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The call for algorithmic transparency as a way to manage the power 
of new data-driven decision-making techniques misunderstands the 
nature of the processes at issue and underlying technology. Part of the 
problem is that the term, algorithm, is broad. It encompasses 
disparate concepts even in mathematics and computer science. 
Matters worsen in law and policy. Law is driven by a linear, almost 
Newtonian, view of cause and effect where inputs and defined process 
lead to clear outputs. In that world, a call for transparency has the 
potential to work. The reality is quite different. Real computer systems 
use vast data sets not amenable to disclosure. The rules used to make 
decisions are often inferred from these data and cannot be readily 
explained or understood. And at a deep and mathematically provable 
level, certain things, including the exact behavior of an algorithm, can 
sometimes not be tested or analyzed. From a technical perspective, 
current attempts to expose algorithms to the sun will fail to deliver 
critics’ desired results and may create the illusion of clarity in cases 
where clarity is not possible.  
 

At a high-level, the recent calls for algorithmic transparency follow a 
pattern that this paper seeks to correct. Policy makers and 
technologists often talk past each other about the realities of 
technology and the demands of policy. Policy makers may identify 
good concerns but offer solutions that misunderstand technology. This 
misunderstanding can lead to calls for regulation that make little to no 
sense to technologists. Technologists often see systems as neutral tools, 
with uses to be governed only when systems interact with the real 
world. Both sides think the other simply “does not get it,” and 
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important problems receive little attention from either group. By 
setting out the core concerns over the use of algorithms, offering a 
primer on the nature of algorithms, and a guide on the way in which 
computer scientists deal with the inherent limits of their field, this 
paper shows that there are coherent ways to manage algorithms and 
the law. 
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According to my definition, a number is computable if its 
decimal can be written down by a machine.1 

--Alan Turing 
 

The next time you hear someone talking about algorithms, 
replace the term with “God” and ask yourself if the 
meaning changes. Our supposedly algorithmic culture is 
not a material phenomenon so much as a devotional one, a 
supplication made to the computers people have allowed to 
replace gods in their minds, even as they simultaneously 
claim that science has made us impervious to religion.2 

--Ian Bogost 
 

INTRODUCTION 
  

Someone is denied a job.3 A family can’t get a loan for a car or a house.4 

Someone else is put on a no-fly list.5 A single mother is denied federal benefits.6 None of 

these people has an idea or reason why that happened other than the decision was 

processed through some software.7 Someone commandeers a car, controls its brakes, or 

even drives away with the car.8 A car company claims its cars have low emissions, but in 

                                                
1 Alan Mathison Turing, On computable numbers, with an application to the Entscheidungsproblem, 42 
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 230, 230 (1936). 
2 Ian Bogost, The Cathedral of Computation, THE ATLANTIC, January 15, 2015, 
http://www.theatlantic.com/technology/archive/2015/01/the-cathedral-of-computation/384300/ 
3 See e.g. FRANK PASQUALE, THE BLACK BOX SOCIETY: THE SECRET ALGORITHMS THAT CONTROL MONEY 
AND INFORMATION 34-35 (2015) (describing use of software and online data to make hiring decisions). 
4 Id. at 4-5 (discussing use of predictive analytics in credit scoring and loan decisions). 
5 Danielle Citron, Technological Due Process, 85 WASH. U. L. REV. 1249, 1256-57 (2008). 
6 Id. 
7 See e.g., PASQUALE, supra 3 at 4-5 (2015) (one “will never understand exactly how [one’s credit score] 
was calculated”); infra notes __ to __ (33-36) accompanying text. 
8 At least two groups have shown ways to take over a Tesla and open its doors, open its sunroof, and enable 
keyless driving so the car could be driven away, that is stolen. See Davis Z. Morris, Tesla Stealing Hack Is 
About Much More than Tesla, FOTUNE.COM, November 26, 2016 at http://fortune.com/2016/11/26/tesla-
stealing-hack/. In one case, a group was able to take over the braking system and more from a great 
distance. See Andrea Peterson, Reseachers Remotely Hack Tesla S, WASHINGTON POST, September 20, 
2016. 
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fact its cars pollute.9 A voting machine is supposed to count votes accurately, but no one 

can tell whether the count is correct.10 An electric car’s battery seems not to have 

sufficient capacity, so its software is updated, but no one knows whether the update has 

fixed the problem or is compliant with government safety regulations.11 Searches for 

black sounding names yield ads suggestive of arrest records.12 For each decision, it is 

difficult both to learn precisely why these things happen and to determine whether the 

actors using the software—companies or government agencies—have complied with 

regulations or have committed fraud by only feigning compliance. A common concern is 

that the software behind the decision or process is at fault for any negative outcomes, 

either because it has bugs or because the algorithms, or methods for determining 

outcomes, are incorrect or faulty.13 And often critics claim that those who are affected by 

such decisions can’t understand or govern these outcomes, because the decision process 

is a black box.14 The standard solution to this general problem is a call for transparency, 

and in this context specifically a call for what critics have called algorithmic 

transparency.15 We argue that although the problems are real, for important computer 

                                                
9 See e.g., Russel Hotten, Volkswagen: The Scandal Explained, December 10, 2015 BBC NEWS, 
(explaining the way Volkswagen used software to fake emissions results) at 
http://www.bbc.com/news/business-34324772; Alex Davies, Here We Ago Again: EPA Accuses Chrysler 
of Selling Dirty Diesels, January 12, 2017 WIRED.COM (noting EPA accused Fiat Chrysler of installing and 
not disclosing software that hid nitrous oxide emissions in its diesel cars) at 
https://www.wired.com/2017/01/epa-now-accusing-fiat-chrysler-selling-dirty-diesels/.  
10 See e.g., J. Alex Halderman, Want To Know If the Election Was Hacked? Look at the Ballots, Nov. 23, 
2016, MEDIUM.COM, at https://medium.com/@jhalderm/want-to-know-if-the-election-was-hacked-look-at-
the-ballots-c61a6113b0ba#.gzpyt1dat  
11 Cf. Alex Davies, Tesla’s Plans To Kill Range Anxiety With A Software Update, WIRED.COM, March 19, 
2015 at https://www.wired.com/2015/03/teslas-plan-kill-range-anxiety/.  
12 See e.g., Latanya Sweeney, Discrimination in Online Ad Delivery, 56 COMMUNICATIONS OF THE ACM 44, 
52  (2013) (“These findings reject the hypothesis that no difference exists in the delivery of ads suggestive 
of an arrest record based on searches of racially associated names.”).  
13 See infra Part I. 
14 See PASQUALE, supra note 3, at 165. 
15 See e.g., Katherine Noyes, The FTC Is Worried About Algorithmic Transparency, And You Should Be 
Too, PC WORLD (April 9, 2015 8:36 AM) http://www.pcworld.com/article/2908372/the-ftc-is-worried-
about-algorithmic-transparency-and-you-should-be-too.html (noting Christian Sandvig’s view that 
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science reasons, this proposed solution will not work. Nonetheless there is, and we offer, 

a way to mitigate these problems so that society can continue to benefit from software 

innovations.  

Put simply, current calls for algorithmic transparency misunderstand the nature of 

computer systems. This misunderstanding may flow in part from the religious, devotional 

culture around algorithms Ian Bogost describes. Both critics and advocates can stray into 

uncritical deference to the idea that the big data, mathematical models and algorithms 

used to make decisions in software are somehow infallibly scientific. We believe this 

problem is aggravated because, although algorithms are decidedly not mystical things or 

dark magic, the details of how software systems work are not well understood outside the 

technical community.16 This paper thus examines the idea of algorithmic transparency, 

offers a primer on the construction and analysis of software as a way to bridge this gap, 

and presents concrete options for managing the problems automated decision-making 

presents to society. 

Those who wish to rein in certain sectors’ power by forcing transparency raise 

good questions about the structure of our society, fairness, and welfare, but as applied to 

algorithms and automated decision-making, a call for transparency alone is misguided. A 

consistent theme is that unaccountable machines have taken center stage and now “are 

used to make decisions for us, about us, or with us,” in sensitive and subjective areas 

                                                                                                                                            
transparency may not be viable because of the complexity of some algorithms and the data needed to test 
the algorithms); accord Christian Sandvig, Kevin Hamilton, Karrie Karahalios, and Cedric Langbort, 
Auditing algorithms: Research methods for detecting discrimination on internet platforms (2014) (using the 
“social scientific study” auditing to investigate algorithmically driven platforms). 
16 Bogost, supra note 2 (“The next time you hear someone talking about algorithms, replace the term with 
“God” and ask yourself if the meaning changes. Our supposedly algorithmic culture is not a material 
phenomenon so much as a devotional one.”); see also JOSHUA A. KROLL, ACCOUNTABLE ALGORITHMS 2, 
n.1 (2015) (“The term ‘algorithm’ is assigned disparate technical meaning in the literatures of computer 
science and other fields.”) available at https://www.cs.princeton.edu/~kroll/papers/dissertation.pdf. 
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such as health-care, employment, credit, national security, networked devices, news, and 

more.17 Even before today’s fascination with big data, algorithms, and automated systems 

legal scholars such as Paul Schwartz and Danielle Citron have noted that data processing 

and software used in the administrative state can undermine or take away due process 

rights.18 A related fear is that the human designer of a program could have bad intent and 

seek to discriminate, suppress speech, or engage in some other prohibited act.19 A more 

recent fear is that the rise of large data sets combined with machine learning (an area of 

computer science that uses the automated discovery of correlations and patterns to define 

decision policies that are not explicitly determined by humans) means that those who use 

such techniques may be able to wield power in ways prohibited by law or disfavored 

politically, but which would not be detectable.20 Further, if software yields undesired 

results, its programmers may say that the system was not designed to act that way.  

Transparency has been proposed as a solution to mitigating these possible 

outcomes. The claim is that someone “ought to be able to ‘look under the hood’ of highly 

advanced technologies like [] algorithms” as a way to police such behavior.21 There are 

two interpretations of this position that raise different questions. On the one hand we 

need to know that a system, such as one for counting votes or allocating visas in a lottery, 

is doing what it is supposed to do and that there is a meaningful way to look under the 

                                                
17 See e.g., Centre for Internet & Human Rights at European University Viadrina, Final Draft Background 
Paper, The Ethics of Algorithms: From Radical Content to Self-Driving Cars; PASQUALE, supra note 3, at 4 
(2015); cf. Bogost, supra note 2 (explaining deference to algorithms resembles idolatry rather than 
following Enlightenment skepticism).  
18 See Paul Schwartz, Data Processing and Government Administration: The Failure of the American Legal 
Response to the Computer, 43 HASTINGS L.J. 1321 (1991); Citron, supra note 5, at 1249. 
19 See infra Part I. 
20 See e.g., FTC REPORT, BIG DATA A TOOL FOR INCLUSION OR EXCLUSION: UNDERSTANDING THE ISSUES, 
(January 2016); Centre for Internet & Human Rights at European University Viadrina supra note 17; 
PASQUALE, supra note 3, at 4; Solon Barocas & Andrew D. Selbst, Big Data’s Disparate Impact, 104 
CALIF. L. REV. 671 (2016). 
21 PASQUALE, supra note 3, at 165; but see Noyes, supra note 15. 
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hood.22 On the other hand, society may wish to ferret out undesired and possibly 

unintended results such as the use of an algorithm to discriminate in a hiring decision. 

Thus, critics audit parts of systems, decry apparent discrimination, and want to hold 

someone responsible for disfavored outcomes. This approach is tantamount to saying we 

need proof that the algorithm is not designed to engage in, nor has parts of it that lead to, 

discrimination or other undesired or prohibited acts.23  

Both views seek a type of transparency. And both views relate to a deep, unstated 

and powerful view in the law; the builder of the proverbial better mousetrap will know 

precisely how it was built and what will happen when one presses a trigger or button in 

the invention. The device will do the same thing over and over until the springs wear out. 

The same, so reasons the law, must be true of software. As we shall see, while in many 

ways, it is, in some very important ways, it is not. 

This view relates to more than just the machines used to make or aid in making 

decisions. Entire decision-making processes fit this view, including discretionary and 

rule-driven decisions whether made by people or by machines, and whether operated by 

the state or by private entities. As Jerry Mashaw has argued for administrative state 

systems, they should make “accurate,” “cost-effective” judgments, but also give 

“attention to the dignity of participants.”24 The dignity element requires that those who 

are subject to such a process know or understand what reasons are behind a decision.25 

                                                
22 See e.g., Halderman, supra note 10. 
23 See infra Part I. 
24 See JERRY L. MASHAW, BUREAUCRATIC JUSTICE 26, 95-96; accord Schwartz, supra note 18, at 1348. 
25 MASHAW, supra note 24, at 175; accord Schwartz, supra note 18, at 1349. Respecting and protecting 
dignity is important as a practical matter given the EU’s approach to data processing. The current European 
Data Protection Supervisor—the office responsible “under Article 41.2 of Regulation 45/2001 ‘With 
respect to the processing of personal data… for ensuring that the fundamental rights and freedoms of 
natural persons, and in particular their right to privacy, are respected by the Community institutions and 
bodies’, and ‘…for advising Community institutions and bodies and data subjects on all matters concerning 

Marcela Mattiuzzo
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Marcela Mattiuzzo
Realce



DRAFT – FINAL VERSION FORTHCOMING 

6 Trust But Verify [April, 2017 

 

Thus, “attention to the dignity of participants” has a transparency dimension, as it relies 

on the idea that one can see how the mousetrap or system worked and understand it. The 

problem is that many recent implementations of decision-making in software—the ones 

that have raised concerns—do not map well to this assumption.  

Put differently, transparency is a powerful concept and has its place. After all who 

can argue against sunlight? And yet to an extent, we will do exactly that, because from a 

technical perspective general calls to expose algorithms to the sun or to conduct audits 

will not only fail to deliver critics’ desired results but also may create the illusion of 

clarity in cases where clarity is not possible.26  

As part of a larger project on algorithms and the law, we argue that demands for 

transparency must confront the realities of computer science when it comes to testing and 

analyzing software. For example, because socially important computer systems have a 

large range of possible inputs and outputs, social science auditing methods can only test 

“a small subset of those potential inputs.”27 As legal matter, determining whether such 

methods can capture whether a prohibited practice has occurred, and to an extent, which 

is actionable, presents problems.  

In addition, handing over code often will not yield the accountability results those 

in favor of so-called algorithmic transparency desire. That does not mean those who use 
                                                                                                                                            
the processing of personal data’—has stated that dignity must be protected as fundamental human right in 
light today’s privacy and personal data processing issues. See GIOVANNI BUTTARELLI, TOWARDS A NEW 
DIGITAL ETHICS: DATA, DIGNITY, AND TECHNOLOGY, Opinion 4/2015 of the European Data Protection 
Supervisor, September 11, 2015 available at 
https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Opinions/20
15/15-09-11_Data_Ethics_EN.pdf.  
26 Cf. Jatinder Singh, Ian Walden, Jon Crowcroft, Jean Bacon, Responsibility & Machine Learning: Part of 
a Process, (October 27, 2016) available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2860048 
(“algorithmic selection not only impacts the quality of the ML model, but the degree to which the inner 
workings of the ML algorithm and learned model can be interpreted and controlled depends on the 
technique used.”). 
27 See Joshua A. Kroll et. al., Accountable Algorithms, 165 U. PENN. L. REV. 633 (2016), available at 
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2765268. 
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computerized decision-making are ungovernable, but it does require that we understand 

what is and is not possible when we seek to regulate or monitor the use of these 

technologies.28 Many of the current calls for transparency as a way to regulate automation 

do not address these limits, and so they may come up short on providing the sort of 

accountability they desire, and which we also support.29 Instead, as software continues to 

grow in importance, especially when it makes use of machine learning, which separates 

the creation of algorithms and rules from human design and implementation, we argue 

that identifying harms, prohibiting outcomes, and banning undesirable uses of data or 

technologies are more promising paths.30 In addition, in some cases, requirements that 

software be built to certain specifications that can be tested or verified will also be 

necessary. We believe that these restrictions can be effectively promulgated in the law, 

creating legal regulation of automated decision-making systems that is more powerful 

than transparency requirements alone. 

In contrast to the current approaches to governance by auditing to find 

unacceptable behaviors or demanding algorithmic transparency, regulation via the law 

will realize four benefits from being informed by the way software and algorithms are 

tested and analyzed for correctness. First, legal regulation can avoid the problem of 

applying inapt approaches from past regulatory regimes or demanding outcomes that are 

not possible. Second, it can address the dynamism of the industry and the difficulties of 

                                                
28 See infra Part II and III. 
29 As one group of computer scientists has noted within machine learning “some algorithms are more 
amenable to meaningful inspection and management than others.” Singh et. al., supra note 26 (offering that 
decision trees, naïve Bayes, and rule learners were the most interpretable, k-Nearest Neighbors (kNN) was 
in the middle, and neural networks and support vector machines were the least interpretable). 
30 Cf. FTC REPORT, supra note 20 (acknowledging potential beneficial and negative outcomes from using 
data analytics and noting that it is the use of data and data analytics in certain areas such as housing, credit, 
and employment that triggers concerns and potential liability, not the use of application of data analytics 
alone). 
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analyzing software by providing requirements that technologists and computer scientists 

understand and can implement. Third, as with past regulation of housing, credit, and 

employment, legal regulation of software and algorithms can offer clarity about what is 

actionable and when, as well as what, evidence must be offered to regulators to show 

compliance. Fourth, if those who are to be regulated object, the burden will be on them to 

show why proposed technically-informed solutions don’t work. And that discussion will 

use the framework and terms within which they already operate, avoiding charges that the 

law creates unachievable mandates. As such, it should be less likely that objections based 

on feasibility will succeed. In short, smart regulation via the law allows the many gains 

from automation to be captured safely, while providing the assurances of governance 

necessary to assuage critics. 

