

cognitio

PSI 3560 – COGNITIVE SYSTEMS

class F10

Marcio Lobo Netto João Eduardo Kogler Junior

cognitio

Polytechnic School of the University of São Paulo Department of Electronic Systems Engineering © 2020 – University of São Paulo

GENERAL APPROACHES TO COGNITIVE MODELLING

Dynamic systems approach

Session F10

Summary

- First Session (7:30 - 9:10)

- Dynamic Systems
 - Cognitive Systems
 - Oscillators
 - Rhythms
 - Synchronism

• Section 1

Dynamic Systems

- Oscillators
 - Dynamic systems
 - Natural oscillation
 - Natural oscillation mode (frequency)
 - Reacting to stimulus
 - Disturbance around natural mode
 - Coupled oscillators mutual influences
 - Chaotic oscillators coupling multiple oscillators
- Attractors
 - Defining a region (condition)
 - Convergence
 - Oscillation orbit
 - Preferential

Dynamic Systems behavior

- Features of dynamic behavior
 - Time dependence
 - Dynamic response
 - Differential variability
 - Structural dynamics
 - Attractors
 - Topological variability
 - Dynamical stochastic variability
 - Order structure
 - » Topological order
 - » Temporal (dynamic order)
 - Synchronization, rhythm

Dynamic Systems

- Modulation signal coupling
 - One signal inhibiting or amplifying another
 - One signal imposing boundaries to another
- Waves
 - Any signal can be described by a composition of sinusoidal signals (Fourier decomposition)
 - Sinusoidal signal
 - Amplitude
 - Frequency
 - Phase

Dynamic Systems and Neural System

- Stochastic nature of neurons and assemblies
 - Statistical behavior
 - Statistical structure
 - Neurons are irregular, but alike (in specific regions)

- Pacemaker
 - A referential rhythm to the system
 - Found in natural live beings

Dynamics and cognition

- What, when, why ?
 - Time dependence in behavior
 - Not just change and motion...
 - The behavior itself depends on time
 - The same for:
 - » Perception
 - » Cognition
 - To say that behavior, perception and cognition depend on time implies on that
 - » Their mechanisms are
 - themselves functions
 - of time

Dynamic systems approach to cognition

- Cognitive agents live and behave in dynamic environments
 - Things happen
 - Beings interact
 - Dynamics is part of them
 - How they interact (behave)
 - How they learn and adapt
 - Everything is about learning and adapting
 - The coupling of the cognitive system into the dynamic environment requires itself to be dynamic? Probably yes

Dynamic systems approach to cognition

- Cognitive system
 - Continuously adapts to new experiences (learns)
 - Keep important and frequent things in its memory
 - Keeps registers of things
 - On different time scales (short to long term)
 - Use them to further improve abilities
 - A dynamic system with memory
 - A continuously adapting and evolving dynamic system
 - Recurrent Neuronal Networks show such properties

Dynamic systems approach to cognition

- The sense of self (each one)
 - Unique
 - Your history
 - Is recognized as such (itself)
 - Embedded into your body
 - Brain & Body
 - Our memories
 - Episodic
 - Motor
 - Semantic (in connection to our own history)

• Section 2

- Brain Dynamics
 - Scales/Levels: from neurons to cortices
 - Neuronal level
 - Circuit and Assembly level
 - Network level
 - Global level
- On all different scales we observe
 - Signaling (transferring information)
 - Coding
 - Representation
 - Communication

- Neurons
 - Dendritic tree (synapses)
 - Topologies
 - Connectivity
 - Connections (synapses)
 - Neurotransmitters
 - Neuroreceptors
 - Biochemical & Electrical phenomena
 - Signal (information) processing
 & delivering

- Neurons
 - Dendritic tree (synapses)
 - Topologies and excitatory/inhibitory features implies on a diversity of combinatorial structures
 - A kind of logic

Morpho-electrotonic structure

- Neurons
 - Axon (propagation)
 - Time domain
 - Different types of pulses
 - Coding
 - » Representations?
 - Micro Mental Objects
 - » Electrical signals
 - Physiologic models
 - » Electrical properties of bio systems (neurons)
 - Cellular membrane
 - Sodium Potassium
 - » Electrical circuits

- Neurons
 - Time domain
 - Different types of pulses
 - Different time scales (higher or lower frequencies)

PSI 3560

- Neurons
 - Signaling (communicating transferring information)
 - Time domain
 - Rich diversity of pulses triggered under different conditions
 - Different patterns
 - Codes
 - Representations
 - The micro language of thought

- Observation
 Scales
 - Spatial
 - Molecule
 - Brain
 - Temporal
 - Millisecond
 - Lifetime

Micro/Meso/Macro

cognitio

- Types of analysis
 - Electroencephalogram
 - Scalp
 - Electrode Implant
 - Assembly
 - -CT
 - brain
 - fMR / PET / ERP
 - brain

 Analysis by comparison of expected and unexpected patterns

• Section 3

- Strongly coupled dynamic system
 - Rhythms State Frequency State of mind range Many know (identified) rhythms Delta 0.5Hz-4HzDeep sleep From sleeping (dreaming) Drowsiness (also Theta 4Hz–8Hz to Awaken first stage of sleep) – Synchronism Alpha Relaxed but alert 8Hz–14Hz Highly alert and

14Hz-30Hz

focused

Beta

- Resonance
- Synchronism / Resonance
 - Assemblies / Regions
 - Higher coherence between parts

- Mapping State Evolution
 - S1 > S2 > S3 > S4 > S5 > S6 likely
 - -S1 > S4 > S2 > S3 > S5 > S6 possible
 - -S1 > S9 > S5 > S2 > S3 > S8 unlikely
 - In accordance with some patterns
 - Huge diversity is possible
 - But not anything is expected
 - There is some cause consequence
 - Bio physical constraints guide the evolution through successive states
 - Robustness is necessary to keep the system working properly

- Some equilibrium
 - Things change normally slowly
- Some regularity
 - Some level of regularity behind any pattern
- Some coherence
 - Coherence is expected almost every time
- Some expectation
 - Expectations should be confirmed
 - and are used guide decisions

t

References:

Michael I. Posner & Marcus E. Raichele (2001) Imagens da Mente, Porto Editora

Larry R. Squire & Erci R. Kandel (2001) Memória – da mente às moléculas, Porto Editora

This is all for today.

See you next week !

