
The request in 2000 by the Argentinian government that 
the Food and Agriculture Organization of the United 
Nations form an expert panel to evaluate the health 
and nutritional properties of probiotics in food precipi-
tated the re- emergence of a concept long part of human 
history. International recognition of the concept of 
probiotics, and coalescence around a definition of pro-
biotic offered by this expert consultation1, established an 
important consensus foundation. The definition of pro-
biotic decided by the consultation retained the essence 
of historical definitions offered over previous decades. It 
was intentionally broad, to encompass a wide variety of 
microorganisms, hosts, benefits, target sites and product 
types. It has stood the test of time and was reaffirmed, 
but grammatically corrected, in 2014 to the consensus 
definition of probiotics, which is: “live microorganisms 
that, when administered in adequate amounts, confer a 
health benefit on the host”2.

There are many studies that have investigated how 
microorganisms are integrated into life processes and 
defined ways that beneficial microorganisms — both 
commensal and externally applied — affect physiologi-
cal homeostasis and host function3. On the horizon is the 
promise of newly constructed recombinant strains and 
promising novel microbial species, which await testing 
in vivo. However, as these advances develop, we should 

recognize actionable evidence that is currently availa-
ble. As is discussed in this Review, convincing evidence 
exists for some established probiotics, which should be 
incorporated into health management. This incorpora-
tion includes complementary use with pharmaceutical 
agents, foods and lifestyle. Education of consumers, 
practitioners and regulators will facilitate appropriate 
use and point out needs for further research, which 
will hopefully include exploration of how to reach the 
individuals at greatest need with affordable and reliable 
probiotic products4.

Prebiotics, first defined in 1995 (ref.5), have been used 
to manipulate microorganisms in the host to improve 
measurable health outcomes. An update to the defini-
tion of prebiotics published in 2017 as “a substrate that is 
selectively utilized by host microorganisms conferring a 
health benefit” was made necessary by the need to clarify 
what did and did not constitute a prebiotic substance in 
the face of scientific advances6. The desire to optimize, 
for improved health, the microbial world associated 
with humans has led to the development of compounds 
targeting an ever- expanding group of microorganisms 
and benefits that are derived through them. No longer 
are prebiotics seen simply as boosters of the growth of 
bifidobacteria and lactobacilli but are now recognized for 
their effects on system- wide metabolic and physiological 
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readouts6. Although the intestine remains the gateway to 
most of these effects, it is not the exclusive gateway. The 
extent to which prebiotics can affect microbial commu-
nities of the urogenital tract, oral–nasal areas and skin 
is now the subject of intense exploration7.

This Review describes the current understanding of 
probiotic and prebiotic mechanisms of action, provides 
important examples of clinical studies on probiotic and 
prebiotic applications, and discusses current knowledge 
on mechanisms at the heart of these effects.

Human gut microbiome
The human gut is predominantly inoculated at birth. 
Microbial diversity develops as feeding and dietary 
patterns mature. By the age of 3–5 years the micro-
biota resembles that in the adult8. Because of variations 
in pH, substrate concentration, Eh (redox potential, 
activity of electrons) and transit time, microbial num-
bers vary between different anatomical regions of the 
gut9. The stomach harbours fewer microorganisms 
than the small and large intestines10. Studies using 
metagenomic approaches have highlighted the complex 
inter- relationship between human resident intestinal 
microbiota and mammalian metabolism11. Through the 
process of fermentation, anaerobic gut bacteria metab-
olize substrates to form end products such as organic 
acids and gases12. The main precursors for fermenta-
tion are dietary carbohydrates, proteins and lipids, as 
well as indigenous secretions such as mucin. This 
anaerobic metabolism contributes positively towards 
host daily energy requirements and homeostasis in the 
gut13. Ideally, the human host lives in harmony with its 
complex gut microbiota in a state that promotes physio-
logical resilience14. However, dysbiosis can result from 
challenges such as medications, infections, ageing, 
lifestyle, surgery and poor nutrition14,15.

In humans, a range of acute and chronic disorders 
can be a consequence of perturbation of gut microbial 
communities16–18. On a chronic basis, inflammatory 
bowel disease (IBD), obesity and irritable bowel syn-
drome (IBS) have all been linked to intestinal bacteria 
and their activity10. This aspect opens up the possibil-
ity of influencing the microbiota to reduce disease risk, 

fortify homeostasis and, in some cases, improve thera-
peutic status. Diet is a principal driver of gut fermen-
tation and therefore can greatly influence functionality 
of the indigenous microbiota19. Prebiotics are a popular 
dietary approach to the modification of the gut micro-
biota to improve host health6, as they are affordable, 
effective, safe and accessible.