We begin with a discussion of the law and policy concerns over software systems 

that have been raised so far and some of the proposed approaches to addressing these 

concerns. This discussion shows that there are many different issues at play, and many of 

those issues are proxies for concerns about power and inequality in general, not software 

specifically. After setting out an understanding of the claimed problems, we turn to some 

fundamental questions about computer science such as what an algorithm is and whether 

policy can be general enough to cover all software in the same way.31 Having set out a 

brief primer on the underlying computer science, we turn to the question of determining 

what a piece of software will do when it is run. It turns out that it is impossible to 

determine this reliably and for all programs. With that in mind, we turn to the way in 

which computer scientists have addressed this problem. Using that foundation, we offer 

recommendations on how to regulate public and private sector uses of software and 
                                                
31 See e.g., Sandvig et al. supra note 15 (“virtually any [piece of software] may deserve scrutiny.”). 
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propose a proposed legislative change to protect whistleblowers and allow a public 

interest cause of action, which will aid in increasing detection of overt misdeeds in 

designing software. In short, we conclude that a better understanding of how programs 

work and how computer scientists address the limits of software analysis affords 

policymakers the tools to manage the evolving world of algorithms and the law so that 

society can address justice and safety interests while also enabling many actors to use 

these new techniques to innovate and improve the world in which we live. 

 

I. ALGORITHMS, THE CONCERNS 
 

 

Software and algorithms have gained much attention under the premise that they 

“exercise power over us,”32 because they “[govern selection of] what information is 

considered most relevant to us, a crucial feature of our participation in public life,”33 are 

“powerful entities that govern, judge, sort, regulate, classify, influence, or otherwise 

discipline the world,”34 and are “black boxes.”35 In short, the general idea that computer 

systems are powerful and opaque has led to claims “that virtually any [piece of software] 

may deserve scrutiny.”36 Varying reports and studies raise concerns about complex 

systems and point to a more general concern: the possible power and avenues of abuse or 
                                                
32 See e.g., Nicholas Diakopoulous, Algorithmic Accountability Reporting: On the Investigation of Black 
Boxes (Tow Center for Digital Journalism, Columbia Unversity 2014) (“What we generally lack as a public 
is clarity about how algorithms exercise their power over us.”).  
33 Tarleton Gillespie, The Relevance of Algorithms IN MEDIA TECHNOLOGIES: ESSAYS ON COMMUNICATION, 
MATERIALITY, AND SOCIETY (Tarleton Gillespie, Pablo J. Boczkowski, and Kirsten A. Foot. eds., 2104).  
34 Solon Barocas, Sophie Hood, and Malte Ziewitz, Governing algorithms: A provocation piece (2013) at 
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2245322.   
35 PASQUALE, supra note 3, at 17. 
36 Sandvig et. al, supra note 15. 
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manipulation that go with practices that use computers. Despite their different methods 

and concerns, many commenters look to transparency as a key part of managing this new 

order, because we “cannot access critical features of [its] decision-making processes.”37 

These issues arise in both the public and private sector context. And yet consensus on 

what sort of scrutiny is needed, whether different areas affected by computers require 

different solutions, and whether software, other factors, or both are the cause of the 

claimed problems, is lacking. We start with some examples of the public sector concerns 

and then turn to private sector ones. 

 

A. Algorithms, Public Sector Concerns 
 

 

Public sector concerns are about power but involve questions on how power is 

governed that are different from private sector concerns. Public sector use of automated 

decision-making raises larger questions, because society regulates public power 

differently than the way it regulates the private sector.38 Legal scholars have looked at 

                                                
37 PASQUALE, supra note 3, at 17. The call for or desire to have transparency as a way to resolve issues 
around automated decision systems can be strong. For example, Professor Latanya Sweeney has done work 
on racial discrimination and advertising. Although Sweeney’s final paper did not invoke transparency, a 
draft claimed that answering why the advertising discrimination occurred “requires further information 
about the inner workings of Google AdSense.” Latanya Sweeney, Discrimination in Online Ad 
Delivery, (January 28, 2013) preprint available at http://dataprivacylab.org/projects/onlineads/1071-1.pdf. 
We note this point only to indicate the draw of transparency, not to argue that Professor Sweeney advocates 
one way or the other on that strategy. 
38 Cf. EXECUTIVE OFFICE OF THE PRESIDENT, BIG  DATA: SEIZING OPPORTUNITIES, PRESERVING VALUES at 
10 (2014) https://www.whitehouse.gov/sites/default/files/docs/big_data_privacy_report_may_1_2014.pdf 
(“Public trust is required for the proper functioning of government, and governments must be held to a 
higher standard for the collection and use of personal data than private actors.”). That private actors are 
taking on government functions in many areas is clear. Cf. Curtis Publ’g. Co. v. Butts, 388 U.S. 130, 163-
64 (1967) (Warren, C.J. concurring) (noting that policy is set by “a complex array of boards, committees, 
commissions, corporations, and associations, some only loosely connected with the Government” rather 

Marcela Mattiuzzo
Realce



DRAFT – FINAL VERSION FORTHCOMING 

11 Trust But Verify [April, 2017 

 

governmental use of computerized decision-making and identified several areas where 

software can aid the way the administrative state functions but at the same time run afoul 

of justice and due process requirements.  

Twenty-five years ago, Paul Schwartz noted, “Computers are now an integral part 

of government administration.”39 Given the rise of the administrative state in managing 

and providing “social services,” the state requires “detailed information on the citizen as 

client, customer, or simply person to be controlled. Moreover, the state gathers personal 

information to better manage itself.”40 When the state uses data to administer services, we 

want administration that “carries out legislative policy, acts in a just manner, and combats 

fraud.”41 Schwartz examined the Aid to Families with Dependent Children Program and 

Child Support Enforcement programs as exemplars of the administrative state. He argued 

that the nature of data processing undermined the ability to attain bureaucratic justice as 

developed by Jerry Mashaw and the ability to protect autonomy.42 In that vision, the 

system should not only make “accurate,” “cost-effective” judgments, but also give 

“attention to the dignity of participants.”43 The first two criteria relate to the use of data 

and data processing in that one needs to show a “connection between a particular decision, 

given the factual context, and the accomplishment of one or more of the decision maker’s 

                                                                                                                                            
than by “formal political institutions.”); Deven R. Desai, Speech, Citizenry and the Market: A Corporate 
Public Figure Doctrine 98 MINN. L. REV. 455, (2013) (“the distinction between commercial and political 
has collapsed”). But whether a specific private actor (or sector) using a given piece of software is 
performing a public function must be determined to see whether they should be held to the same standard 
as the government.  
39 Schwartz, supra note 18, at 1322. 
40 Id. 1332; cf. FRANK WEBSTER, THEORIES OF THE INFORMATION SOCIETY 55 (John Urry ed., 3d ed. 1995) 
(““[I]f we as a society are going to respect and support the individuality of members, then a requisite may 
be that we know a great deal about them.”); Jack M. Balkin, The Constitution in the National Surveillance 
State, 93 MINN. L. Rev. 1, 18 (2008) (arguing government needs to collect information “to ensure efficient 
government and national security” but must have “justifiable reasons” and procedures to protect against 
abuse of data collection and use). 
41 Schwartz, supra note 18, at 1333. 
42 Id. at 1351. 
43 Id. at 1348. 
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goals.”44 The dignity element requires that those who are subject to such a process know 

or understand what reasons are behind a decision. 45  Without that knowledge or 

understanding those subject to the decision-making process lose self-worth, and over time 

the legitimacy of the system will be in doubt, because of the lack of understanding and 

loss of dignity.46  

Danielle Citron’s work also calls out the way that computers have been used in 

the administrative state.47 She focused on due process concerns.48 She describes the 

“automated administrative state”49 as using software to determine whether someone 

should receive “Medicaid, food stamp, and welfare” benefits, be on a no fly list, and be 

identified as owing child support.50 According to Citron, “Automation jeopardizes the 

due process safeguards owed individuals and destroys the twentieth-century assumption 

that policymaking will be channeled through participatory procedures that significantly 

reduce the risk that an arbitrary rule will be adopted.”51  

Although these scholars use different metrics about why the use of software and 

computers is a problem, both identify the problem sphere as the administrative state.52 

And both Schwartz and Citron look to transparency, among other tools, as a way to 

                                                
44 Id.  
45 Id. at 1349. 
46 Id. 
47 Citron, supra note 5, at 1256-57. 
48 Id.  
49 Id. at 1281. 
50 Id. at 1256-57. 
51 Id. at 1281. 
52 Work by computer scientists has looked at software and accountability and also found the administrative 
state as a prime example of where algorithmic governance is needed. See generally Kroll et. al., supra note 
27 (using government visa lottery programs and voting machines as examples where the use of algorithms 
intersect with the application of specific rules for decision-making that affect individual rights). 
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determine whether the state uses data and software-based processes in a way that hinders 

the ability of citizens to know what is happening within the system.53 

Two other examples, voting machines and the auto industry illustrate a different, 

but related, public sector concern: verifying that a system is accurate in implementing its 

goals and works as desired. Voting machines track votes, and so the process in which the 

machines are used must be accurate about at least four things. First, it must be accurate 

about whether someone voted. That is, one might try to hijack an election by making it 

seem like someone, or many people, voted, when in fact they never voted at all. Typically, 

humans handle this step by asking voters to sign logbooks. The machines are not logging 

who voted. Second, the process must also verify that the person voting was eligible to 

vote. Third, the process needs to be accurate about recording for whom an eligible voter 

cast their ballot. Finally, the process must be accurate about tallying the set of all 

properly cast votes. Yet the machines and procedures used to make these guarantees are 

quite susceptible to being subverted to give outputs that are not accurate.54 In one 

example, computer scientists showed that they could make a voting machine play a video 

game, Pac-Man, instead of tallying votes.55 The point was not that officials would play on 

the machines or voters would be frustrated or enjoy a prank on election day, but that the 

machine can be tampered with, contravening the intuition and presumption at law that the 

                                                
53 Schwartz, supra note 18, at 1375 (calling for “The maintenance of transparent information processing 
systems”); Citron, supra note 5, at 1295 (noting lack of ability for “meaningful review” of rules and system 
put in place to deliver administrative state services). 
54 It is important to distinguish the very real problem of whether the machines and processes in use can be 
deliberately subverted from the distinct problem, never observed in the real world, of whether any elections 
have actually been subverted in this way. The mere fact that the process is subject to corruption is enough 
to undermine its legitimacy. 
55 See Kim Zetter, Touchscreen E-Voting Machine Reprogrammed to Play Pac-Man, August 24, 2010, 
WIRED.COM (two computer scientists “swapped out the machines PCMCIA card—where the voting 
software is stored—and replaced it with one loaded with Pac-Man. They pulled this off without disturbing 
the tamper evident seals on the machine.”) at https://www.wired.com/2010/08/pac-man/.  
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machine is specialized for a purpose and cannot be made to do other things. Given this 

flexibility in the machine’s behavior, a way to verify that the system had not been 

tampered with—or at least that the accuracy requirements described above are met—is 

vital. 

Almost any industry in which devices are regulated and must behave in certain 

ways raises issues about software and verification. The auto industry provides a good 

overview of the issues. Cars have had software governing their operation for some time, 

but as software grows in importance for cars, so does the importance of accountability 

and analyzability for that software. Automobiles are subject to safety and environmental 

regulation. Part of that regulation involves knowing that cars work as claimed by 

automakers and required by law.  

Two recent events in the auto industry—one involving Volkswagen, the other 

Tesla—illustrate the challenge. First, the recent fraud by Volkswagen illustrates how 

software can aid a company in evading regulations. Volkswagen used software that 

allowed the company to make its diesel cars seem to have low emissions when in fact the 

cars did not.56 The ability to have accountable and analyzable algorithms in this sector 

would aid in detecting such fraud.57  

Second, as Tesla and other car makers offer cars that are networked so that 

software can be updated after the car is purchased, the integrity and inviolability of 

software increases in importance. An automaker may claim that the software running in a 

vehicle performs as promised, but regulators will need ways to verify that the software 

                                                
56 See e.g., Russel Hotten, Volkswagen: The Scandal Explained, December 10, 2015 BBC NEWS, at 
http://www.bbc.com/news/business-34324772.  
57 See infra Part IV.A.3 (explaining how to build accountable and analyzable algorithms). 
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and logs have not been altered from the version, which has been reviewed.58 For example, 

Tesla now updates its cars regularly, claiming that these updates improve performance 

such as the range its cars can drive on a full battery charge. Regulators must be able to 

track whether those updates are described accurately to consumers, whether the new code 

functions as described, and whether that functionality adheres to safety and other kinds of 

regulations.59 Furthermore, as self-driving or autonomous cars continue to be put on the 

road and evolve, regulating their software will be even more important. For example, if 

there is a standard that requires a self-driving car to obey traffic laws about how long to 

signal before changing lanes, , what happens when the automaker pushes an update to the 

fleet? How can regulators be sure that the updated software complies with the standard? 

Unlike an update to a computer or mobile phone game, the automaker’s change affects 

not only the user but others on the road. The automaker may, in good faith, assert that the 

update is within the standards already approved, but the regulating agency—and anyone 

using the roads—needs a way to verify that claim. Further, regulators may want to ensure 

that only approved, standards-compliant updates can be installed in vehicles already on 

the road. 

 

B. Algorithms, Private Sector Concerns 
 

 

                                                
58 Id. (explaining audit logs and verification of such logs). 
59 Issues with cars’ software updates and security have been revealed in at least two cases. See Morris, 
supra note 8 (reporting that a security group took over a Tesla and opened its doors, opened its sunroof, and 
enabled keyless driving so the car could be driven away or stolen) at http://fortune.com/2016/11/26/tesla-
stealing-hack/; See Peterson, supra note 8 (describing researchers able to take over the braking system and 
more remotely). 
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Although the private sector is regulated differently than the public sector, calls for 

transparency as it relates to software-based decision-making in the private sector abound. 

For example, in light of the importance of recent technologies, Frank Pasquale has argued 

that the code for important software such as Google’s search algorithm or a broadband 

carrier’s method for network management “should be transparent to some entity capable 

of detecting” the potential misdeeds or harms these services may create.60 In the same 

vein, other studies and investigations have identified a range of examples where software 

was part of undesired or troubling outcomes and have called for methods to detect such 

issues.  

An important area of concern is whether certain software is enabling or 

aggravating illegal discrimination on the basis of a protected attribute such as race or 

gender. One study by Professor Latanya Sweeney looked at online search and advertising 

to test whether a search for “racially associated names” returned “ads suggestive of an 

arrest record.”61 The study rejected the hypothesis “that no difference exists” in the 

delivery of such ads, because under its method, a search for a “black-identifying first 

name,” yielded an ad for a company that sold public records and included the word 

“arrest” in the ad text for “a greater percentage of ads … than [a search] for white-

                                                
60 Frank Pasquale, Beyond Innovation and Competition: The Need for Qualified Transparency in Internet 
Intermediaries, 104 NW. U. L. REV. 1, 166 (2010). Faced with the challenges of data processing and 
computation a quarter century ago, Paul Schwartz argued that a key factor in managing problems from 
those practices required, “the establishment of a government body capable of studying the effects and 
implications [of software-based decisions].” Schwartz, supra note 18, at 1379. That approach was part of 
addressing state actions, and the approach looked at transparency as a feature to limit government action 
and to make the system “open and understandable to the data subject.” Id. at 1375. The connection between 
Pasquale and Schwartz is conceptual: Both seek transparency as a way to enable a third party to aid in 
scrutiny and to aid the ability to challenge a practice.  
61 Sweeney, supra note 12, at 52 (“These findings reject the hypothesis that no difference exists in the 
delivery of ads suggestive of an arrest record based on searches of racially associated names.”).  
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identifying first names.” 62  According to Sweeney, this finding intersects with 

discrimination problems, because when one competes for many things such as “an award, 

a scholarship, an appointment, a promotion, or a new job … or [is] engaged in any one of 

hundreds of circumstances for which someone wants to learn more about you,” ads 

appear in online searches.63 Another study on search, webpage visitation history, and 

advertising found that when ad preference settings were set to female, a user saw “fewer 

instances of an ad related to high paying jobs than [when preferences were set] [] to 

male.”64 The specific ad was for a career coaching service promising to aid someone in 

obtaining a job that paid more than $200,000 a year.65 These studies have identified some 

outcomes that may not meet the legal66 or “normative” definition of discrimination but 

                                                
62 Sweeney, supra note 12, at 52. 
63 Id. at 44. 
64 Amit Datta, Michael Carl Tschantz, and Anupam Datta, Automated Experiments on Ad Privacy Settings, 
1 PROCEEDINGS ON PRIVACY ENHANCING TECHNOLOGIES 92, 92 (2015). 
65 Id. 
66 As Peter Swire has observed in an initial investigation of online, data-driven marketing, several statutes 
prohibit discrimination in specific sectors such as lending, housing, and employment. PETER SWIRE, 
LESSONS FROM FAIR LENDING FOR FAIR MARKETING AND BIG DATA (2014), 
https://www.ftc.gov/system/files/documents/public_comments/2014/09/00042-92638.pdf. These statutes 
apply to online practices but how they apply for each sector and which practices within each sector are 
prohibited is not settled. Id. Sweeney’s study may not fit into these sectoral approaches as they appear to be 
about an indirect, yet possibly powerful, way to affect hiring decisions. That is, the ads at issue in 
Sweeeny’s study are not about an employment opportunity; rather they may affect an employer’s 
impression of or decision about someone without being the explicit criteria on which the decision is made. 
In contrast, the employment ads in the other study fall under Title VII which governs employment ads. Yet, 
as Swire explains even when an advertisement falls under a statute: 
 

One important statutory issue, which is a subject for future research, is what would meet 
the statutory requirement that the advertisement “indicates any preference, limitation, or 
discrimination” concerning a protected class. For online advertising, this issue will be 
important for [] advertisement campaigns that narrowly target a specific population. For 
instance, it will be important to clarify whether and when the Act covers advertisement 
purchasing decisions that will reach members of a protected class far more or less often 
than other demographic groups. 

