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Time-Domain Analysis of
Control Systems

In this chapter, we depend on the background material discussed in Chapters 14 to
arrive at the time response of simple control systems. In order to find the time response of
a control system, we first need to model the overall system dynamics and find its
equation of motion. The system could be composed of mechanical, electrical, or other
sub-systems. Each sub-system may have sensors and actuators to sense the environment
and to interact with it. Next, using Laplace transforms, we can find the transfer function
of all the sub-components and use the block diagram approach or signal flow diagrams to
find the interactions among the system components. Depending on our objectives, we
can manipulate the system final response by adding feedback or poles and zeros to the
system block diagram. Finally, we can find the overall transfer function of the system
and, using inverse Laplace transforms, obtain the time response of the system to a test
input—normally a step input.

Also in this chapter, we look at more details of the time response analysis, discuss
transient and steady state time response of a simple control system, and develop simple
design criteria for manipulating the time response. In the end, we look at the effects of
adding a simple gain or poles and zeros to the system transfer function and relate them to
the concept of control. We finally look at simple proportional, derivative, and integral
controller design concepts in time domain. Throughout the chapter, we utilize MATLAB in
simple toolboxes to help with our development.

5-1 TIME RESPONSE OF CONTINUOUS-DATA SYSTEMS: INTRODUCTION

Because time is used as an independent variable in most control systems, it is usually of
interest to evaluate the state and output responses with respect to time or, simply, the time
response. In the analysis problem, a reference input signal is applied to a system, and
the performance of the system is evaluated by studying the system response in the time
domain. For instance, if the objective of the control system is to have the output variable
track the input signal, starting at some initial time and initial condition, it is necessary to
compare the input and output responses as functions of time. Therefore, in most control-
system problems, the final evaluation of the performance of the system is based on the time
responses.

The time response of a control system is usually divided into two parts: the transient
response and the steady-state response. Let y(¢) denote the time response of a continuous-
data system; then, in general, it can be written as

y(£) = (1) + yss(2) (5-1)
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where y,(f) denotes the transient response and y,, () denotes the steady-state response.
In control systems, fransient response is defined as the part of the time response that goes to
zero as time becomes very large. Thus, y, (f) has the property

r]—ig}ay'([) =0 (5-2)

The steady-state response is simply the part of the total response that remains after
the transient has died out. Thus, the steady-state response can still vary in a fixed pattern,
such as a sine wave, or a ramp function that increases with time.

All real, stable control systems exhibit transient phenomena to some extent before the
steady state is reached. Because inertia, mass, and inductance are unavoidable in physical
systems, the response of a typical control system cannot follow sudden changes in the input
instantaneously, and transients are usually observed. Therefore, the control of the transient
response is necessarily important, because it is a significant part of the dynamic behavior of
the system, and the deviation between the output response and the input or the desired
response, before the steady state is reached, must be closely controlled.

The steady-state response of a control system is also very important, because it
indicates where the system output ends up when time becomes large. For a position-control
system, the steady-state response when compared with the desired reference position gives
an indication of the final accuracy of the system. In general, if the steady-state response of
the output does not agree with the desired reference exactly, the system is said to have a
steady-state error,

The study of a control system in the time domain essentially involves the evaluation of
the transient and the steady-state responses of the system. In the design problem,
specifications are usually given in terms of the transient and the steady-state performances,
and controllers are designed so that the specifications are all met by the designed system.

> 5-2 TYPICAL TEST SIGNALS FOR THE TIME RESPONSE OF CONTROL SYSTEMS

Unlike electric networks and communication systems, the inputs to many practical control
systems are not exactly known ahead of time. In many cases, the actual inputs of a control
system may vary in random fashion with respect to time. For instance, in a radar-tracking
system for antiaircraft missiles, the position and speed of the target to be tracked may vary in
an unpredictable manner, so that they cannot be predetermined. This poses a problem for the
designer, because it is difficult to design a control system so that it will perform satisfactorily
to all possible forms of input signals. For the purpose of analysis and design, it is necessary to
assume some basic types of test inputs so that the performance of a system can be evaluated.
By selecting these basic test signals properly, not only is the mathematical treatment of the
problem systematized, but the response due to these inputs allows the prediction of the
system’s performance to other more complex inputs. In the design problem, performance
criteria may be specified with respect to these test signals so that the system may be designed
to meet the criteria. This approach is particularly useful for linear systems, since the response
to complex signals can be determined by superposing those due to simple test signals.

When the response of a linear time-invariant system is analyzed in the frequency
domain, a sinusoidal input with variable frequency is used. When the input frequency is
swept from zero to beyond the significant range of the system characteristics, curves in
terms of the amplitude ratio and phase between the input and the output are drawn as
functions of frequency. It is possible to predict the time-domain behavior of the system
from its frequency-domain characteristics.
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To facilitate the time-domain analysis, the following deterministic test signals are
used.

Step-Function Input: The step-function input represents an instantaneous change in the
reference input. For example, if the input is an angular position of a mechanical shaft, a step
input represents the sudden rotation of the shaft. The mathematical representation of a step
function or magnitude R is

r()=R >0
- 5-3
=0 t<0 (5-3)
where R is a real constant. Or
r(¢) = Ru(t) (5-4)

where 1,(f) is the unit-step function. The step function as a function of time is shown in
Fig. 5-1(a). The step function is very useful as a test signal because its initial instantaneous
jump in amplitude reveals a great deal about a system’s quickness in responding to inputs
with abrupt changes. Also, because the step function contains, in principle, a wide band of
frequencies in its spectrum, as a result of the jump discontinuity, it is equivalent to the
application of numerous sinusoidal signals with a wide range of frequencies.

Ramp-Function Input: The ramp function is a signal that changes constantly with time.
Mathematically, a ramp function is represented by

r(t) = Rru(t) (5-5)

where R is a real constant. The ramp function is shown in Fig. 5-1(b). If the input variable
represents the angular displacement of a shaft, the ramp input denotes the constant-speed

) 4 )
()= Ruy(f)
R
(1) = Reu (1)
0 r' 0 t'
(@) (b)

03]

)= RE ur)
2

0 '

(c)
Figure 5-1 Basic lime-domain test signals for control systems. (a) Step function. (b) Ramp
function. (c) Parabolic function.
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rotation of the shaft. The ramp function has the ability to test how the system would
respond to a signal that changes linearly with time.

Parabolic-Function Input: The parabolic function represents a signal that is one order
faster than the ramp function. Mathematically, it is represented as

2
r(t) = RTtus(t) (5-6)

where R is a real constant and the factor !, is added for mathematical convenience because
the Laplace transform of () is simply R/s’. The graphical representation of the parabolic
function is shown in Fig. 5-1(c).

These signals all have the common feature that they are simple to describe mathe-
matically. From the step function to the parabolic function, the signals become progres-
sively faster with respect to time. In theory, we can define signals with still higher rates,
such as £, which is called the jerk function, and so forth. However, in reality, we seldom
find it necessary or feasible to use a test signal faster than a parabolic function. This is
because, as we shall see later, in order to track a high-order input accurately, the system
must have high-order integrations in the loop, which usually leads to serious stability
problems.

.~ 5-3 THE UNIT-STEP RESPONSE AND TIME-DOMAIN SPECIFICATIONS

As defined earlier, the transient portion of the time response is the part that goes to zero as
time becomes large. Nevertheless, the transient response of a control system is necessarily
important, because both the amplitude and the time duration of the transient response must
be kept within tolerable or prescribed limits. For example, in the automobile idle-speed
control system described in Chapter 1, in addition to striving for a desirable idle speed in
the steady state, the transient drop in engine speed must not be excessive, and the recovery
in speed should be made as quickly as possible. For linear control systems, the characteri-
zation of the transient response is often done by use of the unit-step function u,(¢) as the
input. The response of a control system when the input is a unit-step function is called the
unit-step response. Fig. 5-2 illustrates a typical unit-step response of a linear control
system, With reference to the unit-step response, performance criteria commonly used for
the characterization of linear control systems in the time domain are defined as follows:

1. Maximum overshoot. Let y(¢) be the unit-step response. Let y., denote the
maximum value of y(1); y,,, the steady-state value of y(f); and ymax = yss. The
maximum overshoot of y(¢) is defined as

maximum overshoot = Ymax — Yss (5-7)

The maximum overshoot is often represented as a percentage of the final value of
the step response; that is,

; maximum overshoot
percent maximum overshoot = x 100% (5-8)

Yss

'The maximum overshoot is often used to measure the relative stability of a control
system. A system with a large overshoot is usually undesirable. For design
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Figure 5-2 Typical unit-step response of a control system illustrating the time-domain specifications.
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purposes, the maximum overshoot is often given as a time-domain specification.
The unit-step illustrated in Fig. 5-2 shows that the maximum overshoot occurs at
the first overshoot. For some systems, the maximum overshoot may occur at a
later peak, and, if the system transfer function has an odd number of zeros in the
right-half s-plane, a negative undershoot may even occur {4, 5] (Problem 5-23).

Delay time. The delay time ?,;is defined as the time required for the step response
to reach 50% of its final value. This is shown in Fig. 5-2.

Rise time. The rise time {, is defined as the time required for the step response to
rise from 10 to 90% of its final value, as shown in Fig. 5-2. An alternative measure
is to represent the rise time as the reciprocal of the slope of the step response at the
instant that the response is equal to 50% of its final value.

Settling time. The settling time ; is defined as the time required for the step
response to decrease and stay within a specified percentage of its final value. A
frequently used figure is 5%.

The four quantities just defined give a direct measure of the transient
characteristics of a control system in terms of the unit-step response. These
time-domain specifications are relatively easy to measure when the step response
is well defined, as shown in Fig. 5-2. Analytically, these quantities are difficult to
establish, except for simple systems lower than the third order.

Steady-state error. The steady-state error of a system response is defined as the
discrepancy between the output and the reference input when the steady state
(# — 00) is reached.

It should be pointed out that the steady-state error may be defined for any test
signal such as a step-function, ramp-function, parabolic-function, or even a
sinusoidal input, although Fig. 5-2 only shows the error for a step input.
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5-4 STEADY-STATE ERROR

One of the objectives of most control systems is that the system output response follows a
specific reference signal accurately in the steady state. The difference between the output and
the reference in the steady state was defined earlier as the steady-state error. In the real world,
because of friction and other imperfections and the natural composition of the system, the
steady state of the output response seldom agrees exactly with the reference. Therefore,
steady-state errors in control systems are almost unavoidable. In a design problem, one of the
objectives is to keep the steady-state error to a minimum, or below a certain tolerable value,
and at the same time the transient response must satisfy a certain set of specifications.

The accuracy requirement on control systems depends to a great extent on the control
objectives of the system. For instance, the final position accuracy of an elevator would be
far less stringent than the pointing accuracy on the control of the Large Space Telescope,
which is a telescope mounted onboard a space shuttle. The accuracy of position control of
such a system is often measured in microradians.

5-4-1 Steady-State Error of Linear Continuous-Data Control Systems

Linear control systems are subject to steady-state errors for somewhat different causes than
nonlinear systems, although the reason is still that the system no longer “sees™ the error,
and no corrective effort is exerted. In general, the steady-state errors of linear control
systems depend on the type of the reference signal and the type of the system.

Definition of the Steady-State Error with Respect to System Configuration

Before embarking on the steady-state error analysis, we must first clarify what is meant by
system error. In general, we can regard the error as a signal that should be quickly reduced
to zero, if possible. Let us refer to the closed-loop system shown in Fig. 5-3, where r(?) is
the input; #(f), the actuating signal; b(z), the feedback signal; and y(z), the output. The error
of the system may be defined as

e(t) = referencessignal — y(f) (5-9)
where the reference signal is the signal that the output y(¢) is to track. When the system has
unity feedback, that is, H(s) = 1, then the input r(#) is the reference signal, and the error is
simply

e(t) = r(t) - ¥(r) (5-10)

The steady-state error is defined as

ess = lim e(?) (5-11)

When H(s) is not unity, the actuating signal 2(f) in Fig. 5-2 may or may not be the error,
depending on the form and the purpose of H(s). Let us assume that the objective of the

1) u(®)

OIR
Y(s)

| G(s)

3

H(s)
B(s) Figure 5-3 Nonunity feedback control system.
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system in Fig. 5-3 is to have the output y(¢) track the input r(#) as closely as possible, and the
system transfer functions are

1 5(s+1)
= —_ = = —_— .1
66 =z P9 =175 (5-12)
We can show that, if H(s) = 1, the characteristic equation is
F£+128%+1=0 (5-13)

which has roots in the right-half s-plane, and the closed-loop system is unstable. We can
show that the H(s) given in Eq. (5-12) stabilizes the system, and the characteristic equation
becomes

s+ 178 + 6052 +55+5=0 (5-14)

In this case, the system error may still be defined as in Eq. (5-10).

