui tam actions may allow citizens to bring suits that
abuse or are not part of the policy objectives behind the act enabling a given suit, as opposed to class
actions, the legislature can alter the parameters of the enabling act to prevent such abuses).

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

74 Trust But Verify [April, 2017

claim to the United States government”195 and California’s Safe Drinking Water and

Toxic Enforcement Act of 1986, which addresses environmental concerns by allowing a

public interest cause of action balanced against governmental interests in pursuing such

matters.196 To work for software, this model would have to be precise about what would

be subject to the public cause of action, provide for the ability to file suit, and set out the

procedure under which such a suit would be filed. We think that the clearest examples of

when a public cause of action should be allowed would be in public sector use of

software written by an outside vendor and regulated private sector cases.197 Voting

machines and the auto industry offer good examples of how this approach could work.

Voting machines and software in cars are excellent examples of software systems

that need to be trusted and tested to ensure that they function as desired. A public interest

cause of action statute to govern either industry would enable government and private

oversight by including injunctive remedies, specific and daily civil penalties, detailed

notice and minimum threshold requirements for private action, and time limits to allow a

public monitoring function to exist while maintaining the government’s ability to pursue

cases.198 The California approach sets the penalty at $2,500 per violation. Some statutory

amount is needed because no money is at issue under California law for the behavior in

question. We do not take a position on the correct amount for statutory penalties for

software harms. Rather we note that the amount must be large enough to provide an

195 Saikrishna Prakash, The Chief Prosecutor, 73 GEO. WASH. L. REV. 521, 531 (2005) (examining the
history of qui tam actions and the executive’s final authority in such actions).
196 See generally Cal. Health & Safety Code § 25249.5-.13 (West 1999 & Supp. 2005).
197 If the government built its software, there may be sovereign immunity issues that prevent the lawsuit by
private citizens. That would not undermine a legislature requiring software that is analyzable and that the
process in which it is used supports accountability for decisions made. It only undermines the use of private
civil actions as a mechanism for policing the software’s correctness.
198 See e.g., Cal. Health & Safety Code § 25249.5-.13 (West 1999 & Supp. 2005) (using the same levers for
environmental protection).

Marcela Mattiuzzo

DRAFT – FINAL VERSION FORTHCOMING

75 Trust But Verify [April, 2017

incentive for the action. Staying with our example industries, given the number of voting

machines in use and autos on the road, $2,500 may be sufficient. In other cases where

important but lower scale use of software is at issue, the statute may need to set a higher

amount. Regardless of the amount set, with civil penalties, courts would look at (A) The

nature and extent of the violation; (B) The number of, and severity of, the violations; (C)

The economic effect of the penalty on the violator; (D) Whether the violator took good

faith measures to comply with regulations and the time these measures were taken; (E)

The willfulness of the violator’s misconduct; (F) The deterrent effect that the imposition

of the penalty would have on both the violator and the regulated community as a whole;

(G) Any other factor that justice may require.199 If the statute is passed by a state, as a

way to limit frivolous suits, only an Attorney General, a district attorney, or a city

attorney for a city with a sufficient population of (perhaps more than 750,000 people)

could bring a suit on their own.200 Government attorneys in smaller jurisdictions could

bring suits provided they receive permission of their district attorney.201

Under this approach, non-governmental actors can bring an action in the public

interest under certain conditions.202 To start, the potential plaintiff would have to give

notice to the government attorney with jurisdiction over the potential case and to the

alleged violator of the Act and wait out a period of deferral to the government attorney

with jurisdiction (this period is sixty days in the California law) before bringing the

suit.203 The waiting period could be shorter or longer, but it allows the state to decide

199 Cf. Id. § 25249.7(b)(2).
200 Cf. Id. § 25249.7(c).
201 Cf. Id.
202 Cf. Id. § 25249.7(d).
203 Cf. Id. § 25249.7(d)(1).

DRAFT – FINAL VERSION FORTHCOMING

76 Trust But Verify [April, 2017

whether to act. If the State picked up the case and was “diligently prosecuting” it, the

private action would no longer be allowed.204

As another way to limit frivolous lawsuits, the person bringing the suit would

have to provide a certificate of merit which would verify that the person executing the

certificate had consulted with one or more persons with relevant and appropriate

experience or expertise who reviewed facts, studies, or other data regarding the claimed

violation that is the subject of the action, and that, based on that information, the person

executing the certificate believes there is a reasonable and meritorious case for the private

action. 205 Furthermore “factual information sufficient to establish the basis of the

certificate of merit . . . [would be required to] be attached to the certificate of merit that is

served on the Attorney General.”206 The factual material in the certificate would not be

discoverable unless it was “relevant to the subject matter of the action and is otherwise

discoverable,”207 which would help protect potential whistleblowers who might provide

such material.

After a case is over, however, the alleged violator may move for, or the court of

its own volition may conduct, an in camera review of the certificate of merit and the legal

theories of the plaintiff to see whether the basis was real. 208 If the court deems the basis

to be false, it may bring sanctions for a frivolous lawsuit.209 California’s provision on

which we draw states, “If the court finds that there was no credible factual basis for the

certifier’s belief that an exposure to a listed chemical had occurred or was threatened,

204 Cf. Id. § 25249.7(d)(2).
205 Cf. Id. § 25249.7(d)(1).
206 Cf. Id.
207 Cf. Id. § 25249.7(h)(1).
208 Cf. Id. § 25249.7(h)(2).
209 Id.