Id. 
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raise questions about “the pervasive structural nature of [] discrimination in society at 

large.”67  

The studies cannot, however, find one party to blame in part because of the many 

factors at play.68 As Sweeney states, “We do not yet know” “why” [this type of 

discrimination] is “occurring” or whom to blame. The source of the problem could be the 

ad buyer, the ad seller, or “society.”69 The other study also admitted that it could not 

assign blame or determine the cause of the outcomes as being from the advertising 

network (Google), “the advertiser, or complex interactions among them and others.”70 As 

such, Sweeney turns to technical solutions to address the issues and argues, “we can use 

the mechanics and legal criteria described [in her paper] to build technology that 

distinguishes between desirable and undesirable discrimination in ad delivery.”71 The 

other study offers a tool to allow the ad network and the advertiser “to audit [each] other” 

to detect undesired ad behaviors.72 That study suggests that in the future there may be 

“machine learning algorithms that automatically avoid discriminating against users in 

                                                
67 Datta et. al supra note 64, at 105. In addition, advertisers and marketers can be deemed credit reporting 
agencies under the Fair Credit Reporting Act. The FTC has brought claims for violating the Fair Credit 
Reporting Act against at least two companies that used data profiles from a range of sources for marketing 
and advertising activities. See United States v. Spokeo, Inc., No. 2-12-cv-05001-MMM-SH (C.D. Cal. June 
12, 2012), https://www.ftc.gov/sites/default/ files/documents/cases/2012/06/120612spokeoorder.pdf; 
Instant Checkmate, No. 3:14-cv-00675-H-JMA (S.D. Cal. Apr. 1, 2014), 
https://www.ftc.gov/system/files/documents/cases/1 40409instantcheckmateorder.pdf. See also Press 
Release, Fed. Trade Comm’n, Spokeo to Pay $800,000 to Settle FTC Charges Company Allegedly 
Marketed Information to Employers and Recruiters in Violation of FCRA (June 12, 2012), 
http://www.ftc.gov/news-events/press-releases/2012/06/spokeo-pay-800000-settle-ftccharges-company-
allegedly-marketed; Press Release, Fed. Trade Comm’n, Two Data Brokers Settle FTC Charges That They 
Sold Consumer Data without Complying with Protections Required under the Fair Credit Reporting Act 
(Apr. 9, 2014), https://www.ftc.gov/news-events/press-releases/2014/04/two-data-brokers-settle-ftc-
charges-they-sold-consumer-data.   
68 Datta et. al supra note 64, at 105 (“blaming one party may ignore context and correlations that make 
avoiding such discrimination difficult”). 
69 Sweeney, supra note 12, at 52. 
70 Datta et. al supra note 64, at 105. 
71 Sweeney, supra note 12, at 53. 
72 Datta et. al supra note 64, at 106.  

Marcela Mattiuzzo
Realce

Marcela Mattiuzzo
Realce

Marcela Mattiuzzo
Realce



DRAFT – FINAL VERSION FORTHCOMING 

19 Trust But Verify [April, 2017 

 

unacceptable ways and automatically provide transparency to users.” 73  Of course, 

whether these techniques will be convincing to users, will require their own interrogation 

for correctness, or can provide convincing evidence of non-discrimiation while still 

serving the purpose of identifying relevant advertisements remain to be seen. Insofar as 

the techniques are based on machine learning, the irony may be that the techniques will 

be as inscrutable as the systems they mean to analyze and thus will fall short of providing 

accountability. And while there is an emerging class of “interpretable” machine learning 

models meant to provide explanations of their decisions, it is not known whether such 

models would function effectively in these cases or could provide sufficient evidence of 

fairness. Regardless, it is important that actors deploying systems of concern (e.g., search 

engines, advertising networks, and other users of discrimination-prone automated 

decision making) be able to understand the requirements placed upon them and the 

workings of tools used to enforce or surface compliance with those requirements. That is, 

we seek convincing evidence that such systems function without undesirable 

discrimination, and evidence generated in inscrutable ways can fail to be sufficiently 

convincing. 

Academics are not the only ones to think about normative concerns as applied to 

software. Journalists have also investigated the use of automation with similar results and 

conclusions. Rather than investigating questions about ad networks, where several actors 

are involved and each may or may not be responsible for outcomes, journalists and 

technologists have looked at personalization of commerce and search features to see 

whether a single actor’s implementation of an algorithm poses problems.  

                                                
73 Id. at 106. 
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An investigation by Wall Street Journal reporters found that the e-commerce they 

examined lends itself to a legal practice known to economists as price discrimination—

the practice of trying to match the price for a good or service to specific market segments 

or people. Several companies “were consistently adjusting prices and displaying different 

product offers based on a range of characteristics that could be discovered about the 

user.”74 For example, Staples, Inc., the office supply company, charged different prices 

for the same item depending on where Staples thought the consumer was.75 Although the 

practice of altering prices based on whether a good is online, in-store, and the geography 

of the shopper is common, it can reinforce inequality if it allows retailers to charge lower 

prices (or choose to offer certain services only) to those who lived in ZIP codes with 

higher weighted average income and charge higher prices (or choose not to offer certain 

services) to those in ZIP codes with lower weighted average income.76 Even if one 

accepts the argument that a retailer accounts for different costs at local, physical stores, if 

the orders are fulfilled and shipped from a central warehouse, costs associated with 

physical retail stores should not be an issue. Although the outcomes of price 

discrimination would seem to indicate that inequality could be reinforced, the price 

discrimination is not illegal in the retail sector. If personalization is used, however, by a 

credit card or other regulated, financial company to steer people to more expensive 

financial services based on race, gender, or other protected class status, price 

                                                
74 Jennifer Valentino-Devries, Jeremey Singer-Vine, and Ashkan Soltani, Websites Very Prices, Deals 
Based on Users’ Information, THE WALL STREET JOURNAL, (DEC. 24. 2012) (“The Journal identified 
several companies, including Staples, Discover Financial Services, Rosetta Stone Inc. and Home Depot Inc., 
that  [engaged in the activities]”) 
HTTP://WWW.WSJ.COM/NEWS/ARTICLES/SB10001424127887323777204578189391813881534.   
75 Id.   
76 Id. This situation could occur naturally if the retailer or its competitors had no stores in the lower-income 
ZIP codes, but charged based on the proximity to its own or its competitors’ stores, as Staples did. 

Marcela Mattiuzzo
Realce

Marcela Mattiuzzo
Realce



DRAFT – FINAL VERSION FORTHCOMING 

21 Trust But Verify [April, 2017 

 

discrimination becomes prohibited discrimination,77 and so public sector regulation will 

be triggered, and the need to understand the system behind the outcome becomes like our 

discussion of other regulated industries above.  

Another investigation tried to test the autocomplete feature for Google’s and 

Bing’s search services to see how each one handled searches for sensitive topics such as 

“illicit sex” and “violence.”78 At the time of the report, Bing’s autocomplete did not offer 

autocomplete suggestions for “homosexual,” and both Bing and Google did not offer 

autocomplete suggestions for “110 sex-related words.”79 According to the author, this 

blacklisting raises the specter of censorship, because “we look to algorithms to enforce 

morality.”80  

This position is puzzling, because whether users of a product should defer to 

algorithms and/or a company’s manual choices about what to blacklist for morality 

enforcement (assuming they do that) is answered as, “No,” by us and by most who 

discuss the issue.81 In addition how much anyone truly “look[s] to algorithms to enforce 

morality” is unclear. Some may believe algorithms should be constructed to provide 

moral guidance or enforce a given morality. Others claim that moral choices are vested 

with a system’s users and that the system itself should be neutral, allowing all types of 

use and with moral valences originating with the user. In either case, choices about 

morality demand certain outcomes from computer systems such as search engines. Such 

                                                
77 Swire, supra note 66, at 7-8 (discussing Fair Housing Act prohibition on “steering”—the practice of 
“deliberately guiding loan applicants or potential purchasers toward or away from certain types of loans or 
geographic areas because of race.”). 
78 Nicholas Diakopoulos, Sex, Violence, and Autocomplete Algorithms, SLATE (August 12, 2013, 11:43 
AM) http://www.slate.com/articles/technology/future_tense/2013/08/words_banned_from_bing_and_ 
google_s_autocomplete_algorithms.html.  
79 Id.  
80 Id.  
81 See e.g., Bogost, supra note 2; Deven R. Desai, Exploration and Exploitation: An Essay on (Machine) 
Learning, Algorithms, and Information Provision, 47 LOYOLA U. CHICAGO L. J. 541 (2015). 
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deference to technology as the source of morality creates precisely the problems a 

demand against censorship seeks to address. In that sense the author’s deference to 

algorithms is a type of “worship” that reverses the skepticism of the Enlightenment.82 

Asking algorithms “to enforce morality” is not only a type of idolatry, it also presumes 

we know whose morality they enforce and can define what moral outcomes are sought.83 

That is another path to censorship and control.84 Even allowing a neutral use of a 

technology is itself is a moral choice, because for example a computer system can allow 

uses that its operators or users might consider abusive. Nonetheless, in its best light, the 

argument seems to be that society defers in a default way to morality enforcement by 

algorithm; and so we must cope with that fact. This view is, however, subverted by the 

fact that those algorithms will not be perfect at enforcing their chosen values, because 

“filtering algorithms will always have some error margin where they let through things 

we might still find objectionable.”85 The somewhat circular logic is that because society 

defers to algorithms to enforce morality, “with some vigilance we can hold such 

algorithms accountable and better understand the underlying human (and corporate) 

criteria that drive such algorithms’ moralizing.”86 Of course, the better step is not to defer 

to such systems, and even if such deference is inevitable—as the study seems to 

believe—exactly what sort of accountability and understanding is possible is not 

answered by the critique. 

                                                
82 See Bogost, supra note 2. 
83 Cf. Desai, supra note 81, at 571-573 (explaining the difficulty for online information providers to show a 
given user a “good” song or correct entry for a term such as Darwin because of the range of users and each 
one’s view of what a correct result is). 
84 See Desai, supra note 81, at 561-562 (noting that someone has to choose what to show users and the 
history of politicians using media content rules to filter information rather than expand access to it). 
85 Diakopoulos, supra note 78.  
86 Id.  
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These investigations also assume that the personalization is well-controlled by the 

party personalizing the content, but that is not always the case. As one group of computer 

scientists has noted regarding the use of machine learning algorithms, the notion of what 

constitutes control and transparency in a given system varies depending on a range of 

things.87 As the authors explain, a given application of machine learning is better 

understood as consisting of abstract “machine learning techniques,” “training and 

operational data,” “machine learning outputs,” and “the broader systems context; i.e. the 

workflows, processes, and system supply chains surrounding and integrating the ML” 

that work together as a system and so each component offers different possibilities for 

control and responsibility.88  

Focusing on only one part of such a system, the data, shows the ways the idea of 

control becomes nuanced. Using “data in the wild”—that is deploying a system into the 

world at large, even if it was known to have been accurate and useful when built—

requires ongoing monitoring and evaluation to ensure the model remains accurate given 

that the real world changes.89 These changes can create what is called “concept drift” 

where the “once accurate model [is] obsolete.”90 The change may be because of a general 

change in the world, or because of active work to defeat the model such as in “spam, 

intrusion and fraud detection.”91 Inputs can also lead a benign program to render 

undesired outputs such as what happened with Microsoft’s Twitter bot, Tay. That system 

was designed to have a teenage millennial persona and use slang, but when it was fed 

                                                
87 See e.g., Singh et. al., supra note 26, at 3-4; see also id. at 11-12 (noting how using data in the wild 
requires ongoing monitoring and evaluation to ensure the model remains accurate given that real world 
changes and that input in the wild can lead a benign program to render undesired outputs).   
88 See e.g., Id. at 3-4. 
89 Id. at 11-12. 
90 Id.  
91 Id. 
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data by Internet trolls became “foul-mouthed and racist”92—an outcome quite different 

than intended or expected. 

Computer scientists have also looked at personalization and documented the 

ability for a third-party to launch a “pollution attack”—which “allows third parties to 

alter the customized content the services return to users who have visited a page 

containing the exploit.” 93  The study examined Amazon, Google, and YouTube’s 

personalization offerings and showed that they were vulnerable to such an attack. In the 

specific cases one could increase the visibility of YouTube channels, “dramatically 

increase the [Google] ranking of most websites in the short term” and manipulate 

Amazon recommendations to display “reasonably popular products of the attacker’s 

choosing.”94 Although the attack was not “powerful, broadly applicable, or hard to defeat,” 

the larger implication is that other sites that use personalization could be vulnerable in 

similar ways. As the authors put it, “With increasingly complex algorithms and data 

collection mechanisms aiming for ever higher financial stakes, there are bound to be 

vulnerabilities that will be exploited by motivated attackers. The age of innocence for 

personalization is over; we must now face the challenge of securing it.”95  

To summarize, there are broad descriptive claims of a range of differing problems 

appearing in the public and private sectors and flowing from a range of applications of 

software techniques. Some of these criticisms assume more control over the systems at 

issue than may exist. All of these criticisms converge on the notion of transparency as 

part of a viable solution and yet have different visions of what the term entails and how it 

                                                
92 Id.  
93 Xinyu Xing, et. al., Take This Personally: Pollution Attacks on Personalized Services, 2013 USENIX 
SECURITY 671, 671 (Aug. 14, 2013). 
94 Id. 
95 Id. 
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would work in practice. In contrast, we argue that whether transparency is useful in a 

particular case or part of a viable solution turns on the context of a given automated 

process at issue. The next section addresses the nature of the algorithms—or rather the 

nature of the software—underlying these systems as a step to show why that is so. 

 

II. ALGORITHMS: A PRIMER 
 

 

The word, algorithm, conjures dark wizardry, but that is because algorithms are 

not well understood outside the technical community; not because they are a dark art.96 

Some are simple, and some are complex.97 Regardless, an algorithm is a step-by-step 

process and “each of the steps must be precise, requiring no human intuition or 

guesswork.”98 Thus we can call the steps for brushing teeth an algorithm. However, most 

of the time, including in the concerns addressed in this work and most of the work we 

describe, we are concerned not with the conceptual steps but with their reduction to 

practice as an implementation in computer code. Indeed, there is a difference between 

                                                
96 Bogost, supra note 2 (“The next time you hear someone talking about algorithms, replace the term with 
“God” and ask yourself if the meaning changes. Our supposedly algorithmic culture is not a material 
phenomenon so much as a devotional one.”); see also KROLL, supra note 27, at 2, n.1 (2015) (“The term 
‘algorithm’ is assigned disparate technical meaning in the literatures of computer science and other fields.”) 
97 Ian Bogost has pointed out that just as manufacturing seems “automated” but requires “confluence” of 
raw materials, machines, human labor, and transportation to reach consumers, algorithms such Google’s 
search is a “confluence of physical, virtual, computational, and non-computational stuffs—electricity, data 
centers, servers, air conditioners, security guards, financial markets.” Bogost, supra note 2.  
98JOHN MACCORMICK, NINE ALGORITHMS THAT CHANGED THE FUTURE at Kindle loc. 113 (2012); accord 
THOMAS H. CORMEN, ALGORITHMS UNLOCKED at Kindle loc. 129, 147 (2013).   
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when humans follow instructions and a computer does.99 Humans “might be able to 

tolerate it when an algorithm is imprecisely described, but a computer cannot.”100  

The idea of an algorithm as a recipe shows the problem. Recipes seem to be quite 

precise, but they are not.101 As Brain Kernighan explains, the “Joy of Cooking says that to 

poach an egg, ‘Put in a small bowl: 1 egg’ but fails to specify that the egg should be 

broken and the shell removed first.”102 Humans can handle this ambiguity, because 

humans are apt to fill in details or otherwise guess at what to do when presented with a 

partially specified process, while, as a machine, a computer can only follow precise 

instructions from the set of operations wired into it. Software is simply a long sequence 

of these instructions.103 

As Thomas Cormen puts it, “given an input to a problem, [a computer algorithm] 

should always produce a correct solution to the problem.”104 Correctness, however, is not 

so simple; an algorithm’s correctness can only be established relative to a specification of 

its behavior.105 This point raises two issues. One can fail to choose as one’s specification 

                                                
99 CORMEN, supra note 98, at Kindle loc. 135. 
100 Id. 147-48 (2013). As Thomas Cormen puts it, “We want two things from a computer algorithm: given 
an input to a problem, it should always produce a correct solution to the problem, and it should use 
computational resources efficiently while doing so.” Id. 
101 Cf. DOMINGOS, supra note 123, at 3 (“A cooking recipe is not an algorithm because it doesn’t exactly 
specify what order to do things in or exactly what each step is.”). 
102 BRIAN D. KERNIGHAN, BRIAN. D IS FOR DIGITAL at Kindle loc. 1149-1150 (2012). 
103 An irony is that the machine learning and neural network software behind many critiques of algorithms 
arguably came about because of the specification problem. Specification, until recently, was a wall to 
advances in artificial intelligence. For example, humans are rather good at making visual distinctions such 
as between a dog and cat and between one type of cat and another. Computer software was limited in such 
tasks in part because the specifications could not be precise for each instance or picture of a cat in such a 
way that software could process well. Recent advances in machine learning and neural networking have 
allowed software systems to take less precise specifications combined with large data sets so that now the 
systems can accomplish the distinction task almost as well as a human.  
104 CORMEN, supra note 98, at Kindle loc. 147. To be clear, Cormen’s full point is that we want a computer 
algorithm to be correct and efficient, but correctness is the key concern for our discussion here. Id. (we 
want an algorithm to “use computational resources efficiently” while reaching the correct solution). 
105 See e.g. Douglas D. Dunlop & Victor R. Basili, A Comparative Analysis of Functional Correctness, 14 
ACM COMPUTING SURVEYS 229, 229 (June 1982) (defining “functional correctness [as] a methodology for 
verifying that a program is correct with respect to an abstract specification function”). 
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the correct solution to one’s problem or one might fail to implement the solution 

faithfully. Software that provides directions on GPS systems illustrates the problem. 