Probiotics
As the concept of probiotics evolved over the past dec-
ades, the assumption was that their effects would be 
mediated through direct interaction with commensal 
microbiota. According to some early definitions, pro-
biotics function “by contributing to [the host’s] intestinal  
microbial balance”20 or “by improving the properties 
of the indigenous microflora”21. However, in the cur-
rent consensus definition of probiotics, the effects of 
probiotics are not considered to be only microbiota- 
mediated, and, indeed, other types of mechanism are 
known. This idea that probiotics function in ways that 
might act beyond affecting the colonizing microbiota 
opens the door to a wider range of probiotic possibilities, 
encouraging innovation in the field.

Much of our knowledge on probiotic mechanisms is 
based on research using in vitro, animal, cell culture or 
ex vivo human models. figure 1 shows known mecha-
nisms distributed among various probiotic strains. Not 
all mechanisms have been confirmed in humans nor do 
they exist in every probiotic strain. Although multiple  
mechanisms are probably co- expressed in a single pro-
biotic, the importance of any given mechanism will depend  
on many factors. For example, in an inflamed intestine, 
the ability to downregulate inflammatory mediators 
and increase epithelial barrier function might be most 
important22,23, whereas the ability to increase short- chain 
fatty acids (SCFAs) and hydration in the colon could be 
more important to normalizing intestinal motility24.

Research elucidating mechanisms of probiotics has 
often relied on in vitro or animal studies. Probiotics 
are not unique in this regard. Animal studies have not 
always translated to humans25; notable examples are 
probiotics for Crohn’s disease and mental health func-
tion26,27. Furthermore, there are inherent differences 
among probiotic strains; for example, one probiotic (in 
this case in conjunction with a prebiotic) was found to 
markedly reduce sepsis in infants28, whereas a different 
formulation failed to prevent necrotizing enterocolitis in 
very preterm infants29.

The historic concept of ‘colonization resistance’30, 
the situation whereby native gut microbiota occupy 
host tissues to exclude infection by potential pathogens 
(resident or invading), is another mechanism attributed 
to probiotics31. Expression of colonization resistance is 
probably a sum outcome of the functioning of many of 
these different mechanisms in concert. Indeed, many 
host factors could affect the ultimate expression of health 
effects imparted by a probiotic, including properties of 
baseline microbiota. Although few data exist, one study 
showed that probiotic persistence in the gut is linked to 
the properties of the baseline microbiota. Persistence of 
Bifidobacterium longum subsp. longum AH1206 in the 
human gut was predicted by low abundance in the host 

Key points

•	The human gut microbiota is integral to health and is associated with a variety  
of diseases.

•	Therapeutic and prophylactic effects of some probiotics and prebiotics for a variety  
of gut- related disorders might be, at least in part, mediated through modification of 
the microbiota and/or its function.

•	Probiotic microorganisms act via a variety of means, including modulation of immune 
function, production of organic acids and antimicrobial compounds, interaction with 
resident microbiota, interfacing with the host, improving gut barrier integrity and 
enzyme formation.

•	Prebiotics are substrates that are selectively utilized by host microorganisms 
conferring a health benefit; prebiotic effects include defence against pathogens, 
immune modulation, mineral absorption, bowel function, metabolic effects  
and satiety.

•	use of some probiotics and prebiotics is justified by robust assessments of efficacy, 
but not all products have been validated; the goal is evidence- based use by 
healthcare professionals.
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of B. longum and low levels of microbial carbohydrate 
utilization genes32. No clinical end points were tracked 
in this study, but the property of long- term persistence 
could contribute to physiological benefits. However, 
the results of many different clinical trials that did not 
include stratification of study participants by baseline 
microbiota suggest that probiotic function is not nec-
essarily predicated on a specific microbiota baseline33,34. 
There may well be compositional patterns of microbiota 
that do not respond well to incoming probiotic strains, 
just as there are for certain drugs35, but such profiles have 
not yet been fully defined.

Modulation of cell- mediated and humoral immune 
functions. Some probiotics have been shown to increase 
phagocytosis or natural killer cell activity and interact 
directly with dendritic cells (reviewed in ref.36). Some also 
demonstrate the ability to upregulate antibody secretion 
translating into improved defences against pathogens 
and augmenting vaccine responses37–39. Probiotic strains 
can increase levels of anti- inflammatory cytokines such 
as TNF with implications for abating colon cancer and 
colitis10,36. As discussed below, cell- surface architecture, 
such as fimbriae, capsule and surface structures expressed 
by certain probiotics, is a mechanistic driver for several 
of these activities.

Production of organic acids. Probiotic species belong-
ing to the Lactobacillus and Bifidobacterium genera 
produce lactic and acetic acids as primary end products 
of carbohydrate metabolism. These organic acids when 
produced in situ can lower luminal pH and discour-
age growth of pathogens, as shown in various model 
systems40–42. Lactobacillus and Bifidobacterium do not 
produce butyrate but through cross- feeding other com-
mensal microbiota (for example, Faecalibacterium), lev-
els of butyrate and other SCFAs in the gut can increase, 
potentially influencing many aspects of physiology,  
including the cardiometabolic phenotype43. This pheno-
type can be derived from increased production of 
butyrate, correlating with improved insulin response, 
or abnormalities in propionate linked to type 2 diabe-
tes mellitus44. Based upon analyses of weight, lifestyle, 
metabolic measurements and SCFA levels, the risk of  
an individual developing cardiometabolic diseases can 
be calculated45.