However, consider a velocity control system in which a step input is used to control the
system output that contains a ramp in the steady state. The system transfer functions may
be of the form

G(s) H(s) =K:s (5-15)

1

T s2(s+12)
where H(s) is the transfer function of an electromechanical or electronic tachometer, and K,
is the tachometer constant. The system error should be defined as in Eq. (5-9), where the
reference signal is the desired velocity and not r(f). In this case, because r(#) and y(¢) are not
of the same dimension, it would be meaningless to define the error as in Eq. (5-10). To
illustrate the system further, let X, = 10 volts/rad/sec. This means that, for a unit-step input
of 1 volt, the desired velocity in the steady state is 1/10 or 0.1 rad/sec, because when this is
achieved, the output voltage of the tachometer would be 1 volt, and the steady-state error
would be zero. The closed-loop transfer function of the system is

_Y(s) G(s) 1

M) =26 =TT COHE) 562+ 125+ 10)

(5-16)

Step Response

Toolbox 5-4-1
For the system in Eq. 5-15:

1
G(S) = ;T(H'_lz')‘ H(S) = KtS

% use Kt=10

%Step input

Kt=10;
Gzpk=2zpk([],[00-12],1)
G=tf(Gzpk)
H=zpk(0,[],Kt)
cloop=feedback(G,H)
step(cloop)
xlabel(‘Time(sec)’);
ylabel ( ‘Amplitude’);

Ampitude

150

—

Thne (sec)

1500




260

Chapter 5. Time-Domain Analysis of Control Systems

D(s)

R(s) Ui Y(s)
¢ 9 G0 G >

Figure 5-4 System with disturbance input.

For a unit-step function input, R(s) = 1/s. The output time response is
y(t) = 0.1z — 0.12 — 0.000796¢ 111 1 0.1208¢ 7090 ;>0 (5-17)

Because the exponential terms of y(#) in Eq. (5-17) all diminish as ¢ — oo, the steady-state
part of y(z) is 0.1z — 0.12. Thus, the steady-state error of the system is

ess = lim [0.17 ~ y(1)] = 0.12 (5-18)

More explanations on how to define the reference signal when H (s) 5 1 will be given
later when the general discussion on the steady-state error of nonunity feedback systems is
given.

Not all system errors are defined with respect to the response due to the input. Fig. 5-4
shows a system with a disturbance d(¢), in addition to the input r(¢). The output due to d(r)
acting alone may also be considered an error.

Because of these reasons, the definition of system error has not been unified in the
literature. To establish a systematic study of the steady-state error for linear systems, we
shall classify three types of systems and treat these separately.

1. Systems with unity feedback; H(s)=1.
2. Systems with nonunity feedback, but H(0) = Ky = constant.
3. Systems with nonunity feedback, and H(s) has zeros at s=0 of order N.
The objective here is to establish a definition of the error with respect to one basic system

configuration so that some fundamental relationships can be determined between the
steady-stale error and the sysiem parumelers.

Type of Control Systems: Unity Feedback Systems
Consider that a control system with unity feedback can be represented by or simplified to
the block diagram with H(s) = 1 in Fig. 5-3. The steady-state error of the system is written

ess = lim e(t) = lim sE(s)
t—oa s—0
(5-19)

— lim SR(s)
=01+ GG)

Clearly, e,, depends on the characteristics of G(s). More specifically, we can show that e
depends on the number of poles G(s) has at s =0. This number is known as the type of the
control system or, simply, system type,
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We can show that the steady-state error e, depends on the type of the contro] system. Let us
formalize the system type by referring to the form of the forward-path transfer function
G(s). In general, G(s) can be expressed for convenience as

_K(1+T18){(1 + Tas) - -+ (L + Ty s + T2s?)
TSI (U4 Tas)(1 + Tps) - - - (1 + Tpps + Tras?)

G(s) e~ T (5-20)

where K and all the 7’s are real constants. The system type refers to the order of the pole of
G(s) at s=0. Thus, the closed-loop system having the forward-path transfer function of
Eq. (5-20) is type j, where j=0, 1, 2,. . . . The total number of terms in the numerator and
the denominator and the values of the coefficients are not important to the system type, as
system type refers only to the number of poles G(s) has at s = 0. The following example
illustrates the system type with reference to the form of G(s).

_ K(1 +0.55) _
OO = e T TP (s21)

Now let us investigate the effects of the types of inputs on the steady-state error. We shall
consider only the step, ramp, and parabolic inputs.

Steady-State Error of System with a Step-Function Input
When the input r{?) to the control system with H(s)= 1 of Fig. 5-3 is a step function with
magnitude R, R(s) = R/s, the steady-state error is written from Eq. (5-19),

SR(5) . R R

= T G() PRI G0) T+ ipGe) G2
For convenience, we define
K,= 11_[::(1) G(s) (5-24)
as the step-error constant. Then Eq. (5-23) becomes
Ess = ] _pr (5-25)

A typical ¢, due to a step input when K,, is finite and nonzero is shown in Fig, 5-5. We see
from Eq. (5-25) that, for e, to be zero, when the input is a step function, K, must be infinite,
If G(s) is described by Eq. (5-20), we see that, for K, to be infinite, j must be at least equal to
unity; that is, G(s) must have at least one pole at s = 0. Therefore, we can summarize the
steady-state error due to a step function input as follows:

Type Osystem: ez = = constant

_R_
l+K,
Type 1 orhigher system: ey =0
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Reference input
Ao = Ruf)

) A /
¥ (')Ij VRN N\ v
N
™ Qutput y(f)
0 '

Figure 5-5 Typical steady-state error due to a step input.

Steady-State Error of System with a Ramp-Function Input

When the input to the control system [H(s) = 1] of Fig. 5-3 is a ramp function with
magnitude R,

r(t) = Riug(z) (5-26)
where R is a real constant, the Laplace transform of r(f) is
R
R(s) = 2 (5-27)

The steady-state error is written using Eq. (5-19),

R R
=li = 5-28
bss sl—r»?)s+sG(s) lim_sG(s) (5-28)
s—0
We define the ramp-error constant as
K, = lirr(l) sG(s) (5-29)
S
Then, Eq. (5-26) becomes
R
€y = X (5-30)

which is the steady-state error when the input is a ramp function. A typical e, due to a ramp
input when K, is finite and nonzero is illustrated in Fig. 5-6.

r{t) A R

) s g

Reference input
r(t) = Reu (1)

—!

Qutput y{z)

»
>

t
Figure 5-6 Typical steady-state error due to a ramp-function input.

0
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Eq. (5-30) shows that, for e, to be zero when the input is a ramp function, X, must be
infinite. Using Egs. (5-20) and (5-29), we obfain

: . K
Kv _.!]—%SG(S) _11_1;1'(]];/——] .]"_0’ I-, 2,... (5_31)

Thus, for K, to be infinite, j must be at least equal to 2, or the system must be of type 2 or
higher. The foliowing conclusjons may be stated with regard to the steady-state error of a
systemn with ramp input:

TypeOsystem: &5 = 00

R
Type 1l system:  eg; = = constant

¥

Type2system: eg =0

Steady-State Error of System with a Parabelic-Function Input
When the input is described by the standard parabolic form

() =2 st (5-32)

the Laplace transform of r(¢#) is

R
R(s) = (5-33)

The steady-state error of the system in Fig. 5-3 with H(s)=1 is

R
Cos = lim 2G(s) (5-34)

A typical ey of a system with a nonzero and finite X, due to a parabolic-function input is
shown in Fig. 5-7.
Defining the parabolic-error constant as

K, = lim 5°G(s) (5-35)
5
the steady-state error becomes
R
€55 = — 5-36
s =% (5-36)
ri) A _R
»@ ‘*“E
Reference input
2
r=2Cu 0
f—/(o:t;ut ¥ -

0 t
Figure 5-7 Typical steady-state error due to a parabolic-function input.
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TABLE 5-1 Summary of the Steady-State Errors Due to Step-, Ramp-, and Parabolic-Function
Inputs for Unity-Feedback Systems

Steady-State Error e,

Type of System Error Constants Step Input Ramp Input Parabolic
j A A A E 2
0 K 0 0 1& oo oo
1 o0 K 0 0 £ 00
2 o 00 K 0 0 R
3 oo o o0 0 0 0

Following the pattern set with the step and ramp inputs, the steady-state error due to the
parabolic input is zero if the system is of type 3 or greater. The following conclusions are
made with regard to the steady-state error of a system with parabolic input:

Type O system: e5c = 00
Type 1 system: €ss = 00
R

Type 2 system: €55 = . = constant
a

Type 3 orhigher system: es =0

We cannot emphasize often enough that, for these results to be valid, the closed-loop
system must be stable.

By using the method described, the steady-state error of any linear closed-loop system
subject to an input with order higher than the parabolic function can also be derived if
necessary. As a summary of the error analysis, Table 5-1 shows the relations among the
error constants, the types of systems with reference to Eq. (5-20), and the input types.

As a summary, the following points should be noted when applying the error-constant
analysis just presented.

1. The step-, ramp-, or parabolic-error constants are significant for the error analysis
only when the input signal is a step function, ramp function, or parabolic function,
respectively.

2. Because the error constants are defined with respect to the forward-path transfer
function G(s), the method is applicable to only the system configuration shown in
Fig. 5-3 with H(s) = 1. Because the error analysis relies on the use of the final-
value theorem of the Laplace transform, it is important to check first to see if sE(s)
has any poles on the jw-axis or in the right-half s-plane.

3. The steady-state error properties summarized in Table 5-1 are for systems with
unity feedback only.

4. The steady-state error of a system with an input that is a linear combination of the
three basic types of inputs can be determined by superimposing the errors due to
each input component.

5. When the system configuration differs from that of Fig. 5-3 with H(s) = 1, we can
either simplify the system to the form of Fig. 5-3 or establish the error signal and
apply the final-value theorem. The ermor constants defined here may or may not
apply, depending on the individual situation.
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‘When the steady-state error is infinite, that is, when the error increases continuously
with time, the error-constant method does not indicate how the error varies with time. This
is one of the disadvantages of the error-constant method. The error-constant method also
does not apply to systems with inputs that are sinusoidal, since the final-value theorem
cannot be applied. The following examples illustrate the utility of the error constants and
their values in the determination of the steady-state errors of linear control systems with
unity feedback.

EXAMPLE 5-4-2 Consider that the system shown in Fig. 5-3 with H(s) = 1 has the following transfer functions. The
error constants and steady-state errors are calculated for the three basic types of inputs using the error

constants.
K(s+3.15)
a. 5) = H(s)=1 Typelsystem
06 = s Fis)s+os) ¢ ype sy
R
Step input: Step-error constant K, = co €5 = =0
1+ K,
R input: Ra or constant K, = 4.2K _R_R
amp input: mp-error constant X, =4, €55 = K. " 42K
. . R
Parabolic input:  Parabolic-error constant K, =0 ey = = o0
a

These results are valid only if the value of K stays within the range that corresponds to a
stable closed-loop system, which is 0 < X <1.304.

K
b. G(S) = m H(S) =1 Type ZSystem
The closed-loop system is unstable for all values of X, and error analysis is meaningless.
S(s+1)
. = — H = T
c.  G(s) 11261 5) (s) =1 Type2system

We can show that the closed-loop system is stable. The steady-state errors are
calculated for the three basic types of inputs.

Toolbox 5-4-2
For the system in Example 5-4-2:

K(s+3.15)

@ 6) = 1555 05)

H(s) =1 Typel system

% Step input

K=1; % Use K=1
Gzpk=zpk([-3.15],[0-1.5~0.5],1)
G=tf(Gzpk);

H=1;

clooptf=feedback(G,H)
step(clooptf)

xlabel (‘Time(sec)’);
ylabel(‘Amplitude’);
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Step Response
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Similarly you may obtain the ramp and parabolic responses

%Ramp input

t=0:0.1:50;

u=t;

[v,x]=lsim(clooptf,u,t);

PlOt(t Y .t,u);

title(*'Closed-loop response for Ramp Input’)
xlabel(‘Time(sec)’)

ylabel(‘Amplitude’)

%Parabolic input

t=0:0.1:50;

u=0.5%t.*t;

[v,x]=lsim(clooptf,u,t);

plot(t,y,t,ud;

title(‘Closed-loop response for Parabolic Input’)
xlabel(‘Time(sec’)

yvlabel(‘Amplitude’)

Step input: Step-error constant: X, = 0o ey =——=0
1+ K,
. R
Ramp input: Ramp-error constant: Ky = oo €5 =2 = 0
.. . R
Parabolic input:  Parabolic-error constant: K, = 1/12 o= = 12R
o

Relationship between Steady-State Error and Closed-Loop Transfer Function

In the last section, the steady-state error of a closed-loop system was related to the forward-
path transfer function G(s) of the system, which is usually known. Often, the closed-loop
transfer function is derived in the analysis process, and it would be of interest to establish
the relationships between the steady-state error and the coefficients of the closed-loop
transfer function. As it turns out, the closed-loop transfer function can be used to find the

steady-state error of systems with unity as well as nonunity feedback. For the present
discussion, let us impose the following condition:

lin(1) H(s) = H(0) = Ky = constant (5-37)
s
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which means that F(s) cannot have poles at s = 0. Because the signal that is fed back to be
compared with the input in the steady state is K times the steady-state output, when this
feedback signal equals the input, the steady-state error would be zero. Thus, we can define
the reference signal as r(£)/Ky and the ervor signal as

1
e(t) = Xn r(t) — y(8) (5-38)
or, in the transform domain,
1 1
E(s) = Ko R(s) — Y(s) = X [1 — KyM(s)]R(s) (5-39)

where M(s) is the closed-loop transfer function, ¥(s)/R(s). Notice that the above develop-
ment includes the unity-feedback case for which Ky = 1. Let us assume that M(s) does not
have any poles at s = 0 and is of the form

_ Y(s) _ b)nsm +bm—lsm-_1 + .- +bls + b[)

M(s) TR(S)  SFapstl4 - dais+a

(5-40)

where n > m. We further require that all the poles of M(s) are in the left-half s-plane, which
means that the system is stable. The steady-state error of the system is written

s—0

e5s = lim sE(s) = lim—— [1 — KuM(s)]sR(s) (5-41)
s—0Ky

Substituting Eq. (5-40) into the last equation and simplifying, we get

n L. _ .
€55 = i’ lim s+ + (al blKH)s + (aﬂ bOKH)SR

5-42
Ky s—=0 st +an—lS"_l + o 4 ays+agp (S) ( )

We consider the three basic types of inputs for r(z).