If one thinks of a GPS navigation system giving a route, there may be several 

criteria for what the correct route should be.106 Although people may not often alter how 

their GPS computes routes, many GPS systems allow one to do so, and in that sense 

accommodate the driver’s preferred approach to determining the correct route. In many 

cases, a driver simply wants the fastest route given all possible routes.107 But some 

drivers will instead want the shortest route, as in least distance, which may not be the 

fastest.108 Still others will want the fastest route that also avoids highways or toll roads.109 

Regardless, all correct routes will connect the origin to the destination. But which of the 

many possible routes is “correct” depends on which of the above options we have 

selected. 

Yet after choosing from the above options, we run into a new problem. Suppose 

we choose, as our definition of the “correct” route, the fastest route given all possible 

routes criterion. The routing algorithm must have a way to determine fastest, which 

means without real time traffic data, the algorithm and its outputs will be incorrect.110  

Correctness is generally determined with respect to the specification alone, and 

independently of the correctness of data used as input. Suppose that, instead of real-time 

traffic data, we provide as input to the algorithm traffic data from the day before. Some of 

the time, changes in traffic will mean that the algorithm gives a result which is not 

                                                
106 CORMEN, supra note 98, at Kindle loc. 157-64.  
107 Id.  
108 Id. 
109 Id. 
110 Id. 
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actually the fastest route. The algorithm is nonetheless correct given the input it had.111 

The routing algorithm itself “is correct,” even if it does not return the fastest result, 

because “even if the input to the algorithm is not [correct]; for the input given to the 

routing algorithm, the algorithm produces the fastest route.”112 Thus, the algorithm itself 

is correct regarding the specification, which in this case is to produce the fastest route 

given traffic data. However, given incorrect input data, the algorithm may produce an 

incorrect output. 

Software can also have bugs as it implements an algorithm. Staying with our GPS 

example, suppose that the software sometimes returned the shortest route by distance 

instead of the fastest route given traffic. Here, the specification is precise and correct (we 

want the system to return the fastest route, taking traffic conditions into account), and the 

algorithm we have chosen to implement that specification is correct (it produces the 

fastest route given traffic data), but the software itself is incorrect with respect to the 

specification (it occasionally gives an incorrect answer, namely a shorter distance route 

that was slower because of traffic, because of a bug). 

Thus, a computer system can be incorrect either because the approach is incorrect 

(that is, the specification does not describe a solution to the problem at hand), because the 

input data are incorrect (that is, the system would be correct if given the right data, but 

different data were provided), or because a programmer introduced a bug when 

converting it to computer code. In sum, correctness is not as precise as policy critics 

would like. We must ask whether a solution has been specified correctly and whether that 

                                                
111 Id. 
112 Id. 
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specification has been correctly reduced to practice, both when data are chosen and when 

software implementing the solution is written. 

As such, to ask that an algorithm not “discriminate” or yield some other result 

prohibited by legal rules, requires that a precise statement, or specification, be provided 

so that the request is workable for computer scientists and can be effectively translated 

into software.113 And yet the policy process is rarely prepared to provide a complete 

specification for any rule, let alone thorny questions such as discrimination.114 Even in 

the possibly simpler realm of administrative law where rules abound, the administrator 

“faces decisions for which external standards provide no binding, perhaps no relevant, 

guidelines.”115 Thus some argue that the “administrative process, like the judicial and 

legislative process, [is] somehow in pursuit of justice and the general welfare; [and] 

‘administration,’ like ‘democracy’ and the ‘rule of law,’ [should be understood] as a 

motivating ideal.”116 In short, there are ideals that guide the law, but the precise way 

those ideals manifest themselves is a bit messy and particular to a given application. This 

dynamic appears in computer science as well. 

The idea that all computer systems are designed by first deciding on a precise set 

of steps, which are completely specified, and then mechanically reducing this precise idea 

                                                
113 Accord Kroll et. al., supra note 27, at 2 (“[C]omputer scientists tend to want a full, technical 
specification of all the desired properties of an algorithm, but policy processes tend not to declare such 
precise rules in advance.”).  
114 Although some rules, such as the 80/20 rule for employment discrimination, may be precise enough to 
be a workable specification, it is not clear that other areas of discrimination are as precise. In addition, 
when one considers claims of censorship versus free speech or whether posting a video clip is fair use, rules 
or tests are broad and imprecise. Nonetheless, as we argue later, when a clear rule is set by the state, we can 
ask whether that rule is faithfully reflected in software. Even simple rules, such as rules about how to 
record and count votes, can be subject to interpretation and challenge, and do not lend themselves to precise 
specification in all scenarios. 
115 MASHAW, supra note 24, at 16. 
116 Id, at 14. 
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to software is wrong. Many systems spring more simply from an “informal notion.”117 

Instead of a single formula that can set out or describe a specific result (e.g., E=MC2), 

large modern computer systems often are developed based on on high-level goals that 

“generally describe how to solve a problem.”118 For example, it would be difficult or 

impossible to write a complete recipe for serving a targeted advertisement or arranging 

posts on a social network timeline. While, at base, these activities are executed by well-

specified mechanized processes—similar to administrative law as put into practice—the 

outcomes came to be through abstract and messy processes that are often reflected in 

their complexity and in unexpected, unplanned behaviors.119 

As a colleague in robotics and machine learning put it to one of us, imagine 

engineers building a robotic arm. Part of the approach applies physics and mechanical 

engineering to figure out how to drive the arm. But for the arm to work well in the field, 

where its movements are not precisely determined ahead of time, other engineers and 

computer scientists apply machine learning and develop models of movement—

discovering a specific algorithmic approach to solving the underspecified problem of 

controlling the arm’s movements outside the lab.  

The algorithms and models help define a rule for how to move, but it is a rule that 

is not coded directly by a programmer or designed with the intent to reach the precise rule 
                                                
117 MACCORMICK, supra note 98, at Kindle Loc. 122; accord JAMES GLEICK, THE INFORMATION at Kindle 
Loc. 3652-3654 (2011) (“An example of an intellectual object that could be called mechanical was the 
algorithm: another new term for something that had always existed (a recipe, a set of instructions, a step-
by-step procedure) but now demanded formal recognition. Babbage and Lovelace trafficked in algorithms 
without naming them. The twentieth century gave algorithms a central role.”). 
118 MACCORMICK, supra note 98, at Kindle Loc.122. 
119 Cf. Singh et. al., supra note 26, at 12 (“large-scale computing environments, for example IoT-enabled 
smart cities, that entail ‘systems of systems’ [] have many ‘moving parts’ – including a range of different 
software, services, agents (and people!) – all of which might use or be affected by a range of ML models. 
Managing responsibility in these environments presents a significant challenge. There will be feedback 
loops between systems, where the outputs/actions of one system can feed into others in real-time. The 
interactions can be direct, e.g. competing for resources, or more indirect, through ‘butterfly effects’, where 
(subtle) actions of a system can (potentially dramatically) affect others.”). 
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discovered. Rather, the discovery of the particular rule eventually put in place is 

happenstance, although ideally would always generate very similar, very useful rules. 

The arm movement is not coded based only on a simple equation about force, mass, and 

acceleration. Instead, a model of the arm’s movement comes either from the use of 

machine learning or simply by capturing sequences of movements of the actuators (for 

example, when the arm is operated by remote control). This model then defines the 

control of the arm. While the model is, ultimately, a precise algorithm, it is not one that 

the arm’s creators specified directly. Nor, in many cases, could the arm’s creators 

precisely specify the algorithm in use by the model after-the-fact. The best they can do is 

specify the process used to create it. This lack of direct coding is especially useful when 

the arm is to move and interact within a dynamic environment.120 In fact, some models 

are developed by guessing parameters at random and testing the model’s performance. It 

can also be beneficial to incorporate randomness into a system’s rules (at the time they 

are run, in addition to the process used to discover them) to address the limits of a static 

system.121 None of which is to say that the underlying physics don’t matter and aren’t 

used to control the arm. In practice, the physics provide the scaffolding for the arm’s 

movements, defining how settings of the actuators within the arm will change its position 

or cause it to move, while learned models provide finesse, control, and intelligence to 

achieve goals, such as how to reconfigure the actuators to move the arm’s tip from one 

place to another.122 The arm’s movements are a combination of formulaic physics and 

                                                
120 Accord Kroll et. al supra note 27, at 21. 
121 Accord Id. (noting if one “hard-coded” the movement of a robot like the Roomba vacuum, “an unusual 
configuration” might end up with the device trapped in a corner but “randomized motion allows it to escape 
these patterns and work more effectively.”). 
122 The use of learned models solves yet another problem, that of interpolation. A precisely specified rule 
would have to account for how to move the arm from any configuration to any other, while a model can fill 
in details or learn to move the arm around obstacles in its environment. 
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models that do not correspond to a pre-written formula, but rather are extracted by 

discovering patterns in large sets of data.  

The key is to optimize the arm’s movement, which is done by learning.123 The 

arm starts with a model that has unknown parameters. The initial parameters might be set 

to a good guess of the final model, or they might be chosen at random. The goal of 

learning, then, is to find the optimal parameters. But as conditions change, the model 

encounters situations with which it cannot yet deal. When the model gives less-than-

optimal results, a learning algorithm will modify the model’s parameters and measure 

whether that modification improves performance in that situation.  

Thus we see that the idea that all algorithms are designed when a programmer 

chooses a precise set of steps is limited, especially in the case of machine learning and 

other model-driven approaches. While the steps for training the model and for computing 

its predictions are precisely specified, the model’s parameters, which control what 

guidance it gives, are not specified directly by a programmer. Rather, they are optimized 

given a set of training data.124 

Even the environment matters for explaining how a system operates. Suppose we 

have a program that measures how long it takes for some function to run. Let’s say we 

wish to test how long an algorithm that sorts a large list of numbers takes to run. To test 

this, a program implementing the algorithm starts a timer before sorting a large list of 

numbers and then checks how much time has elapsed when the sort is complete. Now, 

                                                
123 There are several different approaches to machine learning. For a short overview of the approaches see 
Singh et. al., supra note 26, at 4-8; see generally PEDRO DOMINGOS: THE MASTER ALGORITHM: HOW THE 
QUEST FOR THE ULTIMATE LEARNING MACHINE WILL REMAKE OUR WORLD (2016). 
124 Cf. Singh et. al., supra note 26, at 9 “ML is data driven: (1) the data involved in the training/learning 
phases determines the model, and (2) the live data on which the model is applied determines the 
results/outcomes”). 
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suppose the program is run on two computers, one where it is the only program running 

and one where there are 1000 other programs running, all of which are demanding many 

resources and reading/writing the disk heavily. Clearly, this one program will behave in 

two very different ways depending on its environment. 

Another feature of algorithms and software that might surprise policymakers is 

that even if we can posit that both a precise specification and a complete system are 

available for review, it can nonetheless be impossible to analyze or test whether the 

system will yield a certain outcome. Although a program is a precise description of its 

own behavior, it can nonetheless be impossible in some cases to interpret from a 

description of that program whether it has specific behaviors. This fact runs contrary to 

the law’s mechanistic, Newtonian view of engineering, making it critical to policy 

discussions about governing algorithms. At a high level, recognizing these boundaries 

will clear cognitive dissonance between computer scientists and non-computer scientists 

about the nature of the practices under scrutiny. With such an understanding in hand, 

critics will be better placed to offer concerns and solutions that computer scientists 

appreciate as based in sound science. As a practical matter, this fact implies that a general 

testing program that tests other programs to show that they do not “discriminate” or yield 

some other result prohibited by legal rules cannot be workable. To support this argument, 

we turn in Part III to a core part of mathematical theory having to do with decidability 

and computer science known as the Halting Problem. 

 

III. TO HALT OR NOT TO HALT 
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The halting problem implies that some interesting problems are impossible to 

solve because of fundamental limits that challenge many aspects of computer science. 

These limits indicate that insofar as law and policy seeks a general transparency tool that 

analyzes disclosed algorithms for compliance with desired norms, one will not be 

possible.125 This challenges the classic view of policymakers that disclosure of a system’s 

internals will lead to a complete understanding of its behavior. The halting problem does 

not mean algorithms cannot be governed; rather, understanding these limits enables 

policymakers to craft demands that are workable and achieve the desired ends of policy. 

There are certain questions for which there is no algorithm; these questions are 

called undecidable. That is “[T]here are problems for which it is provably impossible to 

create an algorithm that always gives a correct answer.”126 It is possible to prove such 

things, because computer science at its core is a kind of “mathematical reasoning.”127 In 

that sense, the deepest ideas in computer science are not about programming software or 

designing hardware, but abstract concepts and issues that exist beyond real-world 

instantiations.128 Understanding what can and cannot be computed abstractly gives 

insight into the practical question of why demanding software code and input data to test 

for hidden agendas or prohibited outcomes will not work in at least some cases, perhaps 

important ones.  

                                                
125 When one discusses the idea of algorithmic transparency with computer scientists, there can be a 
palpable rejection of the idea. The law professor author of this paper encountered versions of this response 
numerous times, and it was part of what stimulated his interest in this project. 
126 CORMEN, supra note 98, at Kindle loc. 4106 (emphasis added). 
127 MACCORMICK, supra note 98, at Kindle Loc. 2794-2795. 
128 Id. at Kindle Loc. 132 (2012). 
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We can think of prohibited outcomes such as unlawful discrimination as 

crashes—problems any programmer wishes to avoid.129 That is, “Very occasionally, even 

high-quality, well-written software [will have a bug and therefore] can do something it 

was not intended to do.” That unintended outcome can be thought of as a crash, whether 

it actually terminates the program or not. So if in fact we could detect when a program is 

discriminating, any program could be turned into one that crashes when it discriminates 

simply by running a routine that detects discrimination and crashing if that routine finds 

discrimination. And then to ask if the original program discriminates, we would only 

have to ask whether the modified program crashes. One might guess that it would be 

possible to write an analytic tool which could find just these sorts of bugs. But that hope 

is a false dream. Software testing has improved such that today many bugs are caught, 

but it is still impossible to catch all bugs after a program is written.130 It is, however, 

possible to write bug-free programs using advanced technical tools that prevent 

programmers from writing bugs in the first place.131 

Indeed, for the question of whether a program has bugs that will cause it to crash, 

society desires the precision of the physicist, mathematician, logician, and critic of the 

power of algorithms, but it turns out that one precise thing that can be shown is that we 

cannot show certain things about software programs including whether a specific 
                                                
129 Id. at Kindle Loc. 2775-2778. 
130 Id. at 2782-2785 (“A natural question to ask would be: will the automated software-checking tools ever 
get to the point where they can detect all potential problems in all computer programs? This would 
certainly be nice, since it would eliminate the possibility of software crashes once and for all. The 
remarkable thing that we'll learn in this chapter is that this software nirvana will never be attained.”); 
accord MICHAEL SIPSER, INTRODUCTION TO THE THEORY OF COMPUTATION, 3d Ed., 165, 201 (2013) (“The 
general problem of software verification is not solvable by computer.”). However, there are approaches to 
building software such that it has no bugs in the first place. While it is provably impossible to detect all 
bugs in an existing program, it is demonstrably possible to build programs that have no bugs at all. 
131 This is only one of the common approaches in software verification, the area of computer science 
concerned with the development of bug-free software. Another is to design the program so that it is 
possible to test exhaustively all of the states it can ever take and to evaluate the desired property in each of 
these states, rejecting the program as buggy if the desired property is ever untrue. 
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program will crash. In the specific case of software, detecting a potential crash is an 

undecidable problem,132 meaning that “it is provably impossible for any software-

checking tool to detect all possible crashes in all programs.”133 But given that such a tool 

is very desirable, and to counter the argument that this limit is narrow, it is important to 

see how it applies to computing and software in general and to the problems we are 

concerned with here in specific. 