Interaction with gut microbiota. Probiotic strains can 
interact with the gut microbiota through competition 
for nutrients, antagonism, cross- feeding and support 
of microbiota stability46. Many probiotic strains are 
antagonistic toward other microorganisms, in part due 
to saccharolytic metabolism, which produces organic 
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acids, but also by production of bacteriocins47. These 
antimicrobial compounds can be active against patho-
gens at many sites including the human urinary tract 
and the gut of humans and animals48,49. Bifidobacteria 
produce acetate and can cross- feed other members of 
the gut microbiota (reviewed in ref.50). Strains B. longum 
AH1206 and B. bifidum ATCC15696 have been shown 
to persist in the infant gut32,51, although in the latter case 
the concomitant decrease in pathogen abundance was 
not tested for a link to bacteriocin production. The abil-
ity of certain probiotic strains to improve eradication of 
Helicobacter pylori might involve some inhibition of the 
pathogen, but there is stronger evidence that probiotics 
in this context reduce the adverse effects of antibiotics 
used in treatment52.

Probiotic–host interactions. Interactions of probiotic 
strains with host tissues are mediated by cell surface 
macromolecules, including proteins (surface layer 
associated proteins, mucin- binding proteins, pili, and 
LPxTG- binding proteins) and non- protein components 
(lipoteichoic acid, peptidoglycan, exopolysaccharides)53. 
These structures have been shown to affect binding to 
intestinal and vaginal cells, mucin, and immune or 
dendritic cells, resulting in increased transit times and 
improved barrier integrity (reviewed in ref.53). An exam-
ple of the different surface structures can be seen in the 
genome comparison of Lactobacillus rhamnosus GG that 
uses pili to interact with the intestine and L. rhamnosus 
GR-1 with a unique cluster of exopolysaccharides that 
aid vaginal activity54.

Improvement in barrier function. Primarily through 
studies in cell lines, several probiotic Lactobacillus and 
Bifidobacterium strains have been shown to increase 
expression of tight junction proteins (reviewed in ref.55). 
A study using human intestinal epithelial enteroids and 
colonoids showed that pretreatment with L. rham
nosus GG counters damage to tight junction zonula 
occludens 1 and occludin caused by IFNγ56. Another 
way in which probiotic strains might improve barrier 
function is through upregulating expression of mucus- 
secretion genes, thereby reducing pathogen binding to 
epithelial cells57,58. Downregulating inflammation is also 
regarded as a factor that improves barrier function53. Of 
note, although some probiotic strains have the capac-
ity to improve barrier function, this process does not 
always occur in every cohort for reasons not yet fully 
understood59.

Manufacture of small molecules with local and non- local 
effects. Small molecules produced by certain probiotic 
strains with different effects on the host and its micro-
biota have been described58. Perhaps one of the more 
intriguing findings is the production of neurochemicals 
such as oxytocin, gamma- aminobutyric acid, serotonin, 
tryptamine, noradrenaline, dopamine and acetylcholine 
(reviewed in refs60–62) that are known to affect brain 
function. In a rat model of stress, L. helveticus NS8 feed-
ing resulted in lower plasma corticosterone and adreno-
corticotropic hormone levels and restored hippocampal 
serotonin and noradrenaline levels63.

Production of enzymes. Microbial enzymes such as  
β- galactosidase64 and bile salt hydrolase65, which are pro-
duced and delivered by some probiotic strains, improve 
lactose digestion and blood lipid profiles in humans, 
respectively. In the case of Streptococcus thermophilus 
in yogurt, which facilitates lactose digestion, its pre-
disposition to be permeabilized by bile when entering 
the small intestine promotes the delivery of microbial 
β- galactosidase to the small intestine to break down 
lactose into digestible glucose and galactose64. This 
results in clinical benefit to individuals who are lactose 
intolerant. Indeed, the European Food Safety Authority 
considered evidence of this effect sufficient to authorize 
a health claim that S. thermophilus and L. bulgaricus as 
components of yogurt can alleviate symptoms of lactose 
maldigestion66.

Admittedly, cause- and-effect evidence of mechanisms 
in human hosts remains to be gathered, but technolog-
ical advances in genome sequencing and microbiome 
analyses, and surgical advances that enable real- time 
sampling in vivo, should help acquire elucidating data 
over the next few years.