1. Step-function input. R(s) = R/s.
For a step-function input, the steady-state error in Eq. (5-42) becomes

1 (.‘.19—_%.](_”) R (5-43)

Cyg = ——
RAY KH a[]

Thus, the steady-state error due to a step input can be zero only if

aop — boKn =0 (5-44)
or
by 1
M(0) = b (5-45)

This means that, for a unity-feedback system Kg = 1, the constant terms of the
numerator and the denominator of M(s) must be equal, that is, bp = ag, for the
steady-state error to be zero.
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2. Ramp-function input. R(s) = R/s*.
For a ramp-function input, the steady-state error in Eq. (5-42) becomes

1 .. "+ ... +(a1—b1KH)S+(ao—b0KH)R

=—1 5-46
55 = K 530 s(s" +ay_1s"" 1+ -« +ays +ag) (5-46)
The following values of e, are possible:
Cgs = 0 if dg — boKH =0 and a) — b[KH =0 (5—47)
e =L 0K B ontant i ag — boKy =0 and a; —biKy#0 (5-48)
aoKy
€5y = 00 if ag— boKy#0 (5-49)
3. Parabolic-function input. R(s) = R/s>.
For a parabolic input, the steady-state error in Eq. (5-42) becomes
1. s+ - +(ag— b2Ky)s* + (a1 — b1Kg)s + (a0 — boKy)
=—1 R (5-50
Css KHsl—I»Ill) s2(s" +ap_ s + --- +ays+ap) (5-50)
The following values of ey are possible:
ess =0 if a;—bKp=0 for i=0,1,and2 (5-51)
P MR =constant if a;—bjKy=0 for i=0 andl (5-52)
agKp
€y = 0O if a—biKyg#0 for i=0 andl (5-53)

#- EXAMPLE 5-4-3 The forward-path and closed-loop transfer functions of the system shown in Fig. 5-3 are given next.
The system is assumed to have unity feedback, so H(s) = 1, and thus Ky = H(0} = 1.

5(s+1)

5(+1)
O6) = aGr 2)5+9)

TR+ IS + 6052 +55+5

M(s) (5-54)

The poles of M(s) are all in the left-half s-plane. Thus, the system is stable. The steady-state
errors due to the three basic types of inputs are evaluated as follows:

Step input: ess =0 sinceag = bo(=5)
Ramp input: ess =0 sinceag = bg(=5)anda; = by (= 5)
- ay — bKy 60
: =2" 2 p _TR=12R
Parabolic input: ey pyon 5 2

Because this is a type 2 system with unity feedback, the same results are obtained with the error
constant method. .-
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EXAMPLE 5-4-5
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Consider the system shown in Fig. 5-3, which has the following transfer functions:

_ _5(s+1)
G(S) = m H(S) = S_-FS‘- (5—55)
Then, Ky = H(0) = 1. The closed-loop transfer function is
M(s)=@— G(s) s+5 (5-56)

R(s) 1+GH() 5 +178 + 6052 + 5545
Comparing the last equation with Eq. (5-40), wehaveqg = 5, a1 =5, a2 =60, by = 5, b) = 1,and
by = 0. The steady-state errors of the system are calculated for the three basic types of inputs.

_ a0 —boKy _

Unit-step input, r(z} = us(z): ess 0

Unit-ramp input, r(f) = tu,(2): ey=———=——=0.8

Unit-parabolic input, r{t) = tus(t)/2: e, =00 sincea; — b 1Ky #0

It would be illuminating to calculate the steady-state errors of the system from the difference between
the input and the output and compare them with the results just obtained.

Applying the unit-step, unit-ramp, and unit-parabolic inputs to the system described by
Eq. (5-56), and taking the inverse Laplace transform of ¥(s), the outputs are

Unit-step input:
y(t) = 1 - 0.00056¢ 205 _ 0,0001381¢~*38¢:

— 0.9993¢ 700302 ¢4, 0.28981 — 0.1301e709%0% 0 0.28981 1 >0 57
Thus, the steady-state value of v(¢) is unity, and the steady-state error is zero.
Unit-ramp input:
¥(t) =t—0.8+4.682 x 107571205 1 3 876 x 10751886 (5.58)

+ 0.8¢~0030% ¢05.0.2898¢ — 3.365¢ 03 4in0.2898¢ 1 > 0
Thus, the steady-state portion of y(7) is ¢ — 0.8, and the steady-state error to a unit ramp is 0.8.
Unit-parabolic input:
v(t) =052 — 0.8r — 1.2 — 3.8842 x 107061205 _ 5784 x [0~6¢~4 8860
0.0302 0.0302¢ (5-59)
+ 11.2e70994 0950.2898¢ 4 3.9289¢ 709704 4in 0.2808¢ ¢+ >0

The steady-state portion of y(f) is 0.5:2 — 0.8¢ — 11.2. Thus, the steady-state error is 0.8¢ + 11.2,
which becomes infinite as time goes to infinity.

Consider that the system shown in Fig. 5-3 has the following transfer functions:
_ 1 _10(s +1)
) =y 19=—5s (5-60)
Thus,
Ky = ling,H(s) =2 (5-61)
§—
The closed-loop transfer function is
Y G F+ 5
Ms) =20 ) s (5-62)

Ris) 1+G)H(s) 5+ 175 +60s2 + 10s + 10
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The steady-state errors of the system due to the three basic types of inputs are calculated as follows:

Unit-step input r(t) = ug(t):

1 fag — boKy 1 10-5x%x2 _
ess—KH( ap )_E( 10 )_0 (5-63)

Solving for the output using the M(s) in Eq. (5-62), we get

¥(r) = 0.5u,(t) + transient terms (5-64)
Thus, the steady-state value of y(#) is 0.5, and because Ky = 2, the steady-state error due to 2 unit-
step input is zero.
Unit-ramp input r(t) = tus(t):
1 i Ky 10-1x2
= —{ — = - — = .4 5"'65
e"KH(ag)z(lo)O (5-65)
The unit-ramp response of the system is written
¥(2) = [0.5¢ — 0.4Ju;(¢) + transient terms (5-66)

Thus, using Eq. (5-38), the steady-state error is calculated as
1
eft) = Fr(t) — ¥(t) = 0.4u,(#) — transient terms (5-67)
H
Because the transient terms will die out as £ approaches infinity, the steady-state error due to a unit-
ramp input is 0.4, as calculated in Eq. (5-66).
Unit-parabolic input r(t) = £u,(t)/2:
ess =00 since a; — b Ky#0
The unit-parabolic input is
¥(#) = [0.25¢ — 0.4t — 2.6)u () + transient terms (5-68)

The error due to the unit-parabolic input is
e(f) = —r(t) ¥(t) = (0.4r — 2.6)us(t) — transient terms (5-69)
Thus, the steady-state error is 0.4¢ + 2.6, which increases with time.

Steady-State Error of Nonunity Feedback: H(s) Has Nth-Order Zero at s=0

This case corresponds to desired output being proportional to the Nth-order derivative of
the input in the steady state. In the real world, this corresponds to applying a tachometer or
rate feedback. Thus, for the steady-state error analysis, the reference signal can be defined
as R(s)/Kys", and the error signal in the transform domain may be defined as

1

B(s) = 2 7 K(5) ~ ¥(6) (5-70
where
Ky = lim HSS;‘) 5-71)

‘We shall derive only the results for N = 1 here, In this case, the transfer function of M(s) in Eq.
(5-40) will have a pole at s = 0, orap = 0. The steady-state error is written from Eq. (5-70) as

sl 4 ... 4 (a3 ~ biKg)s + (a1 — boKn)
S+ a1+ -k ars

ess = Llxm
K

sR(s) (5-72)
1 s—0
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For a step input of magnitude R, the last equation is written

-1 .. — K — boK
e = fim [t + (@ — biKR)s + (a1 — boKu)] o (5-73)
Ky 50 "t @il ays
Thus, the steady-state error is
[ 0 if ay — blKH =0 and a) — b()KH =0 (5-74)
-b
ess = a—za—Kl—KH-R =constant if a; —bpKy =0 but a; — b 1Ky #0 (5-75)
IAH
€ss = 00 if ay —bpKy#0 (5-76)
We shall use the following example to illustrate these results.
Consider that the system shown in Fig. 5-3 has the following transfer functions:
1 10s
G(s) = m H(s) = m’ (5-77)
Thus,
Ky = lim—2 (‘) (5-78)
£
The closed-loop transfer function is

TRG) A+ 175 + 6052 + 10s

The velocity control system is stable, although M(s) has a pole at s = 0, because the objective is to
control velocity with a step input. The coefficients are identified to be ap =0, a; = 10,
a2=60,b0=5,andb1 =1.

For a unit-step input, the steady-state error, from Eq. (5-75), is

_ 1 faa—b1 &g\ _1(60—1x2Y)
€ = KH( P ) = 2( 0 ) =29 (5-80)

To verify this result, we find the unit-step response using the closed-loop transfer function in
Eg. (5-79). The result is

¥(#) = (0.5t — 2.9)u,(t) + transient terms (5-81)
From the discussion that leads to Eq. (5-70), the reference signal is considered to be tz(r) /Ky =
0.5tu(¢) in the steady state; thus, the steady-state error is 2.9. Of course, it should be pointed out that

if F(s) were a constant for this type 2 system, the closed-loop system would be unstable. So, the
derivative control in the feedback path also has a stabilizing effect.

Toolbox 5-4-3

The corresponding responses for Eq. 5-79 are obtained by the following sequence of MATLAB functions

t=0:0.1:50;
num=[15];

den=[11760100];
sys = tf(num,den);
sys_cl=feedback(sys,1);
[yv,t]l=step(sys_cl);
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u=ones(size(t));
plot(t,y,‘r’,t,u,'g’)
xlabel(‘Time(secs)’)

ylabel (‘Amplitude’)
title(*'Input-green, Qutput-red’)
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b-4-2 Steady-State Error Caused by Nonlinear System Elements

In many instances, steady-state errors of control systems are attributed to some nonlinear
system characteristics such as nonlinear friction or dead zone. For instance, if an amplifier
used in a control system has the input—output characteristics shown in Fig. 5-8, then, when
the amplitude of the amplifier input signal falls within the dead zone, the output of the
amplifier would be zero, and the control would not be able to correct the error if any exists.
Dead-zone nonlinearity characteristics shown in Fig. 5-8 are not limited to amplifiers. The
flux-to-current relation of the magnetic field of an electric motor may exhibit a similar
characteristic. As the current of the motor falls below the dead zone D, no magnetic flux,
and, thus, no torque will be produced by the motor to move the load.

The output signals of digital components used in control systems, such as a micro-
processor, can take on only discrete or quantized levels. This property is illustrated by the
quantization characteristics shown in Fig. 5-9. When the input to the quantizer is within
+q/2, the output is zero, and the system may generate an error in the output whose

Qutput 4

/~D |0 D Inp'ut

Figure 5-8 Typical input—output
characteristics of an amplifier with dead
zone and saturation.
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Figure 5-9 Typical input—output characteristics of a quantizer.

magnitude is related to 3=¢/2. This type of error is also known as the quantization error in
digital control systems.