A more general framing of this problem, and a more powerful theorem about what 

is undecidable, originates in work by Alan Turing and is known as the halting problem.134 

Turing, often considered “the founder of theoretical computer science” was not writing 

software or testing for bugs as “no electronic computer had even been built yet.”135 When 

Turing discovered the proof in 1937, he was “interested in whether or not a given 

computer program would eventually produce an answer.” 136  Specifically, he was 

interested in determining what was computable, or possible to generate with a computer. 

Because this work applies to what can be known about algorithms in general, it matters to 

those who wish to regulate them.   

Turing offered an abstract, ideal machine that can stand in for any “digital 

computer” as a way to answer whether there are numbers that are “nameable, definable, 

                                                
132 MACCORMICK, supra note 98, at Kindle Loc. 3128-3131 (“We proved the undecidability of the Crashing 
Problem, but you can use essentially the same technique to prove the Halting Problem is also undecidable. 
And, as you might guess, there are many other problems in computer science that are undecidable.”). 
133 Id. at Kindle Loc. 2784-2785.  
134 Id. at Kindle Loc. 3123-3126 (“A closely related question is: will a given computer program ever 
terminate— or, alternatively, will it go on computing forever, without producing an answer? This question 
of whether a given computer program will eventually terminate, or “halt,” is known as the Halting Problem. 
Turing's great achievement was to prove that his variant of the Halting Problem is what computer scientists 
call “undecidable.’”).  
135 Id. at Kindle Loc. 3121-3123.  
136 Id.  
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and not computable.”137 Turing’s machine, called U, as in universal, represents a simple 

yet powerful model of computing machines.138 In short, “A Turing machine can do 

everything that a real computer can do.”139  

By connecting the idea of writing down a machine’s description with the 

operation of his universal machine, Turing gave a definition of computation and related it 

to the definition of algorithm used in computer science; in fact, a Turing machine 

“capture[s] all algorithms.”140 By extension, whatever applies to Turing machines and the 

algorithms they can run, applies to the real-world software and machines at issue here. 

Because Turing machines completely encompass the functionality of real computers, 

anything a Turing machine cannot do is also a limitation on real computers. That is, 

Turing machines circumscribe the limits of real computers, and abstract limits on what a 

Turing machine can do cannot be circumvented by building a bigger or more powerful 

computer or writing better software.141 The limit we care about here is called the halting 

problem.  

The halting problem captures the problem of decidability for software, answering 

the question of whether all problem statements which have answers also have the 

                                                
137 GLEICK, supra note 117, at Kindle Loc. 3683-3684, 3738-3740. 
138 Turing, supra note 1, at 241-242; accord SIPSER, supra note 130, at 202 (“The Turing machine U is 
interesting in its own right. It is an example of the universal Turing machine first proposed by Alan Turing 
in 1936. This machine is called universal because it capable of simulating any other Turing machine from 
the description of the machine. The universal Turing machine played an important early role in the 
development of stored-program computers.”). 
139 A Turing machine has “unlimited and unrestricted memory,” and “is a much more accurate model of a 
general purpose computer” than earlier models had been. SIPSER, supra note 130, at 165. In particular, 
Turing machines are a more similar theoretical model to modern electronic computers than even equivalent 
earlier logical models such as Alonzo Church’s Lambda Calculus. Id.; accord GLEICK, supra note 117, at 
Kindle Loc. 3740-3742 (“No matter how complex a digital computer may grow, its description can still be 
encoded on tape to be read by U. If a problem can be solved by any digital computer—encoded in symbols 
and solved algorithmically—the universal machine can solve it as well.”).  
140 SIPSER, supra note 130, at 184; accord GLEICK, supra note 117, at Kindle Loc. 3687 (Turing “defined 
calculation as a mechanical procedure, an algorithm.”). 
141 SIPSER, supra note 130, at 165 (“even a Turing machine cannot solve certain problems. In a very real 
sense, these problems are beyond the theoretical limits of computation.”). 
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property that those answers can be computed algorithmically. Specifically, the halting 

problem is an example of a well-defined problem for which no algorithm can find the 

answer. The halting problem asks whether there is some method which analyzes a given 

program running on a certain input and determines whether the input program “halts” or 

“runs to completion;” Turing proved that no such analysis exists.142 That is, there is no 

Evaluator we can use to test a set of instructions (the Standard Description or “S.D” [sic]) 

on a Machine and see whether a specific outcome will occur.143 Cormen illustrates the 

problem this way: 

In the halting problem, the input is a computer program A and the input x 
to A. The goal is to determine whether program A, running on input x, 
ever halts. That is, does A with input x run to completion? Perhaps you’re 
thinking that you could write a program—let’s call it program B—that 
reads in program A, reads in x, and simulates A running with input x. 
That’s fine if A on input x actually does run to completion. What if it 
doesn’t? How would program B know when to declare that A will never 
halt? Couldn’t B check for A getting into some sort of infinite loop? The 
answer is that although you could write B to check for some cases in 
which A doesn’t halt, it is provably impossible to write program B so that 
it always halts and tells you correctly whether A on input x halts.144 

 
We can convert the problems in which we are interested into Turing’s halting problem by 

considering the sort of misbehavior we are concerned with as a kind of crash, which 

causes a program never to halt,145 as described above. Given that reformulation, we 

discover that there does not exist an analysis that will always correctly identify the 

misbehavior we wish to limit simply by reviewing an algorithm’s source code and inputs. 

                                                
142 CORMEN, supra note 98, at Kindle loc. 106-4117; SIPSER, supra note 130, at 216-217. 
143 Turing, supra note 1, at 248. In Turing’s more general language, “We can show further that there can be 
no machine E which, when applied with the S.D [sic] of an arbitrary machine M, will determine whether M 
ever prints a given symbol (0 say).” Id. For a detailed description of the theorem of undecidablity and step-
by-step ideas that lead to the proof see SIPSER, supra note 130, at 202-209.  
144 CORMEN, supra note 98, at Kindle loc. 4106-4117; accord SIPSER, supra note 130, at 216-217.  
145 By convention, computer scientists consider a program to “halt” if and only if it runs to completion and 
returns an answer. If the program gets into an infinite loop (i.e., repeats the same set of instructions over 
and over again forever) or crashes, the program has not “halted” even though it is no longer making any 
progress towards an answer. Instead, such conditions are often described as the program being “stuck”. 
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Yet these are precisely the elements for which advocates of transparency demand 

disclosure, so that someone can “look under the hood” of an algorithm.  

Put more simply, if the goal or dream is to test, for example, an online ad network, 

and see whether a specific outcome—like race or gender discrimination in the placement 

of an ad—will occur, there is no analysis that will always determine that. At this point, it 

might seem that the author of a piece of software could say that any outcome is 

unintended, and they could not have done anything to predict that outcome. That is not so.  

In the Cormen example, B is an analysis program that simulates input program A 

on its input x. If A halts, B can just report that. But if A does not halt, B doesn’t know 

when to declare that A is stuck. It’s not that B is hopeless—it’s that there’s always some 

input pair (A, x) such that B will be confused. That is, the system for representing 

programs and describing their behavior is rich enough to provide a representation that is 

always inscrutable in this particular way. Turing’s theorem says that such a 

program/input pair exists. And that’s a very different proposition from the theorem saying 

that no analysis can be done. It’s just that any analysis will not work in general. That is, 

any sufficiently complicated analysis will be wrong (or unable to reach a conclusion) at 

least some of the time. Thus, as Cormen puts it, as a general matter we cannot create a 

program “that determines whether another program meets its specification.”146  

Computer science has met this reality in part by looking for weaker tools that are 

still useful. Although we cannot compute certain things, we can estimate those things in a 

way that will be wrong some of the time. In particular, we can limit the failures of 

                                                
146 CORMEN, supra note 98, at Kindle loc. 4113-4115. A related undecidable problem comes from Rice’s 
theorem, which states that “determining any non-trivial property of the languages recognized by Turing 
machines in undecidable.” See SIPSER, supra note 130, at 219, 240 Problem 5.16. For Rice’s paper see 
Henry Gordon Rice, Classes of Recursively Enumerable Sets and Their Decision Problems, 74 
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY 358 (1953).  
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analysis methods in two ways. First, we can demand that the analysis be complete, 

meaning that all cases of a particular misbehavior will be detected by the analysis. 

Because the analysis must be wrong some of the time, any complete analysis of an 

undecidable problem will have false positives, or cases where it reports misbehavior 

where there is none. False positives can cause users of such a tool to become frustrated 

with it, so minimizing the number of false positives is of paramount importance when 

building such unsound analyses. Second, we can demand the property of soundness, 

which says that any reported misbehavior truly will be misbehavior. Sound analysis 

methods will, of necessity, miss some cases of misbehavior. No undecidable problem has 

an analysis that is both sound and complete; many sound and complete analysis methods 

may exist for problems which are computable, however. It is therefore important to 

understand whether a property of policy interest is computable, since it will affect 

whether that property can be established based on the disclosure of software source code, 

the system’s operating environment, and input data. 

Put differently, despite the halting problem and issues of undecidability, all is not 

lost. It is possible to write programs (and their specifications) in sufficiently restricted 

languages that it is possible to prove that they meet their specifications. In short, 

computer science has found ways to control for the effect of the limits we have described 

both in theory and in applications. The next section draws on the stable of techniques 

with which computer scientists address these challenges to see what policy can learn 

from those methods and how those solutions can address the regulatory issues critics 

have raised. 
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IV. PRACTICAL SOLUTIONS FROM COMPUTER SCIENCE 
 

 

Returning to the idea of a result that we do not want, we can use technology to 

mitigate such outcomes. For example, one might ask for a guarantee that certain software 

was built a specific way and to have a way to verify that promise. As one of the authors 

has argued, such a promise is possible if one starts with the goal of building programs 

that are analyzable, and a sense of for what properties those programs should be 

analyzed.147 That is, one must build software with an eye to what must be analyzed, and 

by whom, because it may be impossible, difficult, or unconvincing to show those things 

otherwise. Systems must be constructed to produce evidence that they operate as desired, 

either by doing the things we want or by not doing the things we do not want. Such 

evidence may involve the disclosure of aspects of the system, but it is often possible 

without such disclosures. 

With a design that enables the production of such evidence, computer science 

offers ways to give a complete guarantee that something is true about a piece of software 

under certain circumstances. The problem is that such certainty is impossible for software 

that shows up from an unknown source, such as malware or software disclosed under a 

transparency regime and which was developed without regard for the need to produce 

convincing evidence. 

In addition, although we cannot discover 100% of bugs in existing software, we 

can write software that provably meets a specification and is therefore provably 100% 

bug-free. Further, it is often possible to achieve high confidence outcomes for properties, 

                                                
147 See generally, Kroll et. al supra note 27. 

Marcela Mattiuzzo


Marcela Mattiuzzo




DRAFT – FINAL VERSION FORTHCOMING 

42 Trust But Verify [April, 2017 

 

which are difficult or expensive to specify—such as the high availability or reliability 

guarantees software companies now offer in some areas.148 These options should work to 

address many concerns about software. And, we argue these goals are the ones law and 

policy should pursue when appropriate.  

Nonetheless, these options may still not assuage worries that a computer system 

will be able to avoid using a specific, prohibited method such as using gender or race in a 

hiring decision—and so meet the high threshold for legal compliance—and yet still 

discriminate or otherwise generate unacceptable outcomes. Instead, to demonstrate that 

the evidence tying a computer system’s behavior to its specification is meaningful for 

policy goals, auditing software systems and the algorithms underlying them using in-the-

field tests and social science methods after the systems are deployed can test whether 

these systems generate undesired outcomes.149 Although these methods have a history of 

uncovering discrimination, or at least signs of disparate impact that require an 

explanation, reliance on these methods faces some difficulties when applied to computer 

systems. The next section explains when and how certain testing methods can allow 

someone to test a given computer system and the limits—technical and practical—of 

those techniques.150 

 

A. Reviewing Algorithms, Software, and Decisions 
 

                                                
148 Cf. CORMEN, supra note 98, at Kindle loc. 3149 (“[U]ndecidability has limited practical effects: it turns 
out that we can often do a good job of solving undecidable problems most of the time.”). Beyond 
undecidability, some desirable properties (such as a system always being available, or a system being 
sufficiently secure) may be specifiable and decidable but hard to analyze, test for, or achieve in practice. 
149 Sandvig et. al., supra note 15. 
150 See supra notes __. 
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The practical issues computer scientists face in evaluating software and 

algorithms show the limits of transparency as a solution on its own151 and that different 

instantiations and applications of algorithms require different approaches to regulation. 

There are two common settings in which one tests software, white-box and black box. In 

white-box settings, the analyst has access to the source code. While that is the dream 

scenario of advocates for source code disclosure, approaches using white-box testing still 

have limits. Black-box settings, in which the analyst is restricted to only see the inputs 

and outputs of the system but not its internal operation, pose more problems. Some 

limitations apply in both settings. In either setting, there are two categories of analysis: 

static analysis, which examines the program’s structure or code without actually running 

it; and dynamic analysis, which runs the program and observes its behavior on certain 

inputs. 

All dynamic analysis is only as good as the “number of input–output pairs that are 

available to be observed or tested.”152 Once one considers that many of the algorithms of 

concern can operate across a massive number of inputs, it becomes apparent that one can 

only test a (perhaps insignificantly) small subset of those inputs.153 And the inputs and 

outputs available for review or generated by such testing may or may not match the set of 

inputs and outputs that matter for policy analysis.154 

                                                
151 This discussion is indebted to and draws on Kroll et. al’s paper. In addition, we offer thanks to Ariel 
Feldman, for his generosity in exploring these issues. 
152 Cf. Kroll et. al, supra note 27, at 16. 
153 Id. 
154 For example, in the black-box studies of search engines and advertising networks mentioned above 
(supra, notes 60-67), while researchers could view problematic outputs of particular queries, they could not 
see the output for every search query or every possible advertisement considered by the system. Because of 
this, they could not conclude what the cause of the problematic behavior was, nor recommend a specific 
remedy. 
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Finally, testing is impotent to determine whether some result came from a 

particular system in the field. Consider again the problem of securing the voting process. 

While vote counting is a very simple operation requiring no complex specification and 

admitting to straightforward testing and even full verification to produce software with no 

bugs, there is no way to turn the output of such software alone into evidence that it 

resulted from the inputs (i.e., ballots) approved by the surrounding voter verification 

processes (e.g., id verification, log books, comparison to voter registration data, etc). 

Instead, evidence of the correctness of the count must in some way relate the inputs to the 

final result. Otherwise, there is no telling whether the approved, correct software was 

swapped out with different, possibly malicious software in the voting machines. 

1. White Box Testing 
 

White-box testing is commonly done during the development of software systems, 

but can be done at any time. Kroll et. al describe the ways one may test a program in a 

white-box setting: 

Computer scientists evaluate programs using either static methods—which 
look at the code without running the program—or dynamic methods—
which run the program and see how the program behaves for certain inputs. 
Dynamic methods can be subcategorized into 1) methods that rely on 
observation of how to program operates in the field with naturally 
occurring inputs and 2) more powerful methods that include testing, where 
an analyst chooses inputs and submits them to the program.155  

 
Although powerful, these testing and analysis methods do not solve all the issues around 

algorithmic transparency. Static methods are not “perfect.” Experts can easily miss 

simple problems hidden in complicated code, and there is a theoretical limit on all 

                                                
155 Id. 13. 
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program analysis, both static and dynamic, that the halting problem implies: one cannot 

always predict whether a certain outcome will occur.156  

In addition, while white-box testing is more powerful than black-box testing 

(since any black-box test can also be run in a white-box setting), it may not be obvious 

which input/output pairs will provide the most information to a dynamic analysis, since 

nearly any interesting static analysis is not computable and therefore will either be 

unsound or incomplete, as described above. For this reason, it is generally necessary 

when developing software to limit the scope of what inputs a program will allow, if only 

to make that program more easily testable. 

Another problem is that the fact that software is discrete and so testing what 

happens for an input x tells you essentially nothing about what happens for input y—it 

might be completely, radically different. Unless you happen to know something about the 

structure of the program, you’d have to test all possible inputs, which is rarely feasible 

for programs of interest.157 No amount of sophistication in the testing process or tools, 

nor any unstructured disclosure of information from the creator or operator of a piece of 

software, can circumvent these fundamental limits of software bug testing.158 

 

2. Black Box Testing 
 

 

                                                
156 Kroll et. al, supra note 27, at 16. 
157 Still, this approach is sometimes done in the form of “model checking.” 
158 Id.  
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Black-box testing suffers all of the limits on white-box testing, with the additional 

limitation that the software source code cannot be inspected. A further limit concerns the 

difference between analysis, in which a reviewer looks at the behavior of a system on 

naturally occurring inputs, and testing, in which the reviewer has the power to introduce 

new, synthetic inputs in order to observe differences in the system’s behavior between 

inputs. Many large systems of interest, such as search engines and social networks, are 

hybrid between these scenarios: to interrogate the system, some inputs will be able to be 

changed or have new choices inserted, while others will stay the same. For example, it is 

possible to change the queries submitted to a search engine, but not possible to replace 

the results it has crawled from the Internet at large. 