Prebiotics
If we are to understand how prebiotics work, and more 
importantly exploit them to manipulate the microbiota 
to propagate health, then we need to keep in mind that 
microorganisms live in complex functional ecosystems. 
Within these ecosystems, bacteria have a multitude of 
roles, including the conversion of incoming dietary 
carbohydrates, proteins and some fats into metab-
olites that can have either positive or negative effects 
upon host health67–70. Current prebiotics are predomi-
nantly carbohydrate- based, but other substances such 
as polyphenols and polyunsaturated fatty acids might 
exert prebiotic effects6. An example of polyphenols is 
water- insoluble cocoa fraction, which has been shown 
in a gut model to substantially increase bifidobacteria, 
lactobacilli and butyrate production71.

Low-molecular-weight carbohydrates are very effi-
ciently metabolized by microorganisms such as bifido-
bacteria, which possess a range of cell-associated and  
extracellular glycosidases and specific transport systems  
enabling them to rapidly assimilate low- molecular- 
weight sugars72,73. Other microorganisms, such as 
members of the Bacteroides genus, are adept at break-
ing down high molecular weight polysaccharides74,75. 
Some bacteria might be regarded as keystone species 
in having the ability to initiate breakdown of particu-
lar substrates76; for example, Ruminococcus spp. can 
facilitate the degradation of resistant starch77. Liberated 
low- molecular-weight dextrins are then metabolized 
by the microbial community. The pathway from a 
polysaccharide to a SCFA is therefore a complex and 
indirect network of metabolism. Acetate and lactate, 
the main metabolic end products of bifidobacteria 
and lactic acid bacteria, are utilized by other micro-
organisms to produce, for example, propionate78 and 
butyrate50,79. Probable ecological networks involved 
in the metabolism of carbohydrates have been eluci-
dated74,80,81, although the extent to which they operate in 
the gut is not clear at the present time.
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A further complication in studies of the ecosystem 
response to carbohydrates is that it is heavily influenced 
by the microorganisms that are already present. It has 
become clear that individual microbiomes that are 
Prevotella- dominant can ferment carbohydrates more 
rapidly than can Bacteroides- dominant microbiomes82. 
Furthermore, when these distinct fecal inocula, domi-
nated by Prevotella or Bacteroides, were incubated with 
prebiotic fructo- oligosaccharides (FOS) or with two 
different arabinoxylans, the profile of SCFA produced 
was distinctly different and correlated with the micro-
biome83. Cultures using Prevotella- dominant inocula 
produced substantially higher ratios of propionate to 
acetate and butyrate than the Bacteroides- dominant 
microbiotas. A similar influence of starting micro-
biome composition on carbohydrate fermentation has 
been seen using isomalto- oligosaccharides as a carbon 
source in an in vitro batch fermentation model with 
human microbiota84.

Microbiome studies based on 16S ribosomal DNA 
sequencing have given rise to an increased awareness 
of the richness of the gut microbial ecosystem85 and, in 
some cases, have revealed associations between certain 
microorganisms or microbiome profiles and disease 
states. These include IBD86, type 2 diabetes mellitus87–89, 
IBS90,91 and obesity92,93. These profiles have frequently 
been termed ‘dysbioses’, although it is not currently pos-
sible to define such a state as ‘normobiosis’ or a ‘normal’ 
microbiota. Such associations tend to be merely the 
starting point for investigation into the role of specific 
microorganisms in disease. Sequencing studies do not 
provide an understanding of the functional interactions 
between members of the gut microbiota, and it is imper-
ative that this functional ecology is studied in more 
detail. It is becoming clear that although there might be a 
huge diversity of individual taxa in the gut microbiomes 
of individuals, there is a high level of functional redun-
dancy, and specific ecological functions are provided by 
a range of bacteria across different individuals94,95.

Given that we have an imperfect understanding of 
the functional ecology of the gut microbiota, uncover-
ing the mechanisms of action of prebiotics presents a 
challenge. Despite this issue, we can postulate probable 
mechanisms by which a prebiotic can lead to health 
benefits. These pathways are presented in fig. 2 and dis-
cussed here. All of these postulated mechanisms have 
support from research carried out through in vitro or 
animal models, although in many cases, establishing 
that they actually occur within human gut microbiota 
is difficult.

Defence against pathogens. Although mechanistically 
challenging to establish in humans in vivo, pathogen 
defence can be investigated in vitro using model sys-
tems96,97. As noted for probiotics, production of organic 
acids through prebiotic administration and propagation 
of beneficial bacteria will result in a reduction in lumi-
nal pH, inhibiting growth of pathogens. Establishment 
of a stable population of commensal microorganisms 
will reduce nutrient availability for invading micro-
organisms, inhibiting colonization. In studies of elderly 
individuals, 10 weeks of daily galacto- oligosaccharide 

(GOS) consumption induced increases in immune func-
tion, notably enhanced phagocytic activity and activity 
of natural killer cells98,99.