When the control of physical objects is involved, friction is almost always present.
Coulomb friction is a common cause of steady-state position errors in control systems.
Fig. 5-10 shows a restoring-torque-versus-position curve of a control system. The torque
curve typically could be generated by a step motor or a switched-reluctance motor or from
a closed-loop system with a position encoder. Point 0 designates a stable equilibrium point
on the torque curve, as well as the other periodic intersecting points along the axis where
the slope on the torque curve is negative. The torque on either side of point 0 represents a
restoring torque that tends to return the output to the equilibrium point when some angular-
displacement disturbance takes place. When there is no friction, the position error should
be zero, because there is always a restoring torque so long as the position is not at the stable

Torque 4

Position

Figure 5-10 Torque-angle curve of a motor or closed-loop system with Coulomb friction.
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equilibrium point. If the rotor of the motor sees a Coulomb friction torque 7, then the motor
torque must first overcome this frictional torque before producing any motion. Thus, as the
motor torque falls below T as the rotor position approaches the stable equilibrium point, it
may stop at any position inside the error band bounded by +6,, as shown in Fig. 5-10.

Although it is relatively simple to comprehend the effects of nonlinearities on errors and
to establish maximum upper bounds on the error magnitudes, it is difficult to establish general
and closed-form solutions for nonlinear systems. Usually, exact and detailed analysis of
errors in nonlinear control systems can be carried out only by computer simulations.

Therefore, we must realize that there are no error-free control systems in the real
world, and, because all physical systems have nonlinear characteristics of one form or
another, steady-state errors can be reduced but never completely eliminated.

.- 5-5 TIME RESPONSE OF A PROTOTYPE FIRST-ORDER SYSTEM

Consider the prototype first-order system of form

B

1 1
2 2y == £(0) (5-82)

where 7 is known as the time constant of the system, which is a measure of how fast
the system responds to initial conditions of external excitations. Note that the input in
Eq. (5-82) is scaled by 1 for cosmetic reasons.

For a unit-step input

70 =u = {150 (583

If 3(0) =3(0) = 0, L(us(1)) =+ and £(5(t)) = ¥(s), then

1 1/
¥(s) TS5+ 1/t

(5-84)

Applying the inverse Laplace transform to Eq. (5-84), we get the time response of Eq. (5-82):
W) =1-¢" (5-85)
where 7 is the time for y(#) to reach 63% of its final value of ,1_1.120 y)=1.

Fig. 5-11 shows typical unit-step responses of y(#) for a general value of 7. As the value
of time constant 7 decreases, the system response approaches faster to the final value,
The step response will not have any overshoot for any combination of system parameters,

4
y@®
T o ) L s O

0.63 |—m—mmmm

Qf=—————

—»  Figure 5-11 Unit-step response of a
0 t  prototype first-order system.
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jo
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s-plane
i —>
1 a a
T
Figure 5-12 Pole configuration of the
transfer function of a prototype first-
order system.

Fig. 5-12 shows the location of the pole at s = —-% in the s-plane of the system transfer
function. For positive 7, the pole at s = — % will always stay in the left-half s-plane, and the
system is always stable.

5-6 TRANSIENT RESPONSE OF A PROTOTYPE SECOND-ORDER SYSTEM

Although true second-order control systems are rare in practice, their analysis generally
helps to form a basis for the understanding of analysis and design of higher-order systems,
especially the ones that can be approximated by second-order systems,

Consider that a second-order control system with unity feedback is represented by the
block diagram shown in Fig. 5-13. The open-loop transfer function of the system is
_Y(s) w?

2 (5-86)

Gls) = E(s) (s + 2wy)

where ¢ and w, are real constants. The closed-loop transfer function of the system is

Y(s) w
= 5-87
R(s) 5%+ 2wps+ 0?2 (5-87)
The system in Fig. 5-13 with the transfer functions given by Eqgs. (5-86) and (5-87) is
defined as the prototype second-order system.
The characteristic equation of the prototype second-order system is obtained by setting
the denominator of Eq. (5-87) to zero:

A(s) = §* + 2Lwps + wi =0 (5-88)

For a unit-step function input, R(s) = 1/s, the output response of the system is obtained by
taking the inverse Laplace transform of the output transform:

w?
Y(s) = & 5-89
(S) s(s2+2§wn3+wﬁ) ( )
") elr) o} RN
Ris) +1 Els) | sls+24m,) Y

Figure 5-13 Prototype second-order control
system.,
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Figure 5-14 Unit-step responses of the prototype second-order system with various damping ratios.

This can be done by referring to the Laplace transform table in Appendix C. The result is

e~ fwnt

yt)=1- Wi sin (w,, V1= 22t +cos™ ;') £>0 (5-90)

Fig. 5-14 shows the unit-step responses of Eq. (5-90) plotted as functions of the normalized
time w,,t for various values of ¢. As seen, the response becomes more oscillatory with larger
overshoot as ¢ decreases. When ¢ > 1, the step response does not exhibit any overshoot;
that is, ¥() never exceeds its final value during the transient. The responses also show that
w,, has a direct effect on the rise time, delay time, and settling time but does not affect the
overshoot. These will be studied in more detail in the following sections.
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5-6-1 Damping Ratio and Damping Factor

The effects of the svstem narameters + and . on the sten resnonse v(?#) of the nrototvne
e i e of TIORES YR ARRAS TR D TTTERE Mg TS ovRew it i it P S Bt vt o 7

second-order system can be studied by referring to the roots of the characteristic equation

in Eq. (5-88).
Toolbox 5-6-1
The corresponding time responses for Fig. 5-14 are obtained by the following sequence of MATLAB
Jfunctions
clear all
w=10;
forl={0.2 0.4 0.6 0.811.21.41.61.82]
t=0:0.1:50;
num= [w."2];
den=[12*1*ww."2]; Closed-Loop Step
t=0:0-01:2; 16 T T T ) T T T T T
step(num,den,t) hold on;
end 14l ]
xlabel(*Time(secs)’) '
ylabel(*‘Amplitude’) |
title(‘Closed-Loop Step’) 12}F
1 B g
g
5 &
06} ) .
¥
04 r . N
o2} i
D 1 i 1 i L i 1 1 L
0 02 94 p5 D8 1 12 14 18 13 2
Time{secs) (sec)

The two roots can be expressed as

§1,82 = —fwy + jog/'1 ~ ;-2

(5-91)
= —¢ T jow

where
@ = fwy (5-92)
and

The physical signiticance of { and « is now investigated. As seen from Egs. (5-90) and
(5-92), « appears as the constant that is multiplied to ¢ in the exponential term of y(¢).
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Therefore, o controls the rate of rise or decay of the unit-step response y(f). In other
words, a controls the ““damping”™ of the system and is called the damping factor, or the
damping constant. The inverse of e, 1/, is proportional to the time constant of the
system.

When the two roots of the characteristic equation are real and equal, we called the
system critically damped. From Eq. (5-91), we see that critical damping occurs when
¢ = 1. Under this condition, the damping factor is simply o = w,. Thus, we can regard ¢ as
the damping ratio; that is,

. . o actual damping factor
¢ = damping ratio = — = - — -
w, damping factor at critical damping

(5-94)

5-6-2 Natural Undamped Frequency

The parameter w,, is defined as the natural undamped frequency. As seen from Eq. (5-91),
when ¢ = 0, the damping is zero, the roots of the characteristic equation are imaginary, and
Eq. (5-90) shows that the unit-step response is purely sinusoidal. Therefore, w, corresponds
to the frequency of the undamped sinusoidal response. Eq. (5-91) shows that, when0 < ¢ < 1,
the imaginary part of the roots has the magnitude of w. When ¢ # 0, the response of y(#)is not
a periodic function, and @ defined in Eq. (5-93) is not a frequency. For the purpose of
reference, w is sometimes defined as the conditional frequency, or the damped frequency.

Fig. 5-15 illustrates the relationships among the location of the characteristic equation
roots and o, ¢, w,, and . For the complex-conjugate roots shown,

* w, is the radial distance from the roots to the origin of the s-plane.
* « is the real part of the roots.
* o is the imaginary part of the roots.

¢is the cosine of the angle between the radial line to the roots and the negative axis
when the roots are in the left-half s-plane, or

¢=cosf (5-95)
jo 4
Root s-plane
N |
9}\0):1 o=V~ gz
]4— o= {m,—» 0 o
X Figure 515 Relationships among the
Root characteristic-equation roots of the
prototype second-order system and &, {, @y,
and w.
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Figure 5-16 (a) Constant-natural-undamped-frequency loci. (b) Constant-damping-ratio loci.
(c) Constant-damping-factor loci. (d) Constant-conditicnal-frequency loci.

Fig. 5-16 shows in the s-plane (a) the constant-w, loci, (b) the constant-¢ loci, (c) the
constant-o loci, and (d) the constant-e loci. Regions in the s-plane are identified with the
system damping as follows:

o The left-half s-plane corresponds to positive damping; that is, the damping factor or
damping ratio is positive. Positive damping causes the unit-step response to settle to
a constant final value in the steady state due to the negative exponent of

exp(—{wat). The system is stable.

¢« The right-half s-plane corresponds to negative damping. Negative damping gives a
response that grows in magnitude without bound, and the system is unstable.

» The imaginary axis corresponds to zero damping (o = 0 or £ = 0). Zero damping
results in a sustained oscillation response, and the system is marginally stable or
marginally unstable.

Thus, we have demonstrated with the help of the simple prototype second-order
system that the location of the characteristic equation roots plays an important role in the
transient response of the system.
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Jo &

Figure 5-17 Locus of roots of thc
characteristic equation of the
prototype second-order system.

The effect of the characteristic equation roots on the damping of the second-order
system is further illustrated by Fig. 5-17 and Fig. 5-18. In Fig. 5-17, w, is held constant
while the damping ratio ¢ is varied from —oo to +o00. The following classification of the
systern dynamics with respect to the value of ¢ is made:

O0<e<1: 81,8 =—twp < josv/1 =22 (—tw<0) underdamped

t=1: 8,8 =—-w critically damped
>l sy, 8 = —twy +wa /1 overdamped
t=0: s, 0 ==Ljw, undamped

£<0: 81,82 =—tw, = ja),,\/l——_g_:-T (—tw, >0) negatively dumped

Fig. 5-18illustrates typical unit-step responses that correspond to the various root locations
already shown.

In practical applications, only stable systems that correspond to ¢ >0 are of interest.
Fig. 5-14 gives the unit-step responses of Eq. (5-90) plotted as functions of the normalized
time w,t for various values of the damping ratio {. As seen, the response becomes more
oscillatory as ¢ decreases in value. When ¢ > 1, the step response does not exhibit any
overshoot; that is, y(#) never exceeds its final value during the transient.

5-6-3 Maximum Overshoot

The exact relation between the damping ratio and the amount of overshoot can be obtained
by taking the derivative of Eq. (5-90) with respect to ¢ and setting the result to zero. Thus,

dy(t)  wpe !

T lrai — — 72 _
= m[tsm(mt+6) Vi ;cos(wt+9)] >0 (5-96)

where w and € are defined in Egs. (5-93) and (5-95), respectively. We can show that the
quantity inside the square bracket in Eq. (5-96) can be reduced to sin wt. Thus, Eq. (5-96) is
simplified to

dy(t) o e sinw,/1— 25 120 (5-97)

dt 1/]_;-2
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Setting dy(7)/dt to zero, we have the solutions: ¢ = co and

w1 -0t=nr n=0,1,2,... (5-98)

from which we get

t=——— n=0,1,2,... 5.99
o122 (5-99)

The solution at # = oc is the maximum of y(#) only when ¢ > 1. For the unit-step responses
shown in Fig. 5-13, the (irst overshoot is the maximum overshoot. This corresponds o
n =1 in Eq. (5-99). Thus, the time at which the maximum overshoot occurs is

T

e/ T8

With reference to Fig. 5-13, the overshoots occur at odd values of n, that is, n = 1, 3,
5, ..., and the undershoots occur at even values of n. Whether the extremum is an
overshoot or an undershoot, the time at which it occurs is given by Eq. (5-99). It should be
noted that, although the unit-step response for ¢ # 0 is not periodic, the overshoots and the
undershoots of the response do occur at periodic intervals, as shown in Fig. 5-19.

The magnitudes of the overshoots and the undershoots can be determined by
substituting Eq. (5-99) into Eq. (5-90). The result is

e—n"c/\/ l‘;z

(5-100)

(D) |nax ormin = 1 — ﬁ— sin(nr+6) n=1,2,... (5-101)
or
)’(t)lmaxarmin =1+ (_l)n—le—mr:/ 1= n=1,2,... (5-102)
¥} &
.vmnx
Maximum
overshoot
\../
Ymin
0 27 3z 47 T,,:,

4
Vi-Z2 i-g2 Vi-gg -2

Figure 5-19 Unit-step response illustrating that the maxima and minima occur at periodic intervals.
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Damping ratio §

The maximum overshoot is obtained by letting 7 = 1 in Eq. (5-102). Therefore,

maximum overshoot = ymax — 1 = 7/ V 1-¢ (5-103)
and
percent maximum overshoot = 100e~"/V 3 (5-104)

Eq. (5-103) shows that the maximum overshoot of the step response of the prototype
second-order system is a function of only the damping ratio ¢. The relationship between
the percent maximurm overshoot and the damping ratio given in Eq. (5-104) is plotted in
Fig. 5-20. The time ¢, in Eq. (5-100) is a function of both ¢ and w,,.

