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The endodermis, a tightly contro
lled barrier for nutrients
Verónica G Doblas, Niko Geldner and Marie Barberon
Plant roots acquire nutrients from the soil and transport them

upwards to the aerial parts. To reach the central vasculature of

the root, water and nutrients radially cross all external cell

layers. The endodermis surrounds the vascular tissues and

forms diffusion barriers. It thereby compartmentalizes the root

and allows control of nutrient transport from the soil to the

vasculature, as well as preventing backflow of nutrients from

the stele. To achieve this role, endodermal cells undergo two

specialized differentiations states consisting of deposition of

two impermeable polymers in the cell wall: lignin, forming the

Casparian strips, and suberin lamellae. Recent publications

showed that endodermal barrier formation is not a hard-wired,

irreversible process. Synthesis and degradation of suberin

lamellae is highly regulated by plant hormones in response to

nutrient stresses. Moreover, Casparian strip continuity seems

to be constantly checked by two small peptides produced in

the vasculature that diffuse into the apoplastic space in order to

test endodermal barrier integrity. This review discusses the

recent understanding of endodermal barrier surveillance and

plasticity and its role in plant nutrition.
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Introduction
Plants cannot escape the fluctuations in nutrient availabil-

ity and/or toxicity in their environment. The plant root is

the organ in charge of nutrient acquisition, but at the same

time, it must provide an efficient boundary against exter-

nal stresses in order to maintain plant fitness. The endo-

dermis, the innermost cortical layer surrounding the

vasculature, forms barriers controlling root waterproofing

by undergoing two differentiation states, impregnating

cell walls with lignin (giving rise to Casparian strips)

and adding suberin lamellae, respectively [1]. These en-

dodermal barriers have long been considered to be acting
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as passive barriers in the soil-vasculature pathway [2,3].

Recent studies with Arabidopsis have highlighted that the

endodermis forms a bidirectional barrier controlling the

access to the root vasculature but also to prevent solutes

from leaking out [4,5��,6,7�,8�,9��]. More surprisingly, the

endodermal barrier formation is tightly modulated in

response to external and internal signals thereby fine-

tuning nutrient acquisition and endodermal integrity

[5��,10��,11��]. This review focuses on the recent advances

with the model plant Arabidopsis on endodermal barrier

establishment, integrity, function and plasticity.

Endodermal barrier formation
Endodermal cells are specified close to the quiescent

center of root meristems, associated with a periclinal

division of the cortex-endodermis initial cells [12]. After

this specification, the endodermis undergoes two distinct

levels of differentiation characterized by formation of

Casparian strips and suberin lamellae (Figure 1a) [13,14].

The Casparian strips correspond to localized lignin

depositions at the junction between adjacent endodermal

cells that fuse to form a ring, sealing the apoplastic space

(Figure 1a) [15,16,17�]. The transcription factor MYB

DOMAIN PROTEIN36 (MYB36) is the major transcrip-

tional regulator of the transition to the first state of

endodermal differentiation and controls the expression

of the main genes involved in Casparian strip establish-

ment [8�,18�]. The Casparian strip deposition is initiated

by the localization of CASPARIAN STRIP DOMAIN

PROTEINs (CASP1-CASP5) at the Casparian strip

membrane domain (CSD) [19]. CASPs recruit secreted

proteins to the CSD such as PEROXIDASE64, and the

dirigent domain-containing protein ENHANCED SU-

BERIN1 (ESB1) which together with the NADPH oxi-

dase F (RbohF) form localized lignin depositions [7�,20].

The leucine-rich repeat receptor-like kinase (LRR-RLK)

SCHENGEN3 (SGN3, also known as GSO1) and the

receptor-like cytoplasmic kinase SGN1, which localize

around the forming CSD and to the outer plasma mem-

brane site of endodermal cells respectively [9��,21�], have

been shown to control the fusion of the Casparian strips

into a continuous ring and to control Casparian strip

integrity [9��,21�].