As Kroll et al. explain, for black box testing, because of the “astronomical number 

of hypotheses about the behavior the program that [] fit the observed or tested input 

output pairs,” “it is impossible to use inductive reasoning to determine the decision 

procedure generating outcomes or to predict the behavior of the program for inputs that 

have not been observed or tested.”159 Even if one combined static and dynamic testing 

methods, “Not every algorithm will be able to be fully analyzed” because of the intrinsic 

limit of the halting problem, as described above.160 As they note, if an algorithm was not 

“designed with future evaluation and accountability in mind,” no amount of software 

testing—even aided by total transparency—will always work to elucidate any particular 

                                                
159 Id. 
160 This point comes more directly from a close cousin of the halting problem, Rice’s Theorem, which 
holds that for any non-trivial property of a language (or program) of a Turing machine, “determining any 
property of the language[] … is undecidable.” See SIPSER, supra note 130, at 219; accord Kroll et. al at 5, n. 
14. For Rice’s paper see Rice, supra note 146. For a statement of theorem see SIPSER, supra note 130, at 
240, problem 5.16. For the proof see Id. at 243, Solution 5.16.  
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question.161 To combat the problems and limits of transparency and testing, Kroll et. al 

offer a different solution, but it, too, has limits.  

 

3. A Third Way: Ex-post Analysis and Oversight 
 

In simple terms, the goal of governing automated decision making is to review a 

software-driven action after-the-fact of the action, to see if it comports with applicable 

social, political, or legal norms. That goal runs into the problems of transparency and 

software testing we have described, as well as the problem of determining whether the 

action originated from a specific piece of software. There are many options to meet those 

problems. One option is full transparency – a computer is, after all, a precise machine, 

and with a full understanding of its construction, inputs, programming, and operating 

state, we can reproduce its actions. But transparency is only one way to achieve the 

evidence necessary to explain how and why a computer system produced a certain 

decision. Other methods create convincing evidence without complete disclosure of a 

system’s internals. Full transparency, including transparency of a program’s operating 

environment, can yield complete explanations for a system’s behavior (or at least be able 

to reliably reproduce that behavior simply by running the disclosed system again). But 

such complete transparency is rarely possible or desirable. Often such systems may be 

subject to trade secret or other concerns that run counter to full transparency. And even 

when it is possible, we run into the limits discussed in Part II above, for full transparency 

will in many cases require disclosing significant detail about a program’s operating 

environment, such as the full contents of databases a program interacts with and 
                                                
161 Kroll et. al, supra note 27, at 24. 
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information about other programs running on the same computer.162 Again, such detail is 

rarely desirable, or even feasible, to disclose. But we do not need such detail to achieve 

the goals of governing software systems.  

Insofar as reviewing an outcome after-the-fact is about the ability to evaluate 

properties of the software being used, we do not need full transparency. Instead as Kroll 

et. al point out, one can use a suite of technical tools including cryptographic 

commitments163 and zero-knowledge proofs164 to allow for an automated decision process 

to be used and at the same time “provide accountability” in the sense that a reviewer can 

check that even undisclosed elements are duly recorded, or are applied equally among 

decision subjects as appropriate (e.g., all decisions are rendered from the same decision 

policy).165 These techniques allow for ex-post verification even when the entire system is 

not transparent, or not transparent to all concerned parties, functioning as a kind of self-

executing software escrow. Skeptical decision subjects, oversight entities, and concerned 

citizens can later verify that the software which was meant to be used and which was 

committed to—or, in the escrow analogy, was deposited into escrow—was actually used 

for a decision. Further, these techniques allow selective transparency: a system may not 

need to be transparent to everyone, so long as members of the public are confident that 

the system’s decisions about them correspond to the version of the system reviewed by a 

                                                
162 See supra Part II. 
163 See Kroll et. al, supra note 27, at 30 (“A cryptographic commitment is the digital equivalent of a sealed 
document held by a third party or in a safe place. … Commitments are a kind of promise that binds the 
committer to a specific value for the object being committed to (i.e., the object inside the envelope) such 
that the object can later be revealed and anyone can verify that the commitment corresponds to that digital 
object.”). 
164 Id. at 32 (“A zero-knowledge proof is a cryptographic tool that allows a decisionmaker, as part of a 
cryptographic commitment, to prove that the decision policy that was actually used (or the particular 
decision reached in a certain case) has a certain property, but without having to reveal either how that 
property is known or what the decision policy actually is.”). 
165 Kroll et. al, supra note 27, at 27.  
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reviewer with the authority to compel transparency—and again, in the escrow analogy, a 

trusted agent could determine that these conditions were met without actually disclosing 

the escrowed software. Finally, these techniques directly verify the relationship between 

inputs, policy, and decision output, sidestepping the need to disclose or record the entire 

operating environment of a computer system. Thus, they allow disclosure of only the 

relevant facts (such as the particular inputs and decision policy used) to only the relevant 

parties (such as only competent oversight authorities, e.g. a court issuing a duly executed 

order for discovery) without compromising the ability of others (i.e., decision subjects, 

the public at large) to verify that oversight can occur. These techniques also reduce the 

scope of disclosure, replacing the need for certain disclosures with direct evidence. 

If one wants to review any action after-the-fact, one needs an audit log or audit 

trail, that is a time-stamped record that documents actions that affect an operation, 

procedure, or event.166 In human-driven, bureaucratic processes, the audit log serves to 

identify who did what when, and why any intermediate decisions were taken. However, it 

is not possible to reconstruct a human’s precise thought process simply from notes. On 

the other hand, digital audit logs can improve on the governance of decision making 

because the process that led to a decision can be precisely reconstructed and analyzed. If 

one wants to know that the audit log in a computer system corresponds to what actually 

happened, one can either re-run the entire system (disclosed via a suitable transparency 

regime) and compare the inputs and outputs or one can use these cryptographic methods 

to receive and verify direct evidence of how the outcome was generated. In addition, even 

a passive observer who is a member of the public (and not just privileged regulators with 

                                                
166 The reliance on such trails is known and used in the law. For example, the Food and Drug Act requires 
the use of such trails in electronic record keeping. See 21 C.F.R. § 11.10(e). 
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the power to compel disclosure of all or parts of the system) can determine that the audit 

log is correct if it is created properly at the time the decision is made. Further, with 

sufficient evidence, an observer will be able to determine that the actions recorded in the 

audit log correspond to the system disclosed to a regulator. These methods can also show 

an outsider that the audit log corresponds to a process with certain desirable properties, 

e.g., showing that the same decision policy was applied in all cases. 

 

B. Dynamic Systems and the Limits of Ex-Post Testing  
 

 

Although the above techniques hold promise for many areas of concern, they do 

not cover all problems that might undermine public trust in computer systems. Dynamic 

systems that change over time pose two problems for ex-post review. First, even if such 

systems are created with the above requirements in mind, whatever analysis is possible 

may aid in determining whether, when, and how things changed and to isolate the effects 

of changes. But how well these approaches could aid such analysis remains an open 

research area. Second, dynamic systems already in place but not designed to support this 

sort of review remain difficult to interrogate.  

The systems that of most concern—those that govern “search engine rankings, 

spam filters, intrusion detection systems, … website ads, … [and which] social media 

posts to display to users”167—are not covered by these solutions. That is, software that 

uses certain types of machine learning or is modified frequently by its operators to 

                                                
167 Kroll et. al, supra note 27, at 24-25. 
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respond and adapt to dynamic inputs and user behavior does not lend itself to a tidy 

analysis of a single, coherent policy uniformly applied. Many systems change often, 

either because of “regular” changes by designers (for example, to enhance their 

functionality or combat abuse) or because they use automated processes such as online 

machine learning models “which [can] update their [. . .] predictions after each decision, 

incorporating each observation as part of their training data.”168 The approach of creating 

an audit log showing that everyone is subject to the same decision policy is less useful 

when systems are dynamic and change over time, because the system may (desirably) 

change between decisions.  

As a general matter, Kroll et. al’s solutions address issues looking forward, 

requiring that decision makers decide on a single policy and publish it in advance of 

making any decisions. These methods, at least as described, do not directly apply to 

situations where the decision policy changes often. Instead, these methods must be 

adapted to address the idea that the decision policy changes over time, as we discuss 

below in Part V, Section 3. 

Algorithms and the software systems that bring them to the real world vary, and 

regulatory approaches to controlling their power must be shaped by who uses them, how 

they are used, and for what purpose they are fielded. As such, we next look at the sort of 

systems and contexts where the approaches offered by Kroll et al. fit well and then turn to 

the open questions of systems already in place or that may be less amenable to these 

approaches. 

 

                                                
168 Id. at 25.  
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V. A TAXONOMY OF POTENTIAL SOLUTIONS 
 

 

Given that software-based decision-making appears to be here to stay and that there 

are limits to traditional transparency solutions for such decision-making, this section sets 

out a taxonomy of when certain approaches for accountable algorithms work well from 

both a technical and legal standpoint. The nature of the appropriate mechanism for 

accountability will depend on the nature of the software system at issue. In some cases, 

the extent to which accountability is needed will turn on whether and how the use of such 

systems is regulated. In some cases, robust accountability will be a law and policy 

requirement; in others, building accountability into software systems will be a best 

practice, at least under current policy. We begin this Part by looking at public sector 

decision-making and explain why accountability is necessary as matter of due process. 

We then turn to private sector, regulated industries which also require accountability. 

Next we examine unregulated industries and offer best practices for accountability. In 

addition, we offer a possible statutory change—the passage of law to encourage and 

protect whistleblowers who know of prohibited practices—to aid in policing the use of 

software in decision-making. 

 

A. Public Systems  
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We start with the easier case, public systems. As described above, in general 

accountable public systems promote the dignity of citizens and support a well-

functioning society. By extension, citizens need some ability to verify that public systems 

operated in a certain way, and complied with social norms, political realities, and legal 

obligations. Recall that a large barrier to accountability and evaluation occurs when a 

system is built without the requirement to generate this evidence in mind from the start. 

The easiest approach to a solution is that when the government chooses to use or 

purchase software, it must use software that meets the standards the government sets and 

the standards should include full transparency.169 And while full transparency of the 

software source code used to build government systems would certainly be useful, both 

for understanding software-mediated decision-making by the government and as an end 

in itself, such disclosure is insufficient on its own to provide governance. Indeed, as we 

have argued, calls for transparency often miss the point, going too far for some 

requirements and not far enough for others.  

We offer instead that when the state is using software for sensitive decision-making 

that raises due process concerns or where the integrity of the state’s process may be 

questioned (e.g., when using voting machines) the state must use software that allows for 

accountability to the public and evaluation by citizens at large. The state may build such 

software in-house or buy it, but the requirement applies in both cases. Given that the 

                                                
169 Citron, for example, advances a more complete view of this argument, describing how it would be 
achieved and saying that “open code governance provides a means to make agency decisions bound up in 
information systems more transparent, democratic, and legitimate” in her article  “Open Code Governance”, 
University of Chicago Legal Forum 355 (2008). Citron goes further than transparency, arguing that 
government-procured code should be made open-source, enabling “new opportunities for participation by a 
broad network of programmers, who can contribute to the development of accurate and secure systems.” 
Indeed, many scholars and advocates have proposed that government-procured software should be open 
source, both for reasons of transparency and also because openness fosters participation and treats such 
software as a public resource, consonant with the doctrine that government works are not entitled to 
copyright protections. 

Marcela Mattiuzzo


Marcela Mattiuzzo




DRAFT – FINAL VERSION FORTHCOMING 

54 Trust But Verify [April, 2017 

 

government, especially at the state or local level, may not be able to build the software it 

needs. When using outside vendors to provide the software or software based-analysis in 

these areas, the government can and should define complete requirements for procured 

systems based on the goals those systems are meant to fulfill. In addition, it should 

demand in procurement requirements and contracts that the resultant system be able to 

generate evidence verifiable to a competent observer that it satisfies those goals. This 

evidence could be generated per-decision or once for the entire system if the application 

scenario allows it. Further, what constitutes sufficient evidence will depend on the goals 

of the system overall. For example, in electronic voting an auxiliary voter-reviewed paper 

record may suffice as evidence of correctness, as counts can later audit the 

correspondence between electronic and paper ballots. Conversely, in another counting 

application such as the census, paper records alone cannot describe sampling procedures 

or interpolation from returned questionnaires, and do not constitute sufficient evidence of 

the system’s correctness for its designated purpose. To have sufficient accountability, it 

must be possible to review the correctness of every individual decision produced by the 

system. 

Given that the government already vets software for security and privacy issues 

among other criteria, it is hardly peculiar to demand that systems produce evidence of the 

correctness of each decision they make. Private sector companies already employ testing 

regimes to convince themselves that software (both for internal use and for sale to 

customers) operates as expected. And in many cases, software vendors must provide 

evidence beyond simply attesting to the correctness of their software. For example, many 

online service providers specify an application programming interface (API) which 
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describes precisely how software operating remotely on the provider’s computers is 

meant to operate (deviations from the promised behavior in the API are thus clear bugs). 

In addition, enterprise software vendors create custom software built to client-specified 

requirements all the time. The government is a large, albeit somewhat special, customer, 

but it is nonetheless a customer that can list its needs for the market to meet. Indeed, at 

least one agency, the Food and Drug Administration, sets out technical requirements by 

requiring those who “create, modify, maintain, or transmit electronic records shall 

employ procedures and controls designed to ensure the authenticity, integrity, and, when 

appropriate, the confidentiality of electronic records, and to ensure that the signer cannot 

readily repudiate the signed record as not genuine.”170 The FDA also specifies that audit 

trails be a part of “such procedures and controls.”171 Our argument is that Kroll et. al’s 

approach enhances such requirements, by helping to ensure that the audit trails have not 

been tampered with or faked and tying the evidence in them to the actual actions taken. 

Those assurances help to fulfill Mashaw’s three demands for bureaucratic justice. 

Thus we argue the state must still adhere to Mashaw’s three points: making 

“accurate,” “cost-effective” judgments, while giving “attention to the dignity of 

participants,”172 but a modification of the demands of dignity is needed. Although the 

subject of such a process may not have the literal ability to know or understand what 

reasons are behind a decision,173 when a sensitive decision is being made—or as Mashaw, 

Schwartz, and Citron have stated in different ways, when the state is making decisions 
                                                
170 See 21 C.F.R. § 11.10. 
171 See 21 C.F.R. § 11.10 (“Such procedures and controls shall include the following: … Use of secure, 
computer-generated, time-stamped audit trails to independently record the date and time of operator entries 
and actions that create, modify, or delete electronic records. Record changes shall not obscure previously 
recorded information. Such audit trail documentation shall be retained for a period at least as long as that 
required for the subject electronic records and shall be available for agency review and copying.”). 
172 Schwartz, supra note 18, at 1348. 
173 Id. at 1349. 
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that raise due process concerns—the state must use software that produces sufficient 

evidence to allow for accountability and evaluation by a competent authority after the 

fact of the decision. Further, it must be possible even without oversight for a decision 

subject to verify the integrity of this evidence (i.e., that it is correct, corresponds to the 

decision, and does not contradict itself). In general, this requirement assures that the 

subject of any such processes can determine that the rules and procedures have been 

followed. Thus, even if a subject cannot know or fully understand the software and data 

behind a process, she can know and understand the rules and procedures were followed in 

a way that protects her dignity, as Mashaw has developed that idea.  

Further examining this approach illustrates its benefits. At the general level, 

software firms will have a requirement that they can build against—the production of 

specific evidence that allows for accountability and evaluation of the system’s 

performance with respect to specific goals by customers and, ultimately, end users and 

decision subjects. Insofar as the government claims that a process uses certain methods, 

meets certain legal requirements, etc., the government can offer clear requirements that a 

vendor can implement. Of course as Citron notes “Policy is often distorted when 

programmers translate it into code.”174 That problem is real. The benefit of accountability 

mechanisms is that they provide a way to test the code ex post and see whether such a 

problem has occurred so that it can be fixed. Government programs that Schwartz and 

Citron critiqued or that Kroll et. al offer as good cases for accountability have limits on 

which factors they can and cannot consider and on the methods they can and cannot use 

to make a decision. When an agency is deciding who should receive “Medicaid, food 

stamp, and welfare” benefits, whether someone should be on a no fly list, who should be 
                                                
174 Citron, supra note 5, at 1261. 
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identified as owing child support,175 who should be granted a Visa, whom to audit for tax 

compliance, whom to search for security checks at airports, and so on, it can set out what 

criteria were expected to be used and show that in fact it used those criteria (and only 

those criteria) if software was part of the decision-making. 