5-6-4 Delay Time and Rise Time

It is more difficult to determine the exact analytical expressions of the delay time ¢, rise
time #,, and settling time #;, even for just the simple prototype second-order system. For
instance, for the delay time, we would have to set y(¢) = 0.5 in Eq. (5-90) and solve for ¢.
An easier way would be to plot w,?; versus ¢, as shown in Fig. 5-21, and then approximate
the curve by a straight line or a curve over the range of 0 < ¢ < 1. From Fig. 5-21, the delay
time for the prototype second-order system is approximated as

1+0.7¢

(]

4 =

0<{<1.0 (5-105)

We can obtain a better approximation by using a second-order equation for £

o 1.1+ 0.125¢ + 046972
N Wy

ta 0<t<1.0 (5-106)

For the rise time #,, which is the time for the step response to reach from 10 to 90% of its
final value, the exact value can be determined directly from the responses of Fig. 5-14. The
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Figure 5-21 Normalized delay time versus ¢ for the prototype second-order system.

plot of w,t, versus ¢ is shown in Fig. 5-22. In this case, the relation can again be
approximated by a straight line over a limited range of ¢:

0.8+25
tr:_'l'_c O<txl (5-107)
Wy
A better approximation can be obtained by using a second-order equation:

. 1-0.4167¢ + 291772

r

0<t<l (5-108)

Wy

5.0

4,0

3.0 /

/
~

- 1, =08 +2.5 ,/7
& /
20 Zd
1.0 ] Actual @t =
i 1-0.4167¢+ 2.917¢
0 0.2 04 0.6 0.8 1.0 1.2

4

Figure 5-22 Normalized rise time versus ¢ for the prototype second-order system,
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From this discussion, the following conclusions can be made on the rise time and delay
time of the prototype second-order system:

* 1, and f; are proportional to { and inversely proportional to w,,.

+ Increasing (decreasing) the natural undamped frequency w, will reduce (increase)
t, and 1,

From Fig. 5-14, we see that, when 0 < ¢ < 0.69, the unit-step response has a maximum
overshoot greater than 5%, and the response can enter the band between 0.95 and 1.05 for
the last time from either the top or the bottom. When { is greater than 0.69, the overshoot is
less than 5%, and the response can enter the band between 0.95 and 1.05 only from the
bottom. Fig. 5-23(a) and (b) show the two different situations. Thus, the settling time has a

[ty
b1

1o ——
-z
(@) 0<{<0.69
A
]‘05 ——————————————————————————————————————
1.00 . —
00 [ e i e e e e e e e e
0 ‘ ot
®) ¢>0.69

Figure 5-23 Settling time of the unit-step response.
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Figure 5-23 (continued)

discontinuity at ¢ = 0.69. The exact analytical description of the settling time ¢, is difficult
to obtain. We can obtain an approximation for #; for 0 < £ <0.69 by using the envelope of
the damped sinusoid of y(¢), as shown in Fig. 5-23(a) for a 5% requirement. In general,
when the settling time corresponds to an intersection with the upper envelope of y(t), the
following relation is obtained:

1+ ——l-———e_c“""-' = upper bound of unit-step response (5-109)

V1-¢2

When the settling time corresponds to an intersection with the bottom envelope of y(?), #,
must satisfy the following condition:

1-— %e‘c“’"’* = lower bound of unit-step response (5-110)
=3

For the 5% requirement on settling time, the right-hand side of Eq. (5-109) would be 1.05,
and that of Eq. (5-110) would be 0.95. It is easily verified that the same result for ¢ is
obtained using either Eq. (5-109) or Eq. (5-110).

Solving Eq. (5-109) for w,t,, we have

wpls = —%ln(c‘uv &= Cz) 3-111)

where ¢, is the percentage set for the settling time. For example, if the threshold
is 5 percent, the ¢;; = 0.05. Thus, for a 5-percent settling time, the right-hand side of
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Eq. (5-111) varies between 3.0 and 3.32 as ¢ varies from O to 0.69. We can approximate the
settling time for the prototype second-order system as

I E 0<r<0.69 (5-112)
Lo

1

The approximation will be poor for small values of £(< 0.3).

When the damping ratio ¢ is greater than 0.69, the unit-step response will always enter
the band between 0.95 and 1.05 from below. We can show by observing the responses in
Fig. 5-14 that the value of w,t, is almost directly proportional to ¢. The following
approximation is used for ¢, for ¢ > 0.69.

s = &3¢ ¢>0.69 (5-113)

Wy

Fig. 5-23(c) shows the actual values of w,Z; versus ¢ for the prototype second-order
system described by Eq. (5-87), along with the approximations using Egs. (5-112)
and (5-113) for their respective effective ranges. The numerical values are shown in
Table 5-2.

We can summarize the relationships between #, and the system parameters as
follows:

» For ¢ < 0.69, the settling time is inversely proportional to £ and w,,. A practical way
of reducing the settling time is to increase w, while holding ¢ constant. Although

TABLE 5-2 Comparison of Settling Times of
Prototype Second-Order System, @,t;

¢ Actual 3c—2 4.5¢
0.10 28.7 30.2

0.20 13.7 16.0

0.30 100 10.7

0.40 7.5 8.0

0.50 5.2 64

0.60 5.2 53

0.62 5.16 5.16

0.64 3.00 5.00

0.65 5.03 492

0.68 4.71 4.71

0.69 435 4.64

0.70 2.86 3.15
0.80 333 3.60
0.90 4.00 4.05
1.00 473 4.50
1.10 5.50 4.95
1.20 6.21 5.40

1.50 8.20 6.75
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the response will be more oscillatory, the maximum overshoot depends only on ¢
and can be controlled independently.

» For ¢ > 0.69, the settling time is proportional to { and inversely proportional to @,,.
Again, £; can be reduced by increasing w,.

Mo nlhne. £ £ N
L OUVIUUA O-U=4&

clear all

w=10;1=0.4;
t=0:0.01:5;
num= [w."2];

step(num,den,t)

To find PO, rise time, and settling time using MATLAB, point at a desired location on the graph and right-
click to display the x and y values. For example

den=[12"1"ww."2];

xlabel(‘Time(secs)’)
ylabel( ‘Amplitude’)
title(‘Closed-Loop Step’)

Sysiem: sys Closed-Loop Step
14 Time (sﬁ): 0.354 T T T T T T
Amplitude; 1.25

Time(secs) (sec)

It should be commented that the settling time for ¢ > 0.69 is truly a measure of how
fast the step response rises to its final value. It seems that, for this case, the rise and delay
times should be adequate to describe the response behavior. As the name implies, settling
time should be used to measure how fast the step response settles to its final value. It should
also be pointed out that the 5% threshold is by no means a number cast in stone. More
stringent design problems may require the system response to settle in any number less
than 5%.

Keep in mind that, while the definitions on ¥max, tmax» Z4 ¢ and £, apply to a system of
any order, the damping ratio ¢ and the natural undamped frequency e, strictly apply only to
a second-order system whose closed-loop transfer function is given in Eq. (5-87).
Naturally, the relationships among {4, ¢,, and f; and ¢ and @, are valid only for the
samc sccond-order system model. However, these relationships can be used to measure the
performance of higher-order systems that can be approximated by second-order ones,
under the stipulation that some of the higher-order poles can be neglected.
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5-7 SPEED AND POSITION CONTROL OF A DC MOTOR

Servomechanisms are probably the most frequently encountered electromechanical control
systems. Applications include robots (each joint in a robot requires a position servo),
numerical control (NC) machines, and laser printers, to name but a few. The common
characteristic of all such systems is that the variable to be controlled (usually position or
velocity) is fed back to modify the command signal. The servomechanism that will be used
in the experiments in this chapter comprises a dc motor and amplifier that are fed back the
motor speed and position values.

One of the key challenges in the design and implementation of a successful controller
is obtaining an accurate model of the systemn components, particularly the actuator. In
Chapter 4, we discussed various issues associated with modeling of dc motors. We will
briefly revisit the modeling aspects in this section.

5-7-1 Speed Response and the Effects of Inductance and Disturbance-Open Loop Response

Consider the armature-controlled dc motor shown in Fig. 5-24, where the field current is
held constant in this system. The system parameters include

R, = armature resistance, chm

L, = armature inductance, henry

v, = applied armature voltage, volt

vy, = back emf, volt

# = angular displacement of the motor shaft, radian

T = torque developed by the motor, N-r1

J, = moment of inertia of the load, kg-m*

T, = any external load torque considered as a disturbance, N-m

J,» = moment of inertia of the motor (motor shaft), kg-rr*

J = equivalent moment of inertia of the motor and load connected to the motor-
shaft, J = Jp /n? 4 Jp, kg-m?* (refer to Chapter 4 for more details)

n = gear ratio

B = equivalent viscous-friction coefficient of the motor and load referred to the

motor shaft, N-mn/rad/sec (in the presence of gear ratio, B must be scaled by r;
refer to Chapter 4 for more details)

K, = speed sensor (usuvally a tachometer) gain

Figure 5-24 An armature-controlled dc motor with a
gear head and a load inertia J;.
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Figure 5-25 Block diagram of an armature-controlled dc motor.

As shown in Fig. 5-25, the armature-controlled dc motor is itself a feedback system,
where back-emf voltage is proportional to the speed of the motor. In Fig. 5-25, we have
included the effect of any possible external load (e.g., the load applied to a juice machine
by the operator pushing in the fruit) as a disturbance torque 7;. The system may be
arranged in input—output form such that V,(s) is the input and €)(s) is the output:

K
. Rﬂjﬂl
061 = (11) 2. (] . BL, )s  EuKy + RaB Vals)
R(l Ra"”l Ra"ﬂl

(5-114)

()}

- T,
(lﬂ)sz . (, N BLa>s . KKy + RaB 2le)
1 Ra-lm RII‘IIH

The ratio L,/R,, is called the motor electric-time constant, which makes the system speed-
response transfer function second order and is denoted by 7,. Also, it introduces a zero to
the disturbance-output transfer function. However, as discussed in Chapter 4, because L, in
the armature circuit is very small, 7, is neglected, resulting in the simplified transfer
functions and the block diagram of the system. Thus, the speed of the motor shaft may be
simplified to :

Kn‘" l’
- Ralw I SR _
=Rk TRB) Rk, v BB Y (5-115)
Radm Rudm
or

T

_ Ky I
Ofs) = " Va(s) — ——— Tr(s) (5-116)

where K. = Kin/{ReB + KiKp) is the motor gain constant, and 7, = RaJm/{R.B +
K Kp) is the motor mechanical time constant. If the load inertia and the gear ratio are
incorporated into the system model, the inertia J,, in Eqgs. (5-114) through (5-116) is
replaced with J (total inertia).
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Using superposition, we get
Ofs) = Q(-")ln(,):o +€(s) fV,.(s)=0 (5-117)

To find the response w(?), we use superposition and find the response due to the individual
inputs. For Ty, = 0 (no disturbance and B = 0) and an applied voltage V,(#) = A, such that
Va(s) = A/s,

wlf) = %(1 — o1/t -118)

In this case, note that the motor mechanical time constant t,, is reflective of how fast
the motor is capable of overcoming its own inertia J, to reach a steady state or constant
speed dictated by voltage V.. From Eq. (5-118), the speed final value is @(t) = A/K}p. As
), increases, the approach to steady state takes longer.

If we apply a constant load torque of magnitude D to the system (i.e., T;, = D/s), the
speed response from Eq. {5-118) will change to

0 =I%b (A —I;;'f)(l — ¢7t/™) (5-119)

which clearly indicates that the disturbance T, affects the final speed of the motor. From
Eq. (5-119), at steady state, the speed of the motor is wp = KLb(A - RI‘{‘f ). Here the final
value of w(¢) is reduced by R,D/K,,Kp. A practical note is that the value of 7y, = D may
never exceed the motor stall torque, and hence for the motor to turn, from Eq. (5-119),
AK,, /R, > D, which sets a limit on the magnitude of the torque 7. For a given motor, the
value of the stall torque can be found in the manufacturer’s catalog,

If the load inertia is incorporated into the system model, the final speed value becomes
wp =A /Kp. Does the stall torque of the motor affect the response and the steady-state
response? In a realistic scenario, you must measure motor speed using a sensor. How would

the sensor affect the equations of the system (see Fig. 5-25)?

5-7-2 Speed Control of DC Motors: Closed-Loop Response

As seen previously, the output speed of the motor is highly dependant on the value of torque
T;. We can improve the speed performance of the motor by using a proportional feedback
controller. The controller is composed of a sensor (usually a tachometer for speed
applications) to sense the speed and an amplifier with gain K (proportional control)
in the configuration shown in Fig. 5-26. The block diagram of the system is also shown in
Fig. 5-27.

I,

"

Figure 5-26 TFeedback control of an
armature-controlled dc motor with
Feedback i a load inertia.
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Figure 5-27 Block diagram of a speed-control. armature-controlled de motor.