The state II of endodermal differentiation is marked by

suberin lamellae, a hydrophobic polymer forming a sec-

ondary cell wall deposition at the inner surface of primary

cell walls covering the entire surface of endodermal cells

(Figure 1a) [13,22,23]. Transition from state I to state II

starts in a patch-like manner, until the whole endodermis

is suberized with the exception of passage cells. While the
www.sciencedirect.com
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Endodermal differentiation and barriers. (a) Schematic representation of endodermal differentiation, presented as longitudinal (left panel), single

cells (middle panel) and transversal views (right panel) for undifferentiated and differentiated states I and II of the endodermis (not at scale). (b)

Radial transport of nutrients across root cell layers. Three pathways coexist in the undifferentiated endodermis: apoplastic, coupled transcellular

and symplastic pathways. In state I endodermal differentiation, the apoplastic pathway is blocked by the Casparian strip and in state II suberin

lamellae blocks the coupled transcellular pathway. Red and blue colors show the continuity or block in the apoplastic space, respectively. va,

vascular tissue; pe, pericycle; en, endodermis; co, cortex; ep, epidermis.
biosynthetic pathway for suberin is well documented, the

regulatory components controlling suberization remain to

be elucidated. Recently, endodermal abscisic acid (ABA)

signaling was shown to control suberization under non-

stressed conditions [5��]. The transcription factor MYB41,

whose ectopic expression triggers ectopic suberization

and whose expression in the endodermis is induced by

ABA, represents a good candidate to control state I to

state II transition but its function in the endodermis

remains to be clarified [24�].

The endodermis as a bidirectional barrier for
nutrients
On their way from the soil to the central vasculature water

and nutrients can follow three different paths: (i) apo-

plastic, via diffusion in the extracellular space; (ii) sym-

plastic, via cytosolic connections called plasmodesmata;

(iii) transcellular, via polarized influx and efflux carriers

and/or diffusion gradients through the plasma membrane

(Figure 1b).
www.sciencedirect.com
By sealing the apoplastic space between adjacent endo-

dermal cells the Casparian strips form an apoplastic

barrier blocking the free diffusion of water and nutrients

entering the inner part of the root (Figure 1b) [2,3]. In

Arabidopsis, this well-known property can be easily ob-

served with the fluorescent apoplastic tracer propidium

iodide (PI) that penetrates extracellular spaces of every

cell layer until being blocked by Casparian strips [15,17�].
Therefore, in the mutant sgn3 displaying interrupted

Casparian strips, PI can reach the central vasculature

all along the root demonstrating loss of an apoplastic

barrier in this mutant [9��]. However, it is important to

acknowledge that most Casparian strip mutants such as

esb1, casp1 casp3, myb36 and lotr1 (lord of the rings 1) are

only delayed in the establishment of a functional apo-

plastic barrier. This is due to an ectopic lignification

together with a precocious suberization close to the root

meristem [6,7�,8�,25�]. These mutants, displaying very

similar endodermal barrier defects, were shown to also

have comparable changes in mineral content with higher
Current Opinion in Plant Biology 2017, 39:136–143



138 Cell signalling and gene regulation
potassium (K) and sulfur (S) content and a lower calcium

(Ca), manganese (Mn) and iron (Fe) content [7�,8�,25�].
However, these differences were difficult to assign to

either CS defects or enhanced suberization, as both

occurred concomitantly in these mutants. Therefore,

the sgn3 mutant, displaying interrupted Casparian strips

with no ectopic lignin or suberin compensations, repre-

sented the best opportunity to characterize the function

of Casparian strips in plant nutrition. Ionomic analysis in

sgn3 revealed that the lack of an apoplastic barrier does

not result in a massive accumulation of minerals but to

subtle changes, the main consequences being a higher

magnesium (Mg) content and a reduced zinc (Zn) and K

content associated with K deficiency [4,9��].

In primary roots, suberin lamellae are not forming an

apoplastic barrier [5��,7�,8�,9��,17�]. This can be demon-

strated with Casparian strip mutants where PI block and

suberin deposition are not correlated [7�,8�,9��,17�]. In-

terestingly, a recent study shows that at the site of lateral

root emergence, (i.e. when Casparian strips are disrupted)

[26], the ability to deposit suberin can be important to re-

seal the apoplastic barrier [25�]. This could explain the

appearance of apoplastic barrier discontinuities observed

in the older parts of the root of suberin mutants [25�,27].

In addition there is clear evidence that in primary roots
Figure 2
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suberin controls the uptake or passive diffusion from the

apoplast into endodermal cells (transcellular barrier).