Of course, many decisions in this area involve the discretion of an agency employee, 

a person, rather than vesting the full agency of the decision in software. But that does not 

change the need for having sufficient evidence to analyze the software component or to 

hold the entire process accountable. 176  Insofar as the parameters of a particular 

application allow for little discretion, when they are set out and applied via software with 

audit-logs and the sort of direct evidence Kroll et. al describe, citizens can have better 

assurance that the decision-maker followed the parameters. Even if the decision-maker 

has discretion, if software was used to process data within prescribed limits for how a 

decision was made, the decision-maker can show that the stages up to her discretionary 

decision adhered to required criteria and thus meet the demands of due process. Further, 

the decision-maker can record in an audit log what information was present at the stage 

where discretion was applied, and any details about how and why discretion was applied. 

Later, this information can be used to adjudicate any dispute about the appropriate 

application of discretion in a particular case. 

 

 

                                                
175 Citron, supra note 5, at 1256-57. 
176 See MASHAW, supra notes 115-116, and accompanying text (noting difference between exact rules and 
demands of justice for administrative law). 
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B. Private Systems  
 

 

Although due process concerns explain why government use of software for 

certain decision-making applications requires the creation of the sort of evidence we have 

described, whether the same is true for private sector uses turns on the nature of the 

private activity at issue. Private sector actors may want to offer, of their own accord, 

evidence of how a decision was made to engender trust with their customers. However, 

the extent to which a given actor or area of industry will be required by law to do so 

varies depending on the actor or industry.  

Whether software making decisions in the private sector must produce evidence 

of its correct operation turns on a few issues. If the private sector industry in question is 

regulated, such as the transportation or pharmaceutical industry, the creation of evidence 

by automated decision processes is a natural requirement. If the sector in question is not 

regulated, it would seem that the accountability such evidence would enable is not 

required, but it is certainly a useful best practice and may be a de facto requirement under 

current policy. Given that the Federal Trade Commission or other consumer protection 

agencies may have questions about how a process worked or the truthfulness of a claim 

about the quality of an offering, we argue that any company should consider their 

requirements for designing software to produce evidence or audit trails of how decisions 

were made as a best practice, since it can improve trust in their products and services. In 

addition, we offer that, to the extent that disclosing such evidence explains how a system 

works, such an approach can allow community feedback and encourage the identification 

of unexpected errors in ways that can help companies built better products. In the security 
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space, bug testing challenges, open-source development, and bug bounty programs 

currently already fulfill this role. Last, we offer that whistleblower protection may be 

useful to aid in revealing whether a company is intentionally using prohibited 

discriminatory methods, such as criteria based on race or gender in software making 

decisions where these factors are proscribed. 

 

1. Explicitly Regulated Industries 
 

 

The use of software by the private sector in regulated industries raises a tension 

between trade secrets and the need to know whether a system adheres to agreed-upon or 

required standards. The recent discovery that Volkswagen used software so that its cars 

passed emissions tests but performed differently on the road is one example of a problem 

where evidence of how the software operates would enable evaluation, promote 

accountability, and ensure compliance. An automaker could be required to provide the 

software to a government tester. The software could be required to be designed to 

produce sufficient evidence of how it operates to make it straightforward for the tester to 

analyze the software and determine if it complies with the standard under test. Using 

Kroll et. al’s idea about zero-knowledge proofs, the automaker could accomplish this 

while keeping proprietary methods secret, yet still be required to commit to using certain 

methods and to produce sufficient evidence so that testers could verify that the system 

performed as promised.  

A larger problem arises with networked systems, which turn almost anything into 

a PC or browser that can be updated often if not daily. For example, Tesla announced it 
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would address issues about the range its cars can travel on one battery charge by a 

software update. The update is designed to allow the range meter (which indicates how 

far one can go before needing to recharge the battery) to be more accurate by accounting 

for real time driving conditions such as terrain and wind and by checking the distance 

from a charging station to let drivers know whether they are moving out of range of the 

closest station. And while that new functionality is important and useful, updates can 

radically change the behavior, and therefore compliance properties, of a computer system. 

The key point is that Tesla, and other automakers pursuing the next generation of 

automotive functionality, are treating the car more like a computer than previous vehicles, 

in the sense that features are implemented as software running on generic hardware rather 

than as dedicated-to-a-purpose mechanical components that would have to be physically 

swapped out to change their behavior. Tesla alone issues updates every few months to 

improve 0 to 60 performance and add safety features such as “active safety features like 

automatic emergency braking, blind spot warning, and side collision warning” on models 

that have the hardware needed for the systems to work.177 Other updates claim to improve 

radio reception and create a guest or “valet” driver mode to limit the way the car can be 

driven and access to confidential information.178 And the so-called auto-pilot mode was 

delivered as a software upgrade too. Future Teslas, Volkswagens, and really any 

automaker’s cars will rely more and more on software for most of the way the car 

operates, and on network connections to the world outside the vehicle for updates and 

real-time data. This calls out a problem for any networked, software driven device—what 

is often called “the Internet of Things”—that requires some approval before being 

                                                
177 See Davies, supra note 11. 
178 Id. 
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deployed or which must comply with some safety standard, since software-driven 

features of such devices can change radically when the software is updated. 

Insofar as any device makes a claim about performance or adds a feature in a 

regulated context, that device must be tested before being put into the stream of 

commerce and should be built to provide the requisite level of evidence and assurance to 

facilitate accountability and evaluation. If a company wants to update systems that 

normally undergo review by a regulatory agency such as the NHTSA or FDA, it must not 

be allowed to push the update until the agency has analyzed the changes and verified the 

continued compliance of the updated device, subject to the original, approved parameters. 

This includes verifying that sufficient procedures are in place to allow the agencies to 

review the operation of devices in the field or on an interaction-by-interaction basis (if 

this is necessary). One ancillary benefit of carefully defining evidence for showing key 

compliance properties of a piece of software is that—unless an update transgresses the 

limits of the agreed-upon original testing parameters—companies can update rapidly as 

long as they can demonstrate that their update falls within those parameters. Further, 

clarity about what a device must do (and must show it does) can help companies focus 

their software development efforts. With such guarantees from a company in place, an 

agency will be able to test and approve updates faster than it could in a world where 

every product revision had to be reviewed de novo. Thus, updates could be pushed out 

more quickly, because oversight bodies will have the technical evidence showing whether 

the updated product was still within the regulations, or has changed sufficiently to require 

a more robust period of testing and approval. 
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2. Building Trust: Implicitly Regulated Industries or Activities 
 

 

Battery life for cell phones shows how the question of transparency is different in 

unregulated sectors. Like a car battery range indicator, the charge indicator on a cell 

phone is based on a model, rather than reporting a measurement determined in hardware. 

Like a car battery charge, the way one uses the device affects the length of the charge. As 

a general matter, users and non-users, will want to know whether the indicator is accurate 

within certain parameters, and may want a way to check the truthfulness of the indicator 

as part of consumer protection. As with the Tesla example, if a company makes a claim 

about the length of time a charge lasts, the more third parties that can verify the claim, the 

better. Again, insofar as a system is somewhat unchanging and the public wishes to know 

whether the system adheres to certain methods and practices, the Kroll et al. criteria 

should work well.  And if a company wishes to update or enhance a feature that does not 

require government testing and approval before launch, but the company wishes later to 

argue that its logs and data indicate all was well with a system or operation under scrutiny, 

it will need to offer a way for third parties to verify that evidence proffered to this end is 

as it was when the issue arose, and has not been doctored.  

Thus, starting with the goal of producing evidence of chosen desired properties, to 

support accountability to customers or regulators and evaluation by the public, as 

software is developed and deployed aids a company in two ways. First, the approach 

allows a company to address the growing trend of journalists, online communities, and 

perhaps cranks (i.e., purveyors of fake news) to be provocative with grand claims of 
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failure or misdeeds. Second, should criticisms catch the attention of an agency like the 

FTC or a class action suit be filed, companies will be in a better place to respond to 

legitimate inquiry without having to stick their head in technical sand and claim that trade 

secrets, complexity, technical infeasibility or some combination of these issues means the 

public must simply defer to and trust the company that they are being honest and obeying 

rules.  

Although designing software that gives evidence that it meets chosen 

requirements is a powerful solution to problems stemming from software-based decision-

making, two issues pose a problem for this approach. We turn to those next.  

  

 

3. The Challenge of Dynamic Systems 
 

 

At this point we must turn to a problem that affects both public and private sector 

uses of software: highly dynamic systems, especially those relying on online machine 

learning techniques, may not be amenable to the accountability and evaluation criteria for 

which we argue. As above, whether such systems should be allowed in certain contexts or 

in what way they may be used turns on whether the public or private sector is using such 

systems and the purpose for which they are deployed. 

  The baseline reasons for requiring that public sector uses of software generate 

evidence that they can be evaluated by oversight entities and so provide accountability 

for decision-makers, namely concerns around due process, mean that the government 

may not be allowed to use such dynamic systems for certain purposes. Regardless of 
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whether the government builds or outsources the creation of the software in question, 

even when accountability and evaluation are possible and the software adequately 

addresses compliance requirements, due process and justice concerns specific to the 

application of these tools by government indicate that such systems cannot be used. The 

counter-argument that preventing the government from using the latest and greatest 

techniques in machine learning means that government is hampered and will be unable to 

do its job well is, of course, an overstatement. If an agency wants to use a highly dynamic 

system, the agency will bear the burden of proving that the system satisfies due process 

and justice concerns. And even if there is a case where the is no system that satisfies 

these requirements, the agency would have to show that in that extraordinary case, the 

trade off means it should be allowed to use it nonetheless It also misses the point of 

Mashaw’s triumvirate for government decision-making. Decisions must strive to be 

accurate, cost-effective, and to give attention to the dignity of the subject, and although 

those three criteria may “compete with one another, [] bureaucratic justice becomes 

impossible without respect for all three of them.”179 Sometimes, ongoing modification of 

a rule is desirable and falls within the requirements of bureaucratic justice. Thinking 

about airlines and anti-terrorist safety measures shows the problem.  

Other than perpetrators, no one is in favor of hijacking or blowing up a plane, and 

a goal of national security efforts is to prevent such actions. New machine learning 

techniques may be better than humans alone at detecting patterns that indicate someone 

may be trying to hijack or blow-up a plane. Such a system might create or take as input 

from human analysts a list of suspect people, either for enhanced security review or to be 

banned from flying. On the one hand, the process must be cost-effective. Given the 
                                                
179 Schwartz, supra note 18, at 1349.  
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hundreds of millions of people who travel within just the United States each year, having 

humans try to cull through just the passports and visas would be an enormous task. Even 

if society had enough people to do that work, it is unlikely that they could be trained to 

pick up patterns, do so consistently, and do so fast enough that the pattern found is still 

relevant to the task of finding terrorists the next day or week. In addition, the raw dollar 

cost of such manual review would be quite high. If the task further requires cross-

referencing the paper trail with pubic online social media posts, facial recognition, and 

more, we see that the task is not at all a good one for humans but an excellent candidate 

for automation. In particular, such a task seems well suited for a machine learning system. 

But if such a list of suspected people is generated, and yet no one can explain how the list 

came to be, the goals of bureaucratic justice are not served. Even if a model can claim to 

satisfy requirements of due process by applying to all potential suspects in an equal way, 

no “ground truth” exists for the criterion of the list (an unmeasurable risk), so testing 

whether the list is accurate is an open question. Furthermore, if someone is on the list, 

believes that he or she should not be, and wants to challenge the choice, any lack of 

analyzability of the model which generates the list undermines the dignity interest that 

completes the triumvirate. Thus, to satisfy the requirements of bureaucratic justice, 

government should not be able to use a technique that does not meet the three criteria and 

by extension, a technique that does not allow for the evaluation of how decisions are 

made and accountability for these justifications. Yet following our approach saves the 

process. 

Although a system that created a dynamic rule for selecting passengers would 

facially raise concerns about the dignity of screened passengers, it could conceivably be 
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constrained to update its rule in a way that ensures desirable properties. For example, a 

system might guarantee that the chance of having to undergo more stringent security 

procedures was independent of certain protected statuses, such as age, gender, or 

ethnicity. As long as updates to the rule do not violate this requirement and do not stray 

outside the envelope defined by a sufficient rulemaking, small updates to the rule to 

detect new patterns indicating risk might be allowable. 

Private sector uses of such systems will run into problems insofar as they are 

regulated or need to show that they adhere to a certain set of rules or procedures. This is 

especially true of the many systems under scrutiny already built, in place, and working.  

Four areas—social networking, search, online news, and online advertising—have come 

under sustained criticism for several years and reveal the problem. We will not restate 

claims from the literature, as they are varied and proffered objections to automated 

practices are disparately accurate and substantive. For the purposes of this Paper, we 

remark only that companies in any of these areas have been accused of misdeeds, and a 

key question in all the cases is whether a given system behaves in a certain way. This 

question highlights the problem with highly dynamic systems, because such systems 

evolve the rule in effect for any given decision, creating challenges in determining why a 

system behaved as it did. That is, whether a company using dynamic systems will be able 

to work within the criteria for which we have called, namely for accountability and the 

creation of evidence as to how a system functions, will depend on precisely how and 

when the decision rules are updated. 

As in the public sector example, so long as decision rule updates can be shown 

not to change an acceptable rule into an unacceptable one, or to change a rule too fast for 
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others to adapt to, rule changes may be acceptable and even desireable. For example, 

information providers such as search engines and social networks often change their 

ranking algorithms to combat abuse by low-quality sites or posts that want to show up 

higher in the results. These changes benefit both users, who see better results, and 

legitimate site owners or posters, who need not worry that their place will be usurped by 

dint of others’ bad behavior. However, large changes to the ranking algorithms invariably 

demote some legitimate sites which were naturally better suited to the rules prior to the 

changes. In search, because many websites use advertising as their primary revenue 

source, large changes in traffic can have commensurate effects on sites’ bottom lines. 

Naturally, sites which are demoted in ranking updates suffer corresponding decreases in 

the number of visitors they see, and thus generate less revenue for their owners. Website 

operators therefore often see large rule changes as arbitrary and capricious. For social 

networks, users may believe their posts ought to be seen by their contacts, and so changes 

to the way posts are ranked and displayed which alter that expectation are often greeted 

with skepticism. Changes can raise questions about fake news or bias about which news 

or posts are promoted. If, however, the changes by information providers happened in 

small steps over time or could be shown to only change the rules within certain bounds or 

could explain to users how and why the changes affect content rankings, rule changes 

would be more palatable and could be weighed against the surplus created by changing 

the rule.  

Until recently the need to assess such systems has not been urgent, but as they 

become more common, the people they affect are demanding the ability to assess them. 

The terms “machine learning” and “artificial intelligence” suffer from a problem similar 
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to the term algorithm: there is an almost mystical or monolithic view of what the terms 

mean. Artificial intelligence seeks to build systems that solve general and abstract 

problems in the way humans do, or in yet-undiscovered better ways. However, AI 

remains in the distant future and the stuff of science fiction, even as the complexity of 

systems that do not generalize their approaches makes computers seem ever smarter. 

These seemingly intelligent systems can often generalize to apply to data they have not 

encountered yet through machine learning, but not to new approaches to problems or to 

general reasoning. For example, a voice recognition system can interpret phrases it has 

never heard before, but cannot (without significant modification) learn an entirely new 

language or grammar. But artificial intelligence will continue to grow its reach as ever 

more specific models are constructed and stitched together. Machine learning is the stuff 

of these models, and the best path known to build artificially intelligent systems (whether 

those systems have specific intelligence like a speech recognition engine or general 

intelligence like Commander Data). As a field, machine learning employs many specific, 

non-mysterious algorithmic tools such as decision trees; rule learners; and classification 

techniques such as naïve Bayes, nearest-neighbor classification, neural networks, and 

support vector machines180 because “in practice [] each of these algorithms is good for 

some things but not others.”181 And as a general matter, one group of computer scientists 

has noted within machine learning “some algorithms are more amenable to meaningful 

inspection and management than others.”182 Decision trees, naïve Bayes classification, 

and rule learners were the most interpretable, kNN was in the middle, and neural 

                                                
180 Singh et. al., supra note 26, at 4. A full explanation of these techniques is beyond the scope of this Paper. 
For a general background on these techniques and their limits see DOMINGOS supra note 123. 
181 DOMINGOS supra note 123, at Kindle Loc. 179. 
182 Singh et. al., supra note 26, at 4. 
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networks and support vector machines were the least interpretable.183 We offer generally 

that machine learning systems need not be inscrutable. 

Even if a system was not built with the goal of supporting analysis to start, there 

are ways to mitigate this fact. Any company using a machine learning approach to 

building some system needs to understand how that system works so that the company 

can manage the system and see how it performs in the field. This need opens the door to a 

type of evidence that can support outside analysis: the evidence the company uses to 

convince itself that the system is operating as desired could be reviewed for disclosure or 

made available to oversight entities. Along with evidence about how the software is built 

and run, this evidence can be convincing as to what system made a particular. In some 

cases a company may use an approach such as neutral networks that is not easy to 

interpret, even if its internals are fully disclosed. Nonetheless, the company could reduce 

that complexity by translating the inscrutable internals of the complicated model into a 

more interpretable decision tree system providing sufficiently similar decisions so that 

the company can work with and interpret the output more easily.184 A related area of 

work looks to make machine learning interpretable.185 This approach seeks to offer a way 

“to explain the predictions of any classifier or regressor” by “presenting textual or visual 

artifacts that provide qualitative understanding of the relationship between the instance’s 

                                                
183 Id.  
184 While it is known that models designed for interpretability have only slightly lower performance than 
their inscrutable cousins, it is not known whether the additional errors are distributed evenly across all 
inputs or are biased towards a particular subgroup. That is, the interpretability meant to help the public 
understand whether the model is discriminating unduly may itself be a cause of discrimination in some 
cases. Research continues in this area, but we note that it should be possible to characterize the distribution 
of errors in any particular application, particularly in cases where more complex-but-inscrutable models 
already exist. 
185 For an example, see Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin, “Why Should I Trust 
You?”: Explaining the Predictions of Any Classifier, arXiv:1602.04938 [Cs, Stat], 16 February 2016, 
available at http://arxiv.org/abs/1602.04938.  
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components (e.g. words in text, patches in an image) and the model’s prediction.”186 In 

addition, companies are constantly updating and building their software systems, and that 

provides the chance to modify the software as it evolves in ways that produce evidence to 

support outside analysis and ultimately promote accountability for automated decisions. 