Note that the speed at the motor shaft is sensed by the tachometer with a gain K. For
ease in comparison of input and output, the input to the control system is converted from
voltage V;, to speed (), using the tachometer gain K. Hence, assuming L, = 0, we have

KiKnK
_ Radm 3
) =R, RB + Kk M)
Ralm
1
Jm
(Kme +’RaB + K:KmK TL(S)
+
Rajm
For a step input ), = A/s and disturbance torque value Ty = D/s, the output becomes

(5-120)

_ARKKG gy %D

1—e % 5-12
Redm gy e G120

ot)

= Ryl . ) . .
where 7, = T K TRBIRER 18 the system mechanical-time constant. The steady-state

response in this case is

. AKK.Ki B R.D 5-122)
P = \KuKp + ReB + KKmK  KnmKp + RaB + KiKmK

where ws — A as K — co. So, speed control may reduce the effect of disturbance. As in
Section 5-7-1, the reader should investigate what happens if the inertia J; is included in
this model. If the load inertia J; is too large, will the motor be able to turn? Again, as
in Section 5-7-1, you will have to read the speed-sensor voltage to measure speed. How will
that affect your equations?

5-7-3 Position Control

The position response in the open-loop case may be obtained by integrating the speed
response. Then, considering Fig. 5-25, we have O(s) = {)(s)/s. The open-loop transfer
function is therefore

O(s) _ K
Va(s) S(Lzz-’ms2 + (LaB +Ra-]m)s + R,B + Kme)

(5-123)
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Figure 5-28 Block diagram of a position-control, armature-controlled dc motor.

where we have used the total inertia J. For small L, the time response in this case is

6(t) = A (t+ Tme ™™ — 1) (5-124)
Ky

which implies that the motor shaft is turning without stop at a constant steady-state speed.
To control the position of the motor shaft, the simplest strategy is to use a proportional
controller with gain K. The block diagram of the closed-loop system is shown in Fig. 5-28.
The system is composed of an angular position sensor (usually an encoder or a potenti-
ometer for position applications). Note that, for simplicity, the input voltage can be scaled
to a position input ®;,(s) so that the input and output have the same units and scale.
Alternatively, the output can be converted into voltage using the sensor gain value. The
closed-loop transfer function in this case becomes

KKK
0 (s) R,
= (5-125)
i (s) (Tes + l){J 52+ (B + K;Km)s + KI;mKs}
a a

where K is the sensor gain, and, as before, 7. = (L,/R,;) may be neglected for small L,,.

KKK
0(s) RaJ
= 5-126
®m(s) 2+ R.B + K Kp, KK, K ( )
R,J R.J

Later, in Chapter 6, we set up numerical and experimental case studies to test and verify the
preceding concepts and learn more about other practical issues,

5-8 TIME-DOMAIN ANALYSIS OF A POSITION-CONTROL SYSTEM

In this section, we shall analyze the performance of a system using the time-domain criteria
established in the preceding section. The purpose of the system considered here is to
control the positions of the fins of an airplane as discussed in Example 4-11-1,

Recall from Chapter 4 that

_0y(s) KK KKN
T B(s)  S[Lais? + (Radst + LaB; + K1K2J,)s + RoB; + K1 KB, + KiKy + KK, K,K;)
(5-127)

Gls)
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The system is of the third order, since the highest-order term in G(s) is s°. The electrical
time constant of the amplifier-motor system is

L, 0003

Ty = =
T R.HAKKy 5+5

= 0.0003 sec (5-128)

The mechanical time constant of the motor-load system is

_ J: _ 0.0002
B, 0.015

T = (.01333 sec (5-129)

Because the electrical time constant is much smaller than the mechanical time constant, on
account of the low inductance of the motor, we can perform an initial approximation by
neglecting the armature inductance L,. The result is a second-order approximation of the
third-order system. Later we will show that this is not the best way of approximating a high-
order system by a low-order one. The forward-path transfer function is now

K, K1K;KN
5((Rad; + K1K2J;)s + RoB: + K1 K3B; + KiKj, + KK KK ]

_ KK KKN (5-130)
— RqJ; + K1 KpJy
- .s'(s 4 RyB: + K1 KoB, + KiKp + KK]K;'K,)
R.J: + K| Ky J;

G(s) =

Substituting the system parameters in the last equation, we get
4500k
~ s(s +361.2)

Comparing Eq. (5-131) and (5-132) with the prototype second-order transfer function of
Eq. (5-86), we have

G(s) (5-131)

K. K1 K;KN
natural undamped frequency wn = %4 (L = +v4500K rad/sec  (5-132)
RoJ: + K1 Ko J,

RuB; + K\ K2B; + KiKp + KK KK, 2.692
2/K;KiK;KN(R,J: + K1K2Jy) vk

dampingratio £ = (5-133)

Thus, we see that the natural undamped frequency w,, is proportional to the square root of
the amplifier gain K, whereas the damping ratio ¢ is inversely proportional to VK.
The closed-loop transfer function of the unity-feedback control system is

Oy(s) _ 4500K
0.(s) ~ 52+ 361.25 + 4500K

(5-134)

5-8-1 Unit-Step Transient Response

For time-domain analysis, it is informative to analyze the system performance by applying
the unit-step input with zero initial conditions. In this way, it is possible to characterize the
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system performance in terms of the maximum overshoot and some of the other measures,
such as rise time, delay time, and settling time, if necessary.

Let the reference input be a unit-step function 6,(1) = u,(f) rad; then ®(s) = 1/s. The
output of the system, with zero initial conditions, is

(5-135)

6,(t) = £~ L 4500K ]

(s2 + 361.25 — 4500K)

The inverse Laplace transform of the right-hand side of the last equation is carried out using
the Laplace transform table in Appendix D, or using Eq. (5-90) directly. The following
results are obtained for the three values of K indicated.

K =7248(£21.0):
8y(t) = (1 — 1517 18% 1 150~ 1812)y (1) (5-136)
K = 14.5(t = 0.707):
0y(t) = (1 — e71895 o5 180.6¢ — 0.9997¢ 808 sin 180.6¢)us(1) (5-137)

K=18117(t=02):
6y(t) = (1 — ¢~ "898 co5 884.7¢ — 0.2041 80 5in 884.71) (1) (5-138)

The three responses are plotted as shown in Fig, 5-29. Table 5-3 gives the comparison of the
characteristics of the three unit-step responses for the three values of K used. When
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Time (sec)
Figure 5-29 Unit-step responses of the attitude-control system in Fig. 4-78; L, = 0.
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TABLE 5-3 Comparison of the Performance of the Second-Order Position-Control System with
the Gain X Values

Wy % Max 7] L Is Lmax
Gain K ¢ (rad/sec) overshoot (sec) (sec) (sec) (sec)
7.24808 1.000 180.62 0 0.00929 0.0186 0.0259 —
14.50 0.707 255.44 4.3 0.00560 0.0084 0.0114 0.01735
181.17 0.200 903.00 522 0.00125 0.00136 0.0150 0.00369

K = 181.17, ¢ = 0.2, the system is lightly damped, and the maximum overshoot is 52.7%,
which is excessive, When the value of K is set at 7.248, ¢ is very close to 1.0, and the system
is almost critically damped. The unit-step response does not have any overshoot or
oscillation. When K is set at 14.5, the damping ratio is 0.707, and the overshoot is
4.3%. It should be pointed out that, in practice, it would be time consuming, even with the
aid of a computer, to compute the time response for each change of a system parameter for
either analysis or design purposes. Indeed, one of the main objectives of studying control
systems theory, using either the conventional or modern approach, is to establish methods
so that the total reliance on computer simulation can be reduced. The motivation behind
this discussion is to show that the performance of some control systems can be predicted by
investigating the roots of the characteristic equation of the system. For the characteristic
equation of Eq. (5-135), the roots are

5y = —180.6 + /32616 — 4500K (5-139)
s, = —180.6 — v/32616 — 4500K (5-140)

Toolbox 5-8-1
The Fig. 5-29 responses may be obtained by the following sequence of MATLAB functions.

% Equation 5.136
% Unit-Step Transient Response

fork=[7.248 14.5 181.2]
num= [4500*k];
den=[1361.2 4500*k];
step(num,den)

hold on;

end

xlabel(‘Time(secs)’)
vlabel( ‘Amplitude’)
title(‘Closed-Loop Step’)

For K = 7.24808, 14.5, and 181.2, the roots of the characteristic equation are tabulated as
follows:

K = 7.24808: 51 =5 = —180.6
K =145 5| = —180.6+ j180.6 52 =—180.6 — j180.6
K=1812 sy = —180.6 4 jR84.7 53 = —180.6 + jB84.7
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Figure 5-30 Root loci of the characteristic equation in Eq. (5-134) as X varies.

These roots are marked as shown in Fig. 5-30. The trajectories of the two characteristic
equation roots when K varies continuously from —oc to oo are also shown in Fig. 5-30.
These root trajectories are called the root loci (see Chapter 4) of Eq. (5-135) and are used
extensively for the analysis and design of linear control systems.

From Egs. (5-140) and (5-141), we see that the two roots are real and negative for
values of K between 0 and 7.24808. This means that the system is overdamped, and the step
response will have no overshoot for this range of K. For values of K greater than 7.24808,
the natural undamped frequency will increase with v/K. When K is negative, one of the
roots is positive, which corresponds to a time response that increases monotonically with
time, and the system is unstable. The dynamic characteristics of the transient step response
as determined from the root loci of Fig. 5-30 are summarized as follows:

Amplifier Gain Dynamics Characteristic Equation Roots System

0< K <7.24808 Two negative distinct real roots Overdamped (£ > 1)

K =17.24808 Two negative equal real roots Critically damped (¢ = 1)

724808 < K <@ Two complex-conjugate roots Underdamped (£ < 1)
with negative real parts

—x0<K<0 Two distinct real roots, one Unstable system (¢ < 0)

positive and one negative
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5-8-2 The Steady-State Response

Because the forward-path transfer function in Eq. (5-132) has a simple pole at s =0,
the system is of type 1. This means that the steady-state error of the system is zero for
all positive values of K when the input is a step function. Substituting Eq. (5-132) into
Eq. (5-24), the step-error constant is

4500K

Kp= I sr3612) -

(5-141)

Thus, the steady-state error of the system due to a step input, as given by Eq. (5-25), is zero.
The unit-step responses in Fig. 5-29 verify this result. The zero-steady-state condition is
achieved because only viscous friction is considered in the simplified system model. In the
practical case, Coulomb friction is almost always present, so the steady-state positioning
accuracy of the system can never be perfect.

5-8-3 Time Response to a Unit-Ramp Input

The control of position may be affected by the control of the profile of the output, rather
than just by applying a step input. In other words, the system may be designed to follow a
reference profile that represents the desired trajectory. It may be necessary to investigate
the ability of the position-control system to follow a ramp-function input.

For a unit-ramp input, 8,(¢) = tu(¢). The output response of the system in Fig. 4-79 is

8,(t) = 7! [ 4300k ] (5-142)

s2(s% + 361.2s + 4500K)

which can be solved by using the Laplace transform table in Appendix C. The result is

us(f) (5-143)

BT oo B
8y(t) = lrt—-w—"-f-wn\/—l——? sm(w,, 1-¢ t+9)

where

g=cos (282 -1) @<1) (5-144)

The values of ¢ and w, are given in Eqs. (5-134) and (5-133), respectively. The ramp
responses of the system for the three values of X are presented in the following

equations.
K = 7248:

6y(t) = (¢ — 0.01107 — 0.8278™'81¥ + 0.8389¢~ 180 4, (1) (5-145)
K = 145:

0y(£) — (1 — 0.005536 + 0.005536e~ 1806 045180.6 ¢

(5-146)
— 5.467 x 1077 e~ 189645in180.61)u, (1)
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Figure 5-31 Unit-ramp responses of the aititude-control system in Fig. 4-78; L; =0.

K=1812:
Oy(2) = (£ — 0.000443 + 0.000443¢ 1806 c0s884.7¢

(5-147)

— 0.00104¢ 180 5in884.7¢)us (2)
These ramp responses are plotted as shown in Fig. 5-31. Notice that the steady-state error of
the ramp response is not zero. The last term in Eq. (5-144) is the transient response. The
steady-state portion of the unit-ramp response is

lim 6,(r) = lim [(x - i—i) u,(t)] (5-148)

Thus, the steady-state error of the system due to a unit-ramp input is

2¢  0.0803
== 5-149
s = o K ( )

which is a constant.
A more direct method of determining the steady-state error due to a ramp input is to
use the ramp-error constant X,. From Eq. (5-31),

. . 4500K
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Thus, the steady-state error is

1 0.0803
€ = == (5-151)

which agrees with the result in Eq. (5-149).