This function has been demonstrated in Arabidopsis with

the fluorescent cellular tracer fluorescein diacetate

(FDA), whose uptake in endodermal cells is delayed in

presence of suberin [5��]. Illustrating the function of

suberin as a bidirectional barrier, carboxyl-FDA unload-

ing from the phloem was shown to be block at the level of

endodermal suberization [28]. The function of suberin in

plant nutrition has been extensively studied in various

plant species by comparing transport, accumulation and

fitness of cultivars displaying variations in suberin [29–
37]. In Arabidopsis, the suberin biosynthesis mutants,

gpat5 (glycerol-3-phosphate sn2-acyltransferase 5), horst (hy-
drolase of root suberized tissues) and the triple mutant abcg2
abcg6 abcg20 (ATP-binding cassette transporters clade g 2,
6 and 20), displaying reduced suberization were shown to

exhibit higher root hydraulic and osmotic conductivities

and higher permeability to solutes, in particular to sodium

(Na) [27,38,39]. Physiological and ionomic analysis of

suberin-deficient lines (CDEF1 lines, expressing the

CUTICULE DESTRUCTING FACTOR 1 in the en-

dodermis), revealed a moderate but specific effect of

suberization on mineral accumulation with an increase

in lithium (Li), arsenic (As) and Na content and a de-

crease in K content associated with salt hypersensitivity
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stic effects of nutrient availability on suberization of endodermal cells

and S deficiencies increased suberization mediated by ABA while Fe,

NaCl, Fe, Mn, Zn and Ca pass through the endodermis to reach the

w out from the stele across non-suberized endodermal cells.
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Figure 3
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and K deficiency [5��,17�]. Recently, the analysis of

CDEF1 lines in the lotr1 and esb1 mutant backgrounds

allowed dissecting the contribution of endodermal suber-

in versus lignin in the ionomic phenotypes of these

mutants [25�]. This elegant approach allowed to demon-

strate that the reduced Ca content observed in lotr1 and

esb1, associated with low Ca sensitivity was caused pri-

marily by enhanced suberization, suberin forming a bar-

rier for the uptake of Ca [25�].

Altogether these analyses highlight a fundamental but

often overlooked property of the endodermis as a bidi-

rectional barrier, controlling not only the path from the

soil to the vasculature but also preventing backflow from

the central vasculature [4,9��]. This can be nicely illus-

trated with the examples of Ca and K whose accumulation

in endodermal mutants vary in opposite ways, suberin

controlling the entrance of Ca and preventing the leakage

of K from the vasculature [5��,7�,8�,25�,40]. In agreement

with this model, suberization was shown to interrupt Ca2+

influx [40] and K to accumulate principally in the root

vasculature [41].

Nutrient-induced plasticity of endodermal
differentiation
Endodermal barriers are modified in response to a multi-

tude of abiotic stresses. Salt stress was particularly well

studied and shown to affect the width of Casparian strips

and to induce suberization in many plant species

[5��,29,30,32,34,42,43]. Induced suberization in toxic

environments seems to be a general feature in plants

suggesting a strategy to block the entry of toxic elements

[36,44–46]. In the same way, waterlogging and drought

stress conditions induce suberization suggesting a strate-

gy to prevent water and oxygen loss [31,34,45,47,48]. In

Arabidopsis, nutritional deficiencies were also shown to

affect suberization with Fe, Mn and Zn limitations lead-

ing to a reduced suberization and K and S deficiencies

leading to an increased suberization (Figure 2) [5��].
These opposite effects could reflect an adaptation of

endodermal suberization to modulate the uptake of Fe,

Mn and Zn and retain K and S under limiting conditions,

reflecting the role of the endodermis as a bidirectional

barrier. In agreement with this hypothesis, the CDEF1

lines (with reduced suberization) were shown to have a

reduced K content and the mutants with ectopic suberin

(esb1, casp1 casp3, myb36 and lotr1) were shown to have a

reduced Mn and Fe content and an increased K and S

content (Figure 2) [4,5��,7�,8�,25�]. Extending this model
(Figure 3 Legend) Model for endodermal barrier integrity surveillance by CI

deposition in single endodermal cells, at differentiation state I (left panel) an

mock, WT with externally applied CIF1/2 peptides, esb1, casp1 casp3 and

externally applied CIF1/2 peptides. Red and blue colors show the continuity

model (not at scale) of CIF1/2-SGN3 signaling in the respective genotypes a

in esb1, casp1 casp3 and myb36 mutants are predicted based on localizati
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further, reduced suberization restores growth and devel-

opment of the iron-limited mutant irt1 (iron regulated
transporter 1) and exacerbates the growth defect of the

sulfate-limited double mutant sultr1;1 sultr1;2 (sulfate
transporter) [5��]. This nutrient-induced plasticity of su-

berization was shown to be control by the antagonistic

action of ABA and ethylene leading to increase and

reduction of suberin respectively [5��]. However, the

signaling cascade controlling suberization is still poorly

understood in particular concerning ethylene that has a

moderate effect on suberin compared to ABA [5��]. ABA

seems to be a general regulator of suberization, its endo-

dermal signaling being required for suberization in non-

stressed conditions and most genes involved in suberiza-

tion being regulated by this hormone [5��,24�,27].