Even when that is not possible, insofar as a company may need to explain what its system 

does, it should either use a method that is amenable to “meaningful inspection and 

management” or “interpretation,” or—if using a method that is not as amenable—reduce 

that method to one that is better suited to “meaningful inspection and management” or 

“interpretation” while being careful to maintain fidelity to the original system both for 

actual decisions and for the distribution of errors. 

There is an additional reason companies should offer ways for third parties to test 

and understand a company’s software and its outputs. It may be that a dynamic system 

designed in the best of faith will yield an undesired result. If, however, a company finds 

ways for third parties to test its software and offers bounties for finding such outcomes 

(much as is done for security bugs), rather than an antagonistic policing game of 

“Gotcha!”, in which critics cry foul in public, a more constructive norm of helping 

improve the system could emerge. For example, one popular image sharing site 

accidentally classified photos of African Americans under the tag “gorillas” using an 

automated system intended to determine the contents of a photograph.187 A system of 

testing and bounties could ferret out such problems before they become problematic 

product issues and negative news stories. 

                                                
186 Id.  
187 See e.g., Alastair Barr, Google Mistakenly Tags Black People as ‘Gorillas,’ Showing Limits of 
Algorithms. DIGITS BLOG. WALL STREET JOURNAL. 1 July 2015 at 
http://blogs.wsj.com/digits/2015/07/01/google-mistakenly-tags-black-people-as-gorillas-showing-limits-of-
algorithms/ 
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Of course, the use of evidence as a way to describe what systems are doing 

presupposes consensus on what the system should be doing. And absent methods for 

defining these characteristics precisely ahead of time, critics will still cast aspersions at 

systems they believe still act to produce discriminatory or illegal outcomes. For that 

possibility we offer that a whistleblower and public interest right of action law may be 

needed.  

 

C. Legislative Changes to Improve Accountability  
 

 

Even with robust technical controls, companies using software-driven decision-

making might still design their software to cause negative, discriminatory, or unfair 

outcomes while hoping that no one would know or that the perpetrators could deny that 

intent. Indeed, the precise outlines of what constitutes illegal or discriminatory behavior 

will always be the purview of messy, after-the-fact debates. Actors who wish to skirt the 

boundary of acceptable behavior may in some cases take liminal actions open to 

legitimate interpretation. Thus, we offer that, in addition to technical measures, policy-

based controls are also appropriate. In particular, we propose that a whistleblower and 

public interest cause of action law would improve accountability. 

Taken together, improving whistleblower protection and enabling a private right 

of action would help build a legal system to manage the problem of intentional, yet 

difficult to detect, discrimination via software. Given the federal government’s roles as 

regulator and buyer, a federal whistleblower statute modeled on Sarbanes-Oxley gives 
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one way to think about whistleblower protection. Part of the reason for passing Sarbanes-

Oxley was that unlike government employees, employees of publicly traded companies 

had no protection when they “act in the public interest by reporting wrongdoing, [that is] 

who blow the whistle.”188 Further, the Senate stated that “[w]ith an unprecedented portion 

of the American public investing in these companies and depending upon their honesty, 

this distinction does not serve the public good.”189 Similarly, with an unprecedented 

portion and an increasingly important portion of decision-making being processed 

through or influenced by software, with due process and vital verification interests at 

stake, there needs to be protection for employees who blow the whistle on software 

companies who knowingly violate the law. Other reasons behind passage of Sarbanes-

Oxley further support a similar provision in the software context. First, without a federal 

law, a potential whistleblower is governed by whatever law, or lack of law, addresses the 

action in a given state or country where the whistleblower is.190 Just as financial services 

companies can and do work across borders and set up subsidiaries or use other structures 

to shield against liabilities or prosecution, so too do software companies. Second, making 

retaliation a felony would increase protection for whistleblowers.191 That protection 

won’t by itself prevent negative repercussions such as blacklisting, but it may be possible 

to set up a bounty system so that a whistleblower will be able to cope with the difficulty 

in getting a new job after reporting violations.192 When software that makes important 

decisions is faulty, issues of civil rights, due process, and the integrity of our democratic 
                                                
188 148 Cong. Rec. S7418-01, S7420 (daily ed. July 26, 2002) (statement of Sen. Leahy). 
189 Id. 
190 Id. 
191 Sarbanes-Oxley Act of 2002 § 1107, 18 U.S.C. § 1513(e) (2012). 
192 See Dodd-Frank Wall Street Reform and Consumer Protection Act, § 922(a), 15 U.S.C. § 78u-
6(b)(1)(A)-(B) (2012); see also Stavros Gadinis and Colby Mangels, Collaborative Gatekeepers, 73 WASH. 
& LEE L. REV. 797, 829 (2016) (explaining the problems of blacklisting and Dodd-Frank bounty system 
design as a way to mitigate that problem). 
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systems affect the United States government. First, the government is affected directly in 

its pocketbook (in that the government would have paid for illegal software, lost time and 

money, and have to remedy the failure). Second, the government suffers generally in its 

perception with U.S. citizens and even people around the world when it uses faulty 

software to make important decisions or when it stands by while such practices occur in 

the private sector. Protecting whistleblowers at a federal level shows a commitment by 

the government to take these issues seriously and to stop them. 

On top of whistleblower protection, a public interest cause of action that balances 

the government’s interest in pursuing a case against a private citizen’s ability to do so, 

would aid governing the use of software.193 Our model derives from qui tam actions 

under the False Claims Act of 1863,194 which allows “any person to prosecute a civil 

fraud—in the name of the United States—against any person who allegedly makes a false 

                                                
193 Some argue that such an approach causes an “explosion” of or “gold rush” effect on litigation, but a 
recent empirical study indicates such claims are overstated. See David Freeman Engstrom, 114 COLUMBIA 
L. REV. 1913, 1922 (2014).  
194 See Julie Ann Ross, Citizen Suits: California’s Proposition 65 and the Lawyer’s Ethical Duty to the 
Public Interest, 29 U.S.F. L. REV. 809, 810 n.4 (1995) (noting relationship of qui tam to “modern day 
citizen suit”); accord Michael Ray Harris, Promoting Corporate Self-Compliance: An Examination of the 
Debate Over Legal Protection for Environmental Audits, 23 ECOLOGY L.Q. 663, 710, n. 317 (“A growing 
trend in environmental law is the use of the qui tam provisions of the False Claims Act of 1863 (FCA) to 
force corporations to abide by environmental reporting requirements.”). The False Claims Act is codified at 
31 U.S.C. §§ 3729-3732. It should be noted that the use of qui tam actions is subject to some debate and 
criticism. See Trevor W. Morrison, Private Attorneys General and the First Amendment, 103 MICH. L. REV. 
589, 607-618 (2005) (examining private attorney general actions and noting pro arguments--“[P]rivate 
attorneys general are a cost-effective means of both pursuing the public welfare and returning power to the 
people themselves. For legislatures that value cheap, robust regulatory enforcement, private attorneys 
general may present an attractive option.” Id. at 610. Arguments against include: private attorneys may be 
self-interested and motivated by financial gain, may free-ride by waiting to follow the government’s lead 
for opportunistic litigation rather than being true investigators, may accept settlements too easily, and may 
undermine the provision of consistent agency or government enforcement. Id. at 607-619 (finding “no 
definitive resolution to the policy debate over private attorneys general” and that legislatures resolve the 
matter differently based on context.)); John Beisner, et. al., Class Action Cops: Public Servants or Private 
Entrepreneurs?, 57 STAN. L. REV. 1441, 1457-1460 (2005) (comparing class action private attorney 
general actions to qui tam suits and noting that though qui tam actions may allow citizens to bring suits that 
abuse or are not part of the policy objectives behind the act enabling a given suit, as opposed to class 
actions, the legislature can alter the parameters of the enabling act to prevent such abuses). 
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claim to the United States government”195 and California’s Safe Drinking Water and 

Toxic Enforcement Act of 1986, which addresses environmental concerns by allowing a 

public interest cause of action balanced against governmental interests in pursuing such 

matters.196 To work for software, this model would have to be precise about what would 

be subject to the public cause of action, provide for the ability to file suit, and set out the 

procedure under which such a suit would be filed. We think that the clearest examples of 

when a public cause of action should be allowed would be in public sector use of 

software written by an outside vendor and regulated private sector cases.197 Voting 

machines and the auto industry offer good examples of how this approach could work. 

Voting machines and software in cars are excellent examples of software systems 

that need to be trusted and tested to ensure that they function as desired. A public interest 

cause of action statute to govern either industry would enable government and private 

oversight by including injunctive remedies, specific and daily civil penalties, detailed 

notice and minimum threshold requirements for private action, and time limits to allow a 

public monitoring function to exist while maintaining the government’s ability to pursue 

cases.198 The California approach sets the penalty at $2,500 per violation. Some statutory 

amount is needed because no money is at issue under California law for the behavior in 

question. We do not take a position on the correct amount for statutory penalties for 

software harms. Rather we note that the amount must be large enough to provide an 

                                                
195 Saikrishna Prakash, The Chief Prosecutor, 73 GEO. WASH. L. REV. 521, 531 (2005) (examining the 
history of qui tam actions and the executive’s final authority in such actions). 
196 See generally Cal. Health & Safety Code § 25249.5-.13 (West 1999 & Supp. 2005). 
197 If the government built its software, there may be sovereign immunity issues that prevent the lawsuit by 
private citizens. That would not undermine a legislature requiring software that is analyzable and that the 
process in which it is used supports accountability for decisions made. It only undermines the use of private 
civil actions as a mechanism for policing the software’s correctness. 
198 See e.g., Cal. Health & Safety Code § 25249.5-.13 (West 1999 & Supp. 2005) (using the same levers for 
environmental protection). 
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incentive for the action. Staying with our example industries, given the number of voting 

machines in use and autos on the road, $2,500 may be sufficient. In other cases where 

important but lower scale use of software is at issue, the statute may need to set a higher 

amount. Regardless of the amount set, with civil penalties, courts would look at (A) The 

nature and extent of the violation; (B) The number of, and severity of, the violations; (C) 

The economic effect of the penalty on the violator; (D) Whether the violator took good 

faith measures to comply with regulations and the time these measures were taken; (E) 

The willfulness of the violator’s misconduct; (F) The deterrent effect that the imposition 

of the penalty would have on both the violator and the regulated community as a whole; 

(G) Any other factor that justice may require.199 If the statute is passed by a state, as a 

way to limit frivolous suits, only an Attorney General, a district attorney, or a city 

attorney for a city with a sufficient population of (perhaps more than 750,000 people) 

could bring a suit on their own.200 Government attorneys in smaller jurisdictions could 

bring suits provided they receive permission of their district attorney.201 

Under this approach, non-governmental actors can bring an action in the public 

interest under certain conditions.202 To start, the potential plaintiff would have to give 

notice to the government attorney with jurisdiction over the potential case and to the 

alleged violator of the Act and wait out a period of deferral to the government attorney 

with jurisdiction (this period is sixty days in the California law) before bringing the 

suit.203 The waiting period could be shorter or longer, but it allows the state to decide 

                                                
199 Cf. Id. § 25249.7(b)(2). 
200 Cf. Id. § 25249.7(c). 
201 Cf. Id.  
202 Cf. Id. § 25249.7(d). 
203 Cf. Id. § 25249.7(d)(1). 
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whether to act. If the State picked up the case and was “diligently prosecuting” it, the 

private action would no longer be allowed.204  

As another way to limit frivolous lawsuits, the person bringing the suit would 

have to provide a certificate of merit which would verify that the person executing the 

certificate had consulted with one or more persons with relevant and appropriate 

experience or expertise who reviewed facts, studies, or other data regarding the claimed 

violation that is the subject of the action, and that, based on that information, the person 

executing the certificate believes there is a reasonable and meritorious case for the private 

action. 205  Furthermore “factual information sufficient to establish the basis of the 

certificate of merit . . . [would be required to] be attached to the certificate of merit that is 

served on the Attorney General.”206 The factual material in the certificate would not be 

discoverable unless it was “relevant to the subject matter of the action and is otherwise 

discoverable,”207 which would help protect potential whistleblowers who might provide 

such material.  

After a case is over, however, the alleged violator may move for, or the court of 

its own volition may conduct, an in camera review of the certificate of merit and the legal 

theories of the plaintiff to see whether the basis was real. 208 If the court deems the basis 

to be false, it may bring sanctions for a frivolous lawsuit.209 California’s provision on 

which we draw states, “If the court finds that there was no credible factual basis for the 

certifier’s belief that an exposure to a listed chemical had occurred or was threatened, 

                                                
204 Cf. Id. § 25249.7(d)(2). 
205 Cf. Id. § 25249.7(d)(1). 
206 Cf. Id. 
207 Cf. Id. § 25249.7(h)(1). 
208 Cf. Id. § 25249.7(h)(2). 
209 Id.  
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then the action shall be deemed frivolous within the meaning of Section 128.6 or 128.7 

of the Code of Civil Procedure, whichever provision is applicable to the action.”210 These 

two sections and their adaptation to our approach are vital, because one section allows the 

court to order the instigator of the frivolous lawsuit to pay attorney’s fees and reasonable 

expenses,211 and the other section provides authorization for the court to impose sanctions 

and punitive damages including but not limited to attorney’s fees with the stated goal of 

having the sanctions deter frivolous suits.212 A heightened pleading requirement or 

procedural limit, such as exhausting certain remedies, might be incorporated to limit 

further concerns regarding an explosion of suits. In addition, the statute could require a 

certain level of pattern and practice before such a suit would be allowed thereby 

preventing numerous small-scale, nuisance suits and focusing on larger scale systemic 

issues. 

 

CONCLUSION  
  

 During the Cold War, Ronald Reagan liked to use a Russian proverb, “trust but 

verify,” as a way to describe his approach to U.S.-Soviet relations; today we need to trust 

automated systems to make many critical decisions, but must also verify that big data and 

sophisticated technologies do not raise new problems for those subject to automation. We 

can and should trust that many computer scientists and engineers wish to use their skills 

to improve the world. Yet, in the public sector, difficulty in understanding how and why 

                                                
210 Id.  
211 Cal. Civ. Proc. Code § 128.6(a) (West Supp. 2005). 
212 Cal. Code Civ. Proc. § 128.7(h) (West Supp. 2005) (“It is the intent of the Legislature that courts shall 
vigorously use its sanctions authority to deter that improper conduct or comparable conduct by others 
similarly situated.”).  
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decisions are made—especially in the occasional cases where no answer is available—

fuels distrust. For example, concerns over the integrity of voting machine counts make it 

harder to trust election outcomes.213 In the private sector, evidence of misuse of software 

by the auto industry, such as with Volkswagen and recently at Fiat-Chrysler, and 

concerns around discrimination in insurance markets, credit scoring, and private systems 

used in the administration of criminal justice erode trust and increases general fears about 

software. In addition, while experiments have tested how news or so-called fake news is 

promoted on social networks and how online ads may be targeted in ways that are 

discriminatory or illegal, those experiments cannot find a consistent or clear answer as 

how or why the results occurred. That, too, eats away at the public’s ability to trust these 

systems. The classic response to these types of problems is a demand for transparency. 

Although such an approach seems reasonable—once one can see all that went on in the 

process, one can root out bad behavior and verify that rules have been followed—it 

cannot function alone to meet the goals its proponents wish to advance. As we have 

shown, transparency is a useful goal, and will in many cases be necessary, but it does not 

solve these problems.  

Instead, by understanding what can and cannot be done when evaluating software 

systems, and by demanding convincing evidence that systems are operating correctly and 

within the bounds set by law, society can allow the use of sophisticated software 

techniques while also having meaningful ways to ensure that these systems are 

governable. In some cases, determining compliance and effecting governance will require 

oversight by a competent authority, in which case software systems must create sufficient 

                                                
213 A proverb popular among election security researchers and attributed to computer security expert Dan 
Wallach is “The purpose of an election is not to name the winner, it is to convince the losers that they lost.” 
This underscores the importance of integrity as a security concern. 
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audit trails to support that oversight. As we have shown, although current software 

systems pose large challenges for those who wish to understand how they operated, 

computer science offers a way out for software engineered to provide such assurances. 

One can require that software be built to produce evidence that allows it to be analyzed, 

and the facts gleaned from this analysis can promote accountability. Or rather, software 

can be built so that we can trust, but verify. 
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