Toolbox 5-8-2
fork=[7.248 14.5
clnum = [4500*k]

t=0:0.0001:0.3;
u=rt;

plot(t,y,t,u);
hold on;
end

title( ‘Unit-ramp

The Fig. 5-31 responses are obtained by the following sequence of MATLAB functions

clden=[1361.24500*k];

[v,x]=1sim(clnum,clden,u,t);

xlabel(‘Time(sec)’)
vlabel (‘Amplitude’)

181.2]

responses’)

The result in Eq. (5-151) shows that the steady-state error is inversely proportional to
K. For K = 14.5, which corresponds to a damping ratio of 0.707, the steady-state error is
0.0055 rad or, more appropriately, 0.55% of the ramp-input magnitude. Apparently, if we
attempt to improve the steady-state accuracy of the system due to ramp inputs by increasing
the value of X, the transient step response will become more oscillatory and have a higher
overshoot. This phenomenon is rather typical in all control systems. For higher-order
systems, if the loop gain of the system is too high, the system can become unstable. Thus,
by using the controller in the system loop, the transient and the steady-state error can be
improved simultaneously.

5-8-4 Time Response of a Third-Order System

In the preceding section, we have shown that the prototype second-order system, obtained
by neglecting the armature inductance, is always stable for all positive values of X, It is not
difficult to prove that, in general, all second-order systems with positive coefficients in the
characteristic equations are stable.

Let us investigate the performance of the position-control system with the armature
inductance L, = 0.003 H. The forward-path transfer function of Eq. (5-128) becomes

5 x 107 5% 107
Gls) =—3 IS XU K = 1> x O K (5-152)
s(s? + 3408.3s + 1,204,000)  s(s + 400.26)(s + 3008)
The closed-loop transfer function is
. 1. 4
Oy(s) Sx 10'K (5-153)

O.(s) 5 +3408.352 + 1,204,0005 + 1.5 x 107K
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The system is now of the third order, and the characteristic equation is

3 +3408.35 + 1,204,000s + 1.5 x 107K =0 (5-154)

Transient Response
The roots of the characteristic equation are tabulated for the three values of K used earlier
for the second-order system:

K =17.248: 51 = —156.21 52 = —230.33 s3 = —3021.8
K =145 51 = —186.53 + j192 52 = —186.53 — j192 53 = —3035.2
K =181.2 51 = —57.49 + j906.6 52 = —57.49 — j906.6 53 = —3293.3

Comparing these results with those of the approximating second-order system, we see that,
when K = 7.428, the second-order system is critically damped, whereas the third-order
system has three distinct real roots, and the system is slightly overdamped. The root at
—3021.8 corresponds to a time constant of (.33 miilisecond, which is more than 13 times
faster than the next fastest time constant because of the pole at —23(0.33. Thus, the transient
response due to the pole at —3021.8 decays rapidly, and the pole can be neglected from the
transient standpoint. The output transient response is dominated by the two roots at —156.21
and —230.33. This analysis is verified by writing the fransformed output response as

10.87 x 107
O.(s) = -155
¥8) = T 156.219(s 1+ 230.33) (s + 3021.9) (>-155)
Taking the inverse Laplace transform of the last equation, we get
By(f) = (1 —3.28e7 136217 1 2 28,=230.33% _ 0,0045¢3021:8") (1) (5-156)

The last term in Eq. (5-156), which is due to the root at —3021.8, decays to zero very
rapidly. Furthermore, the magnitude of the term at ¢+ = 0 is very small compared to the other
two transient terms. This simply demonstrates that, in general, the contribution of roots that
lie relatively far to the left in the s-plane to the transient response will be small. The roots
that are closer to the imaginary axis will dominate the transient response, and these are
defined as the dominant roots of the characteristic equation or of the system.

When K = 14.5, the second-order system has a damping ratio of 0.707, because the
real and imaginary parts of the two characteristic equation roots are identical. For the third-
order system, recall that the damping ratio is strictly not defined. However, because the
effect on transient of the root at —3021.8 is negligible, the two roots that dominate the
transient response correspond to a damping ratio of 0.697. Thus, for K = 14.5, the second-
order approximation by setting L, to zero is not a bad one. It should be noted, however,
that the fact that the second-order approximation is justified for K = 14.5 does not mean
that the approximation is valid for all values of X.

When K = 181.2, the two complex-conjugate roots of the third-order system again
dominate the transient response, and the equivalent damping ratio due to the two roots is
only 0.0633, which is much smaller than the value of 0.2 for the second-order system. Thus,
we see that the justification and accuracy of the second-order approximation diminish as
the value of X is increased. Fig. 5-32 illustrates the root loci of the third-order characteristic
equation of Eq. (5-154) as X varies.
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Figure 5-32 Root loci of the third-order attitude-control system.

When K = 181.2, the real root at —3293.3 still contributes little to the transient
response, but the two complex-conjugate roots at —57.49 £ j906.6 are much closer to the
jw-axis than those of the second-order system for the same K, which are at
—180.6 + j884.75. This explains why the third-order system is a great deal less stable
than the second-order system when K = 181.2.

By using the Routh-Hurwitz criterion, the marginal value of X for stability is found to
be 273.57. With this critical value of X, the closed-loop transfer function becomes

Oy(s) 1.0872 x 108
O,(s)  (s+3408.3)(s2 + 1.204 x 10%)

(5-157)

The roots of the characteristic equation are at s = —3408.3, — j1097.3, and j1097.3. These
points are shown on the root loci in Fig. 5-32.
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Figure 5-33 Unit-step responses of the third-order attitude-control system,

The unit-step response of the system when K = 273.57 is
By(2) = [1 — 0.094¢34083 _ 0,952 5in(1097.3¢ + 72.16°) us(r) (5-158)

The steady-state response is an undamped sinusoid with a frequency of 1097.3 rad/sec, and
the system is said to be marginally stable. When X is greater than 273.57, the two complex-
conjugate roots will have positive real parts, the sinusoidal component of the time response
will increase with time, and the system is unstable. Thus, we see that the third-order system
is capable of being unstable, whereas the second-order system obtained with L, =0 is
stable for all finite positive values of K.

Fig. 5-33 shows the unit-step responses of the third-order system for the three values of
K used. The responses for K = 7.248 and K = 14.5 are very close to those of the second-
order system with the same values of KX that are shown in Fig. 5-29. However, the two
responses for K = 181.2 are quite different.

Toolbox 5-8-3

The root locus plot in Fig. 5-32 is obtained by the following MATLAB commands
fork=[7.248 14.5 181.2 273.57]

t=0:0.001:0.05;

num= [1.5*(10"7)*k];
den=[13408.3 1204000 1.5*(10"7) *k];

rlocus(num,den)

hold on;
end
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From Eq. (5-152), we see that, when the inductance is restored, the third-order system is
still of type 1. The value of K, is still the same as that given in Eq. (5-150). Thus, the
inductance of the motor does not affect the steady-state performance of the system,
provided that the system is stable. This is expected, since L, affects only the rate of change
and not the final value of the motor current. A good engineer should always try to interpret
the analytical results with the physical system.

5-9 BASIC CONTROL SYSTEMS AND EFFECTS OF ADDING POLES AND ZEROS
TO TRANSFER FUNCTIONS

The position-control system discussed in the preceding section reveals important proper-
ties of the time responses of typical second- and third-order closed-loop systems.
Specifically, the effects on the transient response relative to the location of the roots of
the characteristic equation are demonstrated.

In all previous examples of control systems we have discussed thus far, the controller
has been typically a simple amplifier with a constant gain XK. This type of control action is
formally known as proportional control, because the control signal at the output of the
controller is simply related to the input of the controller by a proportional constant.

Intuitively, one should also be able to use the derivative or integral of the input signal,
in addition to the proportional operation. Therefore, we can consider a more general
continuous-data controller to be one that contains such components as adders or summers
(addition or subtraction), amplifiers, attenuators, differentiators, and integrators — see
Section 4-3-3 and Chapter 9 for more details. For example, onc of thc best-known
controllers used in practice is the PID controller, which stands for proportional, integral,
and derivative. The integral and derivative components of the PID controller have
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individual performance implications, and their applications require an understanding of the
basics of these elements.

All in all, what these controllers do is add additional poles and zeros to the open- or
closed-loop transfer function of the overall system. As a result, it is important to appreciate
the effects of adding poles and zeros to a transfer function first. We show that—although
the roots of the characteristic equation of the system, which are the poles of the closed-loop
transfer function, affect the transient response of linear time-invariant control systems,
particularly the stability—the zeros of the transfer function are also important. Thus, the
addition of poles and zeros and/or cancellation of undesirable poles and zeros of the
transfer function often are necessary in achieving satisfactory time-domain performance of
control systems.

In this section, we show that the addition of poles and zeros to forward-path and
closed-loop transfer functions has varying effects on the transient response of the closed-
loop system.

5-9-1 Addition of a Pole to the Forward-Path Transfer Function: Unity-Feedback Systems

For the position-control system described in Section 5-8, when the motor inductance is
neglected, the system is of the second order, and the forward-path transfer function is of the
prototype given in Eq. (5-131). When the motor inductance is restored, the system is of
the third order, and the forward-path transfer function is given in Eq. (5-149). Comparing
the two transfer functions of Egs. (5-131) and (5-149), we see that the effect of the motor
inductance is equivalent to adding a pole at s = —3008 to the forward-path transfer
function of Eq. (5-131) while shifting the pole at —361.2 to —400.26, and the proportional
constant is also increased. The apparent effect of adding a pole to the forward-path transfer
function is that the third-order system can now become unstable if the value of the amplifier
gain K exceeds 273.57. As shown by the root-loci diagrams of Fig. 5-32 and Fig. 5-34, the
new pole of G(s) at s = —3008 essentially “pushes™ and *“bends” the complex-conjugate
portion of the root loci of the second-order system toward the right-half s-plane. Actually,
because of the specific value of the inductance chosen, the additional pole of the third-order
system is far to the left of the pole at —400.26, so its effect is small except when the value of
K is relatively large.

2.0

310)]
5

S

V] 5 10 15 20

Time (sec)
Figure 5-34 Unit-step responses of the system with the closed-loop transfer function in
Eq. (5-160): { =1, wy=1;and T, =0,1,2, and 5.
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To study the general effect of the addition of a pole, and its relative location, to
a forward-path transfer function of a unity-feedback system, consider the transfer

function
Gls) = o (5-159)
" s(s + 20wn) (1 + Tps)
The pole at s = —1/T, is considered to be added to the prototype second-order transfer
function. The closed-loop transfer function is written
Y G 2
M(S) — (s) . (S) —_ 0)" (5_160)

TR(S) T 14G(s)  Tps? + (1 + 28wnTp)s? + 25wns + w?

Fig. 5-34 illustrates the unit-step responses of the closed-loop system whenw, = 1;{ = 1;
and Tp =0, 1, 2, and 5. These responses again show that the addition of a pole to the
forward-path transfer function generally has the effect of increasing the maximum
overshoot of the closed-loop system.

As the value of T), increases, the pole at —1/T, moves closer to the origin in the
s-plane, and the maximum overshoot increases. These responses also show that the added
pole increases the rise time of the step response. This is not surprising, because the
additional pole has the effect of reducing the bandwidth (see Chapter 8) of the system, thus
cutting out the high-frequency components of the signal transmitted through the system.

Toolbox 5-9-1
The corresponding responses for Fig, 5-34 are obtained by the following sequence of MATLAB functions

clear all
w=1l; 1=1;
for Tp=[0125];

t=0:0.001:20;
num = [w];
den = [Tp 1+2%L*w*Tp 2*1*wwA2];

step(num,den,t);

hold on;

end

xlabel (‘Time(secs)’)

vlabel(‘apos;y(t)’)

title(‘Unit-step responses of the system’)

The corresponding responses for Fig. 5-37 are obtained by the following sequence of MATLAB functions

clear all
w=1;1=0.25;
for Tp=[00.20.6671];

£=0:0.001:20;
num = [w];
den=[Tp 1+2*1*w*Tp 2*1*w wA2];
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step(num,den,t);

hold on;

end

l xlabel(‘Time(secs) ')
Ylabel(‘y(t) ')

title(‘Unit-step responses of the system’)

The same conclusion can be drawn from the unit-step responses of Fig. 5-35, which are
obtained with @, = I; { = 0.25; and T, = 0,0.2,0.667, and 1.0. In this case, when T, is
greater than 0.667, the amplitude of the unit-step response increases with time, and the
system is unstable.

5-9-2 Addition of a Pole to the Closed-Loop Transfer Function

Because the poles of the closcd-loop transfer function are roots of the characteristic
equation, they control the transient response of the system directly. Consider the closed-
loop transfer function

Y(s) w?
— n -1
R(s) (s 4 2awns + w2) (1 + Tps) (5-161)

M(s) =

where the term (1 + Tps) is added to a prototype second-order transfer function. Fig. 5-36
illustrates the unit-step response of the system with @, =1.0; ¢=05; and
T,=0,05, 1.0, 2.0, and 4.0. As the pole at s = —1/T, is moved toward the origin
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Figure 5-35 Unit-step responses of the system with the closed-loop transfer function in
Eq. (5-160): £ = 0.25; wy = 1; and T, = 0,0.2,0.667, and 1.0
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Figure 5-36 Unit-step responses of the system with the closed-loop transfer function in
Eg. (5-161): £ =0.5; wy = 1; and Tp = 0,0.5,1.0,2.0, and 4.0.

in the s-plane, the rise time increases and the maximum overshoot decreases. Thus, as far as
the overshoot is concerned, adding a pole to the closed-loop transfer function has just the
opposite effect to that of adding a pole to the forward-path transfer function.