Endodermal barrier surveillance by a small
peptide
As mentioned above, most mutants with impaired Cas-

parian strips display a compensatory response with ectop-

ic lignin and suberin, in turn counteracting the initial

apoplastic barrier loss [7�,8�,25�]. Hence, the myb36 mu-

tant impaired in transition to the state I of endodermal

differentiation lacks Casparian strips, but forms an ectop-

ic deposition of lignin in the outer corners of endodermal

cells and ectopic suberin close to the root tip (Figure 3a)

[8�,18�]. In the same way, the mutants esb1, casp1 casp3
and lotr1 display interrupted Casparian strips later com-

pensated with ectopic lignification at both sides of the

endodermal cells and ectopic suberization in early stages

of endodermal differentiation (Figure 3a) [7�,19,25�].
Interestingly, this compensatory response to Casparian

strip defects was shown to be SGN3-dependent, ectopic

lignification and suberization not occurring in a sgn3
mutant and sgn3 being epistatic to mutants such as esb1
and casp1 casp3 [9��]. Likewise, sgn1 mutant also did not

present ectopic lignification, and strong ectopic suberiza-

tion indicating that also SGN1 is required for this com-

pensatory mechanism [21�].

Recently, two publications shed light on the molecular

mechanism underlying this compensation. In both pub-

lications two small secreted peptides were identified as

ligands of SGN3 by two independent approaches: (i) by

identifying TyrosylProtein SulfoTransferase (TPST) as

the causal gene of the barrier-defective sgn2 mutant and

subsequent search for the sulfated peptide substrate of

TPST (ii) by bioinformatic analysis based on conserved

C-terminal domain of peptides, and demonstration of
F1/2. (a) Schematic representation of Casparian strip and suberin

d apoplastic barrier formation between two cells (right panel) in WT

myb36 mutants without CIF treatment, and sgn3 mock and with

or separation in the apoplastic space, respectively. (b) Hypothetical

nd conditions described in A. Note that SGN3 and SGN1 localization

on in WT.
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their binding-activity to heterologously-expressed LRR-

receptors [10��,11��]. The two peptides, named Casparian

strip Integrity Factor (CIF1/2), are produced in the vas-

cular tissue, are activated by sulfation as post-translational

modification carried out by TPST [49] and were shown to

bind with very high affinity to the LRR-RLK receptor

SGN3 [10��,11��]. It was noted that exogenous applica-

tion of these peptides complements sgn2, and in high

concentration leads to ectopic lignin deposition at the

outer side of the CSD and oversuberization in wild-type,

in a fashion very comparable to the compensation ob-

served in Casparian strip defective mutants (Figure 3)

[10��]. Moreover, CIF1/2 overstimulation effects are to-

tally absent in the sgn3 mutant (Figure 3), and attenuated

in sgn1 mutant. This led us to hypothesize that when the

endodermal layer is properly sealed, CIF1/2 are retained

in the stele and cannot diffuse through the apoplast to the

outer side of the CSD, where a complex of SGN3 and

SGN1 could transduce the signal. However, in the ab-

sence of an intact Casparian strip, the peptides could leak

out between the endodermal cells physically reaching the

SGN3/SGN1 module and activating a signaling cascade

producing extra-lignification and extra-suberization to

seal the barriers (Figure 3). This mechanism would

represent an exquisite model for how the root can sense

whether its endodermal barrier is intact or not.

Conclusions
Altogether the recent works presented here highlight that

endodermal differentiation is more plastic than previous-

ly expected, with external signals such as nutrient avail-

ability and internal signals with the CIFs peptides

controlling and remodeling endodermal barriers. It will

be essential in the future to establish whether these two

signaling cascades are interconnected and if other signals

such as biotic or mechanical stresses are also affecting

endodermal differentiation. We can expect that the mo-

lecular knowledge gained from Arabidopsis could now be

transposed in plants with agronomical interests. This

would have a tremendous impact on our understanding

of the mechanisms of plant nutrition, most root systems

being more complex than Arabidopsis, and could open

perspectives in plant breeding. In this context, the dis-

covery of the CIFs peptides controlling Casparian strip

integrity is particularly interesting. This endodermal bar-

rier surveillance mechanism by CIF/SGN3 appears to be

evolutionarily conserved, CIF peptides being widespread

among all seed plants [50�]. Therefore, a conserved

mechanism of action could allow for a direct manipulation

of root waterproofing capacities, after application of CIF

analogues, reinforcing barriers in turn modulating water

and nutrient transport.
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