Immune modulation. Although the exact mechanisms 
are unclear, there is evidence that prebiotic interven-
tion can reduce type 2 T helper responses and there-
fore affect allergy. The most supportive data come from 
studies in infants. GOS and long- chain FOS in infant 
formula administered in a double- blind, randomized, 
placebo- controlled trial in 259 infants was associated 
with a reduction in incidence of atopic dermatitis, 
wheezing and urticaria to less than 50% of the incidence 
in non- prebiotic formula- fed infants100,101. In a prospec-
tive, double- blind, placebo- controlled fashion, not 
as yet replicated, healthy term infants at risk of atopy 
fed prebiotic- supplemented hypoallergenic formula 
for 6 months had a greater than fivefold reduction in 
prevalence of allergies 5 years after feeding102.

Increased mineral absorption. Since most absorption of 
minerals takes place by active transport mechanisms in 
the small intestine103, scavenging calcium could make a 
substantial positive contribution to health. As already 
discussed, fermentation of prebiotics leads to produc-
tion of SCFA, which reduces luminal pH. This drop in 
pH can increase calcium solubility, thereby providing 
a greater driving force for passive uptake. A problem 
with proving this process is that many calcium salts in 
supplements and food have pH- dependent solubility 
and limited availability, and depending on the starting 
pH, the solubility of calcium can actually increase with 
increasing pH104.

Studies have shown that consumption by young ado-
lescents of a mixture of FOS and inulin105,106 or GOS107 
can result in marked increases in absorption and calcium 
mineralized into bone. Such early intervention could 
reduce the incidence of osteoporosis later in life. This 
hypothesis is supported by data from animal models108, 
but long- term studies in humans are lacking.

Improved bowel function. Improvements in bowel func-
tion have often been ascribed to simple fecal bulking by 
consumption of dietary fibre. However, animal stud-
ies have shown that SCFAs produced by fermentation 
of prebiotics can regulate gut hormones that in turn 
modulate the local motor responses of the gut109,110. The 
humectant water- binding capacity of prebiotic carbo-
hydrates also has the effect of softening stools, making 
passage easier111,112.

There are surprisingly few studies on the effect of 
prebiotics on bowel function, although they have con-
sistently led to improvements in stool consistency and 
defecation frequency in randomized trials113,114.

Metabolic effects. As discussed earlier, prebiotic inter-
vention results in the elaboration of SCFAs that can act 
to improve barrier function in the gut, and prebiotic 
intervention with GOS has been shown to improve bar-
rier function in vivo115. Impaired barrier function can 
allow translocation of inflammatory mediators such as 
bacterial lipopolysaccharide (LPS) from the gut into the 
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systemic circulation, which has been termed metabolic 
endotoxaemia116 and has been suggested to be a causative 
factor in diabetes and obesity, although the evidence for 
this is from studies in mice117,118.

The metabolic effects of prebiotics have been the 
subject of several meta- analyses119–122 and although  
the results among studies vary, the general consensus 
is that prebiotic intervention has a positive effect on 
glucose homeostasis, inflammation and blood lipid 
profile in humans. Although interventions with GOS123 
and inulin124 have been shown to improve inflammatory 
markers in individuals with obesity, these were relatively 
short- term studies over a few months, and the effect on 
metabolic health over a long period of consumption is 
yet to be established.

The hypothesis underlying much research on pre-
biotics and barrier function and inflammation is that fer-
mentation products such as SCFA probably mediate the  
beneficial effects through mechanisms discussed earlier. 

However, it has been shown that, at least in vitro, GOS 
can directly stimulate the expression of tight junction 
proteins in intestinal epithelial cell lines and decrease 
transepithelial flux125,126. However, given that GOS is fer-
mented in the gut, the extent to which such mechanisms 
act in vivo is unclear at present. It is possible that the 
effect of inulin in improving glycaemic response could 
be due to direct inhibition of the intestinal isomaltase–
sucrase enzyme complex, but so far the evidence is only 
from mouse studies127. Identification of direct mecha-
nisms from metabolic studies in humans is, however, 
extremely difficult.

Effect on satiety. SCFAs produced by fermentation in 
the gut can interact with specific fatty acid receptors, 
FFAR2 and FFAR3, and regulate lipolysis and release of 
the incretin glucagon- like peptide-1 (refs128,129). These 
receptors are found on many tissues and could be a 
key mechanistic link between prebiotic fermentation 
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factor- β; TH1 cell, type 1 T helper cell; TH2 cell, type 2 T helper cell; Treg cell, regulatory T cell; ZO1, zonula occludens 1.
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and systemic health benefits. SCFAs can regulate appe-
tite via several mechanisms130, with studies showing 
that the interaction between SCFA and colonic L cells 
results in production of anorexigenic hormones such as 
PYY and GLP-1. Other examples are SCFAs surviving 
meta bolism by colonic epithelial cells and reaching 
the liver via the hepatic portal vein where propionate 
stimu lates gluconeogenesis that acts as a satiety signal131. 
SCFAs entering the circulation could also interact with 
FFAR2 and FFAR3 located on adipose tissue, resulting 
in leptin stimulation. According to a study in mice, 
acetate, the principal SCFA formed by prebiotic fermen-
tation, can cross the blood–brain barrier and enter the 
hypothalamus, promoting anorectic signals132.