Toolbox 5-9-2
The corresponding responses for Fig. 5-36 are obtained by the following sequence of MATLAB functions

clear all
w=1;1=0.5;
for Tp=[00.512];

t=0:0.001:15;
num = [w"2];
den=conv([1l2*1*ww*2],[Tp1]1);

step(num,den,t);

hold on;

end

xlabel(‘Time(secs)’)

ylabel(‘y(t)’)

title(‘Unit-step responses of the system’)

5-9-3 Addition of a Zero to the Closed-Loop Transfer Function

Fig. 5-37 shows the unit-step responses of the closed-loop system with the transfer function

_Y(s) wﬁ(l + T.s)

LS R(s) (52 + 2twys + w?)

(5-162)



5-8 Basic Control Systems and Effects of Adding Poles and Zeros <« 309

6.00 T
T,=10
|
4.80
T,=
| LR
\:-.: \
2.40 T.=3 \
1.20 y P— ) £
1.00 / \‘7
I
T:=0 R Ry
0.00 150 300 450 600 750 900 1050 1200 1350 15.00

Time (sec)
Figure 5-37 Unit-step responses of the system with the closed-loop transfer function in
Eq. (5-162): T; =0, 1,2,3,6, and 10.

wherew, = 1; ¢ =0.5;and T, = 0, 1, 2, 3, 6, and 10. In this case, we see that adding a zero
to the closed-loop transfer function decreases the rise time and increases the maximum
overshoot of the step response.

We can analyze the general case by writing Eq. (5-162) as

_Y(s) _ w,z, Tza),zts

M(s) = =
(s) R(s) 2 +20wps + w2 52 + 2twns + w?

(5-163)

For a unit-step input, let the output response that corresponds to the first term of the right
side of Eq. (5-163) be y,(#). Then, the total unit-step response is

) =y + ngy;# (5-164)

Fig. 5-38 shows why the addition of the zero at s = —1/T, reduces the rise time and
increases the maximum overshoot, according to Eq. (5-164). In fact, as T. approaches

infinity, the maximum overshoot also approaches infinity, and yet the system is still stable
as long as the overshoot is finite and ¢ is positive.

5-9-4 Addition of a Zero to the Forward-Path Transfer Function: Unity-Feedback Systems

Let us consider that a zero at —1/T is added to the forward-path transfer function of a
third-order system, so

6(1 + Tss)

Gs) = s(s+ 1)(s +2)

(5-165)
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Figure 5-38 Unit-step responses showing the effect of adding a zero to the closed-loop
transfer function.

The closed-loop transfer function is

Y(s) 6(1 + Ts)

Ms) = R(s) S +32+(2+6T5)s+6

(5-166)

The difference between this case and that of adding a zero to the closed-loop transfer
function is that, in the present case, not only the term (1 + T.5) appears in the numera-
tor of M(s), but the denominator of M(s) also contains 7. The term (I + 73s) in the
numerator of M(s) increases the maximum overshoot, but T, appears in the coefficient of
the s term in the denominator, which has the effect of improving damping, or reducing the
maximum overshoot. Fig. 5-39 illustrates the unit-step responses when T, = 0, 0.2, 0.5,
2.0, 5.0, and 10.0. Notice that, when T, = 0, the closed-loop system is on the verge of
becoming unstable. When T, = 0.2 and 0.5, the maximum overshoots are reduced, mainly

Time (sec)
Figure 5-39 Unit-step responses of the system with the closed-loop transfer function in
Eq. (5-166): T, =0, 0.2, 0.5, 2.0, 5.0, and 10.0.
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because of the improved damping. As T increases beyond 2.0, although the damping is still
further improved, the (1 + 7,s) term in the numerator becomes more dominant, so the
maximum overshoot actually becomes greater as T~ is increased further.

An important finding from these discussions is that, although the characteristic
equation roots are generally used to study the relative damping and relative stability of
linear control systems, the zeros of the transfer function should not be overlooked in their
effects on the transient performance of the system.

Toolbox 5-9-3

The corresponding responses for Fig. 5-39 are obtained by the following sequence of MATLAB functions

clear all

w=1;1=0.5;
forTz=[00.20.535];
t=0:0.001:15;

num= [6*Tz 6] ;
den=1[13 2+6*Tz 6];

step(num,den,t);

hold on;

end

xlabel( ‘Time(secs)’)

ylabel(‘y(t)’)

title(‘Unit-step responses of the system’)

5-10 DOMINANT POLES AND ZEROS OF TRANSFER FUNCTIONS

From the discussions given in the preceding sections, it becomes apparent that the location
of the poles and zeros of a transfer function in the s-plane greatly affects the transient
response of the system. For analysis and design purposes, it is important to sort out the
poles that have a dominant effect on the transient response and call these the dominant
poles.

Because most control systems in practice are of orders higher than two, it would be
useful to establish guidelines on the approximation of high-order systems by lower-order
ones insofar as the transient response is concemed. In design, we can use the dominant
poles to control the dynamic performance of the system, whereas the insignificant poles are
used for the purpose of ensuring that the controller transfer function can be realized by
physical components.

For all practical purposes, we can divide the s-plane into regions in which the
dominant and insignificant poles can lie, as shown in Fig. 5-40. We intentionally do
not assign specific values to the coordinates, since these are all relative to a given system.

The poles that are close to the imaginary axis in the left-half s-plane give rise to
transient responses that will decay relatively slowly, whereas the poles that are far away
from the axis (relative to the dominant poles) correspond to fast-decaying time responses.
The distance D between the dominant region and the least significant region shown in Fig.
5-40 will be subject to discussion. The question is: How large a pole is considered to be
really large? It has been recognized in practice and in the literature that if the magnitude of
the real part of a pole is at least 5 to 10 times that of a dominant pole or a pair of complex
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Figure 5-40 Regions of dominant
and insignificant poles in the s-plane.

dominant poles, then the pole may be regarded as insignificant insofar as the transient
response is concerned. The zeros that are ¢/ose to the imaginary axis in the left-half s-plane
affect the transient responses more significantly, whereas the zeros that are far away from
the axis (relative to the dominant poles) have a smaller effect on the time response.

We must point out that the regions shown in Fig. 540 are selected merely for the
definitions of dominant and insignificant poles. For design purposes, such as in pole-
placement design, the dominant poles and the insignificant poles should most likely be
located in the tinted regions in Fig. 5-41. Again, we do not show any absolute coordinates,
except that the desired region of the dominant poles is centered around the line that
corresponds to ¢ = 0.707. It should also be noted that, while designing, we cannot place the
insignificant poles arbitrarily far to the left in the s-plane or these may require unrealistic
system parameter values when the pencil-and-paper design is implemented by physical
components.
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5-10-1 Summary of Effects of Poles and Zeros
Based on previous observations, we can summarize the following:

1. Complex-conjugate poles of the closed-loop transfer function lead to a step
response that is underdamped. If all system poles are real, the step response is
overdamped. However, zeros of the closed-loop transfer function may cause
overshoot even if the system is overdamped.

2. The response of a system is dominated by those poles closest to the origin in the
s-plane. Transients due to those poles, which are farther to the left, decay faster.

3. The farther to the left in the s-plane the system’s dominant poles are, the faster the
system will respond and the greater its bandwidth will be.

4. The farther to the left in the s-plane the system’s dominant poles are, the more
expensive it will be and the larger its internal signals will be. While this can be
justified analytically, it is obvious that striking a nail harder with a hammer drives
the nail in faster but requires more energy per strike. Similarly, a sports car can
accelerate faster, but it uses more fuel than an average car.

5. When a pole and zero of a system transfer function nearly cancel each other, the
portion of the system response associated with the pole will have a small
magnitude.

5-10-2 The Relative Damping Ratio

When a system is higher than the second order, we can no longer strictly use the damping
ratio ¢ and the natural undamped frequency w,, which are defined for the prototype
second-order systems. However, if the system dynamics can be accurately represented
by a pair of complex-conjugate dominant poles, then we can still use ¢ and w, to indicate
the dynamics of the transient response, and the damping ratio in this case is referred to as
the relative damping ratio of the system. For example, consider the closed-loop transfer
function

Y(s) 20

Ms) = R(s)  (s+ 10)(s2+25+2)

(5-167)

The pole at s = —10 is 10 times the real part of the complex conjugate poles, which are at
—1 £ jI. We can refer to the relative damping ratio of the system as 0.707.

5-10-3 The Proper Way of Neglecting the Insignificant Poles
with Consideration of the Steady-State Response

Thus far, we have provided guidelines for neglecting insignificant poles of a transfer
function from the standpoint of the transient response. However, going through with the
mechanics, the steady-state performance must also be considered. Let us consider the
transfer function in Eq. (5-167); the pole at —10 can be neglected from the transient
standpoint. To do this, we should first express Eq. (5-167) as

20

M) = T D T2 72)

(5-168)
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Then we reason that |s/10]/ <« 1 when the absolute value of s is much smaller than 10,
because of the dominant nature of the complex poles. The term 5/10 can be neglected when
compared with 1. Then, Eq. (5-168) is approximated by

20

M) = ST 12)

(5-169)

This way, the steady-state performance of the third-order system will not be affected by the
approximation. In other words, the third-order system described by Eq. (5-167) and the
second-order system approximated by Eq. (5-169) all have a final value of unity when a
unit-step input is applied. On the other hand, if we simply throw away the term (s + 10) in
Eq. (5-167), the approximating second-order system will have a steady-state value of 5
when a unit-step input is applied.

5-11 BASIC CONTROL SYSTEMS UTILIZING ADDITION OF POLES AND ZEROS

EXAMPLE 5-11-1

In practice we can control the response of a system by adding poles and zeros or a simple
amplifier with a constant gain K to its transfer function. So far in this chapter, we have
discussed the effect of adding a simple gain in the time response—i.e., proportional
control. In this section, we look at controllers that include derivative or integral of the input
signal in addition to the proportional operation.

Fig. 5-42 shows the block diagram of a feedback control system that arbitrarily has a second-order
prototype process with the transfer function

w?

S(s + 2¢wy) (5-170)

Gp(s) =
The series controller in this case is a proportional-derivative (PD) type with the transfer function

G.(s) = Kp + Kps (5-171)

In this case, the forward-path transfer function of the compensated system is

Gls) = % — Gu(s)Gpls) = % (5-172)
R(s) Eo) | g U(s) o} Y(s)
F: " (s +2¢a,) 3
i ’ G,(s)
Kps
Gs)

Figure 5-42 Control system with PD controller.
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which shows that the PD control is equivalent to adding a simple zero at s = —Kp/Kp to the forward-
path transfer function. Consider the second-order model

2

Gls) = S(s+2)

(5-173)

Rewriting the transfer function of the PD controller as
G.(s) = (Kp + Kps) (5-174)

the forward-path transfer function of the system becomes

Y(s) _ 2(Kp + Kps)

G(S) = ES)‘ = w (5"]75)
The closed-loop transfer function is
Y(s) _ 2Kp+Kps) 5-176)

R(s) s+ (2+2Kp)s +2Kp
Eq. (5-176) shows that the effects of the PD controller are the following:

1. Adding a zero at s = —Kp/Kp to the closed-loop transfer function.

2. Increasing the damping term, which is the coefficient of the 5 term in the denominator, from
2 to 2+ 2Kp.

We should quickly point out that Eq. (5-175) no longer represents a prototype second-order system,
since the transient response is also affected by the zero of the transfer function at s = —Kp/Kp. It
turns out that for this second-order system, as the value of X increases, the zero will move very close
to the origin and effectively cancel the pole of G(s) at s = 0. Thus, as K increases, the transfer
function in Eq. (5-175) approaches that of a first-order system with the pole at s = —2, and the closed-
loop system will not have any overshoot. In general, for higher-order systems, however, the zero at
s = —Kp/Kp may increase the overshoot when K, becomes very large.
The characteristic equation is written as

s +(2+2Kp)s+2Kp =0 5-177)

Ignoring the zero of the transfer function in equation (5-177) and comparing (5-177) to prototype
second-order system characteristic equation

S+ Awys + 0l =0 (5-178)

we get the damping yatio and natural frequency values of

r= 1+ Kp
V2Kp (5-179)
oy = /2Kp

which clearly show the positive effect of K;, on damping. For Kp = 8, if we wish to have critical
damping, ¢ = 1, Eq. (5-179) gives Kp = 3. Fig. 5-43 shows the unit-step responses of the closed-loop
system with Kp = 8 and Kp = 3. With the PD control, the maximum overshoot is 2%. In the present
case, although K, is chosen for critical damping, the overshoot is due to the zero at s = —Kp/Kp of
the closed-loop transfer function. Upon selecting a smaller Kp = 1, for £ = [, Eq. (5-179) gives
Kp = 0.414. Fig. 5-43 shows a critically damped