DRAFT – FINAL VERSION FORTHCOMING

77 Trust But Verify [April, 2017

then the action shall be deemed frivolous within the meaning of Section 128.6 or 128.7

of the Code of Civil Procedure, whichever provision is applicable to the action.”210 These

two sections and their adaptation to our approach are vital, because one section allows the

court to order the instigator of the frivolous lawsuit to pay attorney’s fees and reasonable

expenses,211 and the other section provides authorization for the court to impose sanctions

and punitive damages including but not limited to attorney’s fees with the stated goal of

having the sanctions deter frivolous suits.212 A heightened pleading requirement or

procedural limit, such as exhausting certain remedies, might be incorporated to limit

further concerns regarding an explosion of suits. In addition, the statute could require a

certain level of pattern and practice before such a suit would be allowed thereby

preventing numerous small-scale, nuisance suits and focusing on larger scale systemic

issues.

CONCLUSION

 During the Cold War, Ronald Reagan liked to use a Russian proverb, “trust but

verify,” as a way to describe his approach to U.S.-Soviet relations; today we need to trust

automated systems to make many critical decisions, but must also verify that big data and

sophisticated technologies do not raise new problems for those subject to automation. We

can and should trust that many computer scientists and engineers wish to use their skills

to improve the world. Yet, in the public sector, difficulty in understanding how and why

210 Id.
211 Cal. Civ. Proc. Code § 128.6(a) (West Supp. 2005).
212 Cal. Code Civ. Proc. § 128.7(h) (West Supp. 2005) (“It is the intent of the Legislature that courts shall
vigorously use its sanctions authority to deter that improper conduct or comparable conduct by others
similarly situated.”).

DRAFT – FINAL VERSION FORTHCOMING

78 Trust But Verify [April, 2017

decisions are made—especially in the occasional cases where no answer is available—

fuels distrust. For example, concerns over the integrity of voting machine counts make it

harder to trust election outcomes.213 In the private sector, evidence of misuse of software

by the auto industry, such as with Volkswagen and recently at Fiat-Chrysler, and

concerns around discrimination in insurance markets, credit scoring, and private systems

used in the administration of criminal justice erode trust and increases general fears about

software. In addition, while experiments have tested how news or so-called fake news is

promoted on social networks and how online ads may be targeted in ways that are

discriminatory or illegal, those experiments cannot find a consistent or clear answer as

how or why the results occurred. That, too, eats away at the public’s ability to trust these

systems. The classic response to these types of problems is a demand for transparency.

Although such an approach seems reasonable—once one can see all that went on in the

process, one can root out bad behavior and verify that rules have been followed—it

cannot function alone to meet the goals its proponents wish to advance. As we have

shown, transparency is a useful goal, and will in many cases be necessary, but it does not

solve these problems.

Instead, by understanding what can and cannot be done when evaluating software

systems, and by demanding convincing evidence that systems are operating correctly and

within the bounds set by law, society can allow the use of sophisticated software

techniques while also having meaningful ways to ensure that these systems are

governable. In some cases, determining compliance and effecting governance will require

oversight by a competent authority, in which case software systems must create sufficient

213 A proverb popular among election security researchers and attributed to computer security expert Dan
Wallach is “The purpose of an election is not to name the winner, it is to convince the losers that they lost.”
This underscores the importance of integrity as a security concern.

DRAFT – FINAL VERSION FORTHCOMING

79 Trust But Verify [April, 2017

audit trails to support that oversight. As we have shown, although current software

systems pose large challenges for those who wish to understand how they operated,

computer science offers a way out for software engineered to provide such assurances.

One can require that software be built to produce evidence that allows it to be analyzed,

and the facts gleaned from this analysis can promote accountability. Or rather, software

can be built so that we can trust, but verify.

	co_footnoteReference_F193306072138_ID0E1
	co_footnoteReference_F194306072138_ID0EI
	co_g_ID0EKQAI_1
	co_footnoteReference_F210306072138_ID0EM
	co_g_ID0ETZAI_1
	co_g_ID0EO1AI_1
	co_g_ID0E11AI_1
	co_g_ID0EG2AI_1
	co_g_ID0ES2AI_1
	co_g_ID0E52AI_1
	co_g_ID0EK3AI_1
	co_footnoteReference_F211306072138_ID0ER
	co_g_ID0EY3AI_1
	co_footnoteReference_F213306072138_ID0EE
	co_g_ID0EL4AI_1
	co_footnoteReference_F214306072138_ID0ET
	co_footnoteReference_F215306072138_ID0EW
	co_footnoteReference_F216306072138_ID0E2
	co_footnoteReference_F217306072138_ID0ET
	co_g_ID0E45AI_1
	co_footnoteReference_F218306072138_ID0EM
	co_footnoteReference_F219306072138_ID0EU
	co_footnoteReference_F220306072138_ID0EY
	co_pp_sp_3108_867_1