Translation to the clinic
Many clinical gastrointestinal indications could benefit 
from probiotic and prebiotic interventions. In the case of 
prebiotics, a link between the clinical benefit and micro-
biota function should be established. For probiotics, a 
clinical indication is needed. For both, robust product 
information is required133 (Box 1).

There are clinical indications for the use of certain 
probiotic strains supported by robust evidence. In pae-
diatric and/or adult populations, the following have 
been suggested as indications for the use of probio-
tics: necrotizing enterocolitis134, antibiotic- associated 
diarrhoea and H. pylori infection135–137, defecation 
frequency138,139, infantile colic140, mild to moderate 
ulcerative colitis141, IBS142, acute diarrhoea143, preven-
tion of Clostridium difficile- associated diarrhoea144 and 
neonatal sepsis28. A meta- analysis published in 2019 
provided evidence that probiotic use has the potential 
to decrease antibiotic utilization in children145. Some 
clinical guidelines have been issued for probiotic use 
in children146,147. There is evidence that probiotics act 
systemically from the gut to reduce the incidence and 
duration of upper respiratory tract infections148,149. 
No official recommendations have been made for 
the use of probiotics in adults. Additional research 
clarifying the most effective strains and doses is needed  
for many clinical targets so far researched150–152. Although 
many clinical indications are promising, data are still 

emerging for end points including brain, metabolic  
and cardiovascular effects.

Generally, the strength of evidence for prebiotic 
interventions lags behind that for probiotics. Perhaps the 
strongest support for prebiotic use comes from prebiotic 
infant formulae. Such products are now routinely sup-
plemented with mixtures of GOS and fructans153,154 and 
this blend of prebiotics in a 9:1 ratio has been shown 
to reduce respiratory tract infections to levels found 
in breast- fed infants101,155,156. There is less evidence that 
prebiotics can reduce infections in adults, although in 
one placebo- controlled, randomized, double- blind study 
in 159 healthy volunteers, GOS reduced the incidence  
of diarrhoea157.

Much of the research focus on prebiotics has been 
in the realm of functional food (improves well- being 
through benefit beyond its nutrient content) applications. 
The one example of a prebiotic food application recog-
nized by European regulatory authorities is improve-
ment in bowel function in healthy adults resulting from 
consumption of 12 g of chicory inulin per day158,159.

Prebiotic foods designed to increase satiety and  
reduce energy intake are a promising approach to augment-
ing compliance with weight- loss diets. Oligofructose- 
enriched inulin in overweight children has been shown 
to increase satiety, and reduce energy intake, BMI and 
body fat mass over 16 weeks (body weight decrease of 
3.1% and percent body fat decrease of 2.4% compared 
with children given placebo (who showed increases 
of 0.5% and 0.05%, respectively)160,161. Oligofructose 
ingested daily by 29 adults for 12 weeks in a granola bar 
formulation reduced lean mass by 0.3 kg (standard devi-
ation 1.2 kg) and waist circumference by 2.2 cm (stand-
ard deviation 3.6 cm), with a concomitant decrease in 
intake and an increase in satiety162. However, not all stud-
ies have indicated benefits. One study of 97 overweight 
or obese children given oligofructose for 12 weeks did 
not show a statistically significant change in BMI- for-age 
z- score versus placebo163. This study did not measure the 
effect of the prebiotic on the gut microbiota and its func-
tion, which would have provided mechanistic insights 
to better understand the null study results and enabled 
better design of future interventions.

The replacement of glycaemic carbohydrates in food 
products with non- glycaemic carbohydrates to reduce 
post- prandial glycaemic responses has already received 
a positive European Food Safety Authority opinion164. 
Prebiotic carbohydrates might be expected to bring 
additional benefits in terms of increasing satiety in 
such a replacement strategy. Promising results were 
observed from a double- blind, randomized, controlled 
crossover trial of 40–42 healthy adults who consumed a 
yogurt drink containing oligofructose. The intervention 
improved post- prandial glucose responses165.

There is now some evidence that the stool micro-
biota profiles of patients with inflammatory conditions, 
such as IBD, differ from those of heathy individuals166, 
but it is not clear at the present time why. It is unclear 
whether these differences are caused by the underly-
ing medical condition, are a consequence of the dis-
ease pathology, or are due to confounding factors such 
as medications or altered dietary habits. Probiotic or 

Box 1 | Overcoming barriers to translation to the clinic

•	more high- quality, adequately powered, randomized, controlled trials that test  
well- defined probiotic (strain or strain combinations, dose and delivery matrix) and 
prebiotic interventions on substantive clinical outcomes

•	Better tracking of safety data during the conduct of short- term and long- term  
clinical trials

•	Improved availability of high- quality, properly labelled and effective commercial 
products133

•	Application by clinicians of available efficacy data in an evidence- based manner;  
this approach comprises assessment of the totality of data (positive and null)  
through unbiased systematic review processes for specific probiotic and prebiotic 
interventions

