Cognitive Systems

2020 edition

TT

F9

Marcio Lobo Netto João E. Kogler Jr.

1. See

PSI 3560 – COGNITIVE SYSTEMS

class F9

Marcio Lobo Netto João Eduardo Kogler Junior

Polytechnic School of the University of São Paulo Department of Electronic Systems Engineering © 2019 – University of São Paulo

GENERAL APPROACHES TO COGNITIVE MODELLING

Dynamic systems approach, embodied cognition, embedded cognition and ecological approach, enactive approach

Session F9

Summary

- Second session (9:20 11:00)
- Internalism
 - Representationalism
 - Cognitivism
- Externalism
 - 4E
 - Embodied, embedded, extended cognition
 - Enactive cognition
 - Radical agenda 3E
- Dynamic cognition
 - Cybernetics and enactivist views of dynamic cognition

Representationalism

- Representations
 - Words or sentences of a language versus neuronal activations
 - Are they representations of the same nature ?
 - They refer to something, they denotate some entity.
 - What do they represent ?
 - » Content:
 - Can one say that both of these representations have content ?
 - If so, what is it ?
 - How they get their content ?
 - Contents of mental representations may include:
 - Objects (atomic or composed), properties, structures, propositions and relations
 - » Perhaps more

Cognitivism and representationalism

- Cognitive systems are cognitive because they can build, store and manipulate representations.
 - Computational processes are responsible for the appropriate manipulation of these representations
 - Consequently, defining cognition in terms of computations performed on representations restrict theses processes <u>solely in the head (brain)</u>. De Jesus (2015)
- Internalism \rightarrow inside the brain
- Externalism \rightarrow outside the brain

4E approaches

• 4E

Embodied, embedded, enacted and extended

- That cognition is 4E means that it depends on
 - The agent's body, and
 - Its interaction with the physical and social environment
- That the corporal, motor and interactive aspects that go beyond the brain play a functional and constitutive role in cognitive processes.

4E approaches

- Embodied
 - The body is constitutive of cognition
 - The mind is based on embodied experiences
- Embedded (situated) Affordances → →
 - The embodied mind is embedded in an environment that offers opportunities for interaction
- Enacted

- En... actions ->
- Cognition emerges through couplings between the embodied agent and the world
- Extended

Extensions -> & Tom m

 Cognition involves (includes, extends into) the outside world in which the embodied mind is embedded.

Embodied, embedded and extended cognition

- Combination of ideas from Gibson, Heidegger and Merleau-Ponty with computational cognitivism.
 - Action-oriented representations based on affordances
 - Perception is...
 - ... direct (very arguable)
 - ... of affordances
 - ... for action
 - » Ex: field of safe travel
 - is an affordance
 - is for action
 - Extended
 - Blind man's stick
 - (Bateson,1973)

Affordance concept

Source: iCub - Behavior-based use of tool affordances for a table cleaning task – T. Mar, V. Tykhanoff, L. Natale – IIT iCub facility - 2016

Enactive cognition (enactivism)

- Cognition emerges through active embodied interactions with the environment (Evan Thompson)
 - Autopoietic approach Humberto Maturana, Francisco Varela
 - Autopoiesis
 - » The interaction is a coupling between the embodied agent and the environment
 - The agent is operationally closed (equilibrium)
 - The agent is a structurally coupled with the environment
 - The agent is a self-creating system
 - Sensorimotor approach Alva Noë
 - Grounding via enaction
 - » Representations are grounded in the environment (S. Harnad)
 - Grounded via sensorimotor cycle

Radical embodied, embedded, enacted

- E. Thompson and F. Varela, R. Chemero
 - Denial that cognition needs representation at all
 - Cognition is self-organized, autonomous and autopoietic
 - *Neurodynamics* is the basis for the realization of the autopoietic cycle
 - » Neural assemblies close the gap between the sensorial availability of information and the motor satisfaction of affordances
 - » Neural assemblies provides this through a dynamic coupling bridging two temporal instances of the environment
 - Drawback: how to select an affordance ? (analogous to the frame problem of A.I. and cognitivism).
 - Possible solutions:
 - » Past experience
 - » Trial-and-error procedures

Dynamics and cognition

- What, when, why ?
 - Time dependence in behavior
 - Not just change and motion...
 - The behavior itself depends on time
 - The same for:
 - » Perception
 - » Cognition
 - To say that behavior, perception and cognition depend on time implies on that
 - » Their mechanisms are themselves functions

of time

PSI 3560

Dynamic systems approach to cognition

- Sources of dynamic behavior
 - Neuronal level
 - Individual neuron dynamics
 - Circuit and assembly level
 - Dynamics of couplings and interactions
 - Network level
 - Collective dynamics with topological changes
 - Functionally segregated modules
 - Global level
 - Functional interaction of modules
- What means "dynamic" behavior

Dynamic behavior

- Features of dynamic behavior
 - Time dependence
 - Time-dependent parameters, explicit time function
 - Dynamic response
 - Differential variability
 - Structural dynamics
 - Diversity of attractors and fixed-points
 - Topological variability
 - Dynamical stochastic variability
 - Order structure
 - » Topological order, phases
 - Phase transitions, bifurcations, criticality
 - » Temporal (dynamic order)
 - Synchronization, rhythm

- Self-organization and adaptive dynamics

Dynamic cognitive approaches

- Dynamics in cognitive theories
 - Cybernetics \rightarrow internalist perspective
 - Enactivism \rightarrow externalism \rightarrow coupled perspective
 - Cognitive neuroscience
 - Localizationism \rightarrow a new phrenology ?
 - Functions spatially segregated in modules
 - Emphasizing local dynamics
 - Globalism \rightarrow kind of holism...
 - Holographic brain (Karl Pribram 1991)
 - Connectome dynamics
 - Functional interaction among modules/areas
 - Dynamic anatomical-physiologic connectivity

Dynamic cognitive approaches

- Connectome dynamics
 - Functional interaction among modules/areas
 - Dynamic anatomical-physiologic connectivity
 - Self-organization by circular causation

References:

Nara Figueiredo – Teorias radicais da cognição – in Encontros de Cognição e linguagem, 2018, FFLCH / USP

Michael Arbib and Peter Érdi – Précis of Neural organization: Structure, function, and dynamics - Behavioral and brain sciences (2000) 23, 513–571

This is all for today.

See you next week !