•	Better understanding of the characteristics of the host (including diet, baseline 
microbiota, medications and disease) that improve response to probiotics or 
prebiotics

•	Clinicians need clarification about probiotic and prebiotic products: are they safe, 
who will benefit (how and to what extent), and can the product labels be trusted?
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prebiotic interventions hold promise for the mitiga-
tion of the disease or its symptoms through micro biota 
modulation. An understanding of the microbiome com-
position and function in the donor and recipient will 
help us understand the extent to which clinical success 
depends on these factors167. Indeed, some clinical tri-
als have noted the importance of baseline microbiota 
composition among responders168–170. Microbiota pat-
terns can be influenced by lifestyle, living conditions, 
diet, medications and stool consistency, among other 
transient variables. Advanced age is also thought to be a 
factor, but one study of Chinese individuals has shown 
that healthy centenarians have similar microbiota to 
healthy young people171, suggesting that factors other 
than age are more important drivers of microbiota com-
position. Furthermore, research methodologies and data 
management may lead to spurious interpretations of 
microbiota assessments, which has the potential to mis-
lead172. Although clinical benefits have been observed 
with probiotic and prebiotic interventions, the onus 
is on researchers to clarify the role of the microbiome 
in these successes to optimize short- and long- term 
outcomes173–177.

Careful phenotypic and genotypic descriptions of 
study participants could also be important to the success 
of clinical trials targeting the microbiome. Host genetic 
studies could help, for example, in the microbiome- 
mediated disease of IBD, in which 163 loci have been 
identified as meeting genome- wide significance thresh-
olds178. However, in the majority of patients with IBD, 
the disease is not the result of a single host gene defect179, 
complicating the development of clinical interventions 
based on host genetics. Another complication is that 
identified genes are risk factors, not causal determinants, 
for a disease, and therefore clinical strategies based on 
host genomics have not been forthcoming.

IBD comprises two main forms, Crohn’s disease and 
ulcerative colitis. In Crohn’s disease, there seem to be 
distinct molecular subclasses of genomic associations, 
further complicating development of effective man-
agement strategies180. This aspect might in part explain 
why the use of probiotic strains in the management of 
Crohn’s disease has generally failed to be effective181,182. 
It is not known why mild to moderate ulcerative colitis 
is somewhat improved by probiotic intervention183 but 
Crohn’s disease is not. The future success of microbiota 
manipulation to mitigate serious inflammatory condi-
tions will require an understanding of the interactions 
between the microbiome and the human genetic risk 
factors, and will necessitate moving beyond microbial 
genomic sequencing to transcriptomic, metabolomic 
and proteomic investigations.

The promise of treating or curing disease with 
microbiota manipulation continues to be explored 
using probiotic species different from those tradition-
ally employed184. Many probiotics in current use are 
from the genera Lactobacillus and Bifidobacterium. 
Although many of them were derived from the feces 
or intestinal mucosa of healthy individuals, researchers 
today are considering the utility of many newly explored 
human resident microorganisms, such as Akkermansia, 
Eubacterium, Propionibacterium, Faecalibacterium and 

Roseburia. This research will require going beyond lab-
oratory animal experiments that have proliferated in  
the literature62,185.

Fecal microbial transplantation (FMT), which has 
been a reasonably successful treatment for recurrent  
C. difficile infection186–188, has shown mixed success in 
the treatment of other conditions189–191. Although FMT 
is not a probiotic application since it is not suitably 
defined microbiologically to meet the probiotic defini-
tion2, the approach is based on the concept that micro-
organisms derived from healthy donor feces can restore 
proper function to a dysbiotic microbial ecosystem.  
It is noteworthy that there have only been a few blinded, 
randomized controlled trials on FMT for treatment of 
recurring C. difficile infection, but these have been rela-
tively small studies and we have little information on 
the long- term changes that such a broad, poorly defined 
and nonspecific treatment might induce in individuals.  
A well- defined reproducible probiotic intervention is 
more suitable for rigorous research investigation and 
could be safer long- term than FMT, as suggested by 
several researchers attempting to assemble a defined 
consortium of microorganisms for such purposes192. 
Whether these defined consortia, typically comprising 
many human commensal microbial species, can reach 
the same levels of cure as FMT remains to be seen.

The potential impact of gut microbiota manipu-
lation on clinical medicine is promising. However, 
in the excitement over potential, stakeholders often 
forget that association does not mean causation. For 
example, blinded reviews of 34 oesophageal biopsy 
samples found that these microbiomes could be classi-
fied into two types. Type 1 is dominated by the genus 
Streptococcus and is phenotypically normal, but type 2,  
which demonstrates a greater proportion of Gram- 
negative anaerobes and/or microaerophiles, correlates 
with oesophagitis and Barrett’s oesophagus150. Like many 
other microbiome findings, this finding does not prove 
causation and there are numerous potential reasons why 
these associations might exist, including diet, drugs and 
lifestyle. One hypothesis might be that administering a 
safe, select Streptococcus could reduce oesophagitis and 
Barrett’s oesophagus, but this theory has not been tested. 
Microbiome differences do not necessarily mean that 
microbiota modification will lead to improved health.

The future
The gut microbiota might be central to the cause of many 
disorders and its modulation could hold the key to new 
effective therapies. So, what are the roles of probiotics 
and prebiotics? In a general sense, both interventions 
serve to increase the community of beneficial micro-
organisms and products of their growth and metabolism 
in the host. In this context, effects relayed systemically 
might exert influences in, for example, the cardiovascular 
system, urogenital tract, skin and brain193.

The field is poised for conceptual advances. Target 
microorganisms will expand beyond the typical Bifido
bacterium spp. and Lactobacillus spp. (as mentioned 
earlier) to include other genera and perhaps more yeast 
species194–197. These microorganisms might be new 
probiotic candidates or further targets for prebiotic 
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utilization. Improved precision, accuracy and repeat-
ability of measures of microbial composition, which 
lead to genuine and not misleading interpretations, are 
needed in this field172. Improved assessments will lead to 
an expanded range of probiotic and prebiotic products. 
For example, propionate and butyrate are both consid-
ered to be beneficial gut microbial metabolites, but nei-
ther is produced by bifidobacteria or lactobacilli198,199. 
Therefore, an opportunity exists to define microorgan-
isms with metabolic capabilities beyond those afforded 
by traditional probiotics. Another development could 
be anti- adhesive molecules and carbohydrates that 
attenuate microbial virulence. These factors would be 
adjuncts to current prebiotic approaches in that they are 
not selectively utilized substrates.

To have robust proof that gut microbiome alterations 
can reduce disease incidence or mitigate disease, more 
well- designed randomized controlled trials are needed. 
By randomly assigning individuals to intervention 
groups, most biases are reduced and the chances of use-
ful results are improved. Owing to the easy availability 
and relatively low cost of high- throughput sequencing 
technology, microbiome analysis is becoming wide-
spread and differences among disease states increasingly 
well publicized. The expertise and databases required for 
metabolomic analysis is also on an upward trend. This 
advance will be vital to optimize clinical translation, as a 
much greater awareness of the functional ecology of the 
gut is needed together with improved clarity of how this 
ecosystem influences systemic health. Microbiota and 
host transcriptomic studies are also important, but they 
are expensive and time- consuming, and require substan-
tial bioinformatic support. Ultimately, the application 
of probiotic and prebiotic regimens has the potential to 
improve human health and contribute greatly to how 
patients are managed and/or disease risk is reduced.

Conclusions
Although certain commonalities allow us to group sub-
stances under the ‘probiotic’ or ‘prebiotic’ umbrellas, 
benefits to human health are tied to specific products, 
not the categories en masse. To the extent that a clin-
ical outcome is associated with a specific mechanism 
of action, then it could be hypothesized that a similar 
strain or prebiotic expressing that mechanism might 

also be beneficial. However, it is important not to over- 
generalize conclusions about specific entities. In general, 
whether an intervention is effective or ineffective, it must 
be recognized that the results are tied to specific formu-
lations, doses, clinical end points and target populations. 
It is incumbent upon responsible scientists to consider 
the totality of available information on specific interven-
tions as a basis for overall conclusions on effectiveness. 
Furthermore, clinicians should scrutinize both positive 
and null studies for bias, as only in eliminating bias in 
research will we move the field toward truth, thereby 
realizing the potential of probiotics and prebiotics.

The body of research suggests that these interven-
tions can not only improve symptomology, but also have 
a meaningful effect on reducing pathology and even 
saving lives. The prevention of sepsis and necrotizing 
enterocolitis in infants provides compelling examples. 
These findings demonstrate effective translation of 
human microbiome research. Such clinical impact has 
changed practices in many health- care environments; 
however, many constituencies have yet to embrace the 
concept through critically considering the strengths and 
weaknesses of existing data.

In developing countries, probiotics that are widely 
available in developed countries are either not accessible 
or affordable to most people. However, a programme has 
introduced inexpensive sachets containing a probiotic 
L. rhamnosus (GR-1 or Yoba 2012) plus S. thermophilus 
C106 that allow locals to produce different forms of fer-
mented foods (yoghurt, millet, cereals, juices) that not 
only influence health but also empower poverty- stricken 
communities to improve social well- being4. With over 
260,000 consumers being reached each week in East 
Africa, the potential is enormous to use these benefi-
cial microorganisms and local food sources to impact 
communities (G.R. et al., unpublished observations).

Diseases and poor health often result from the inter-
play of microbiological and biological ecosystems along 
with societal issues including pollution, food short-
ages and poor medical care200,201. We encourage more 
research and translational efforts on probiotics and pre-
biotics to serve the people of developing countries, who 
might stand to benefit most from these interventions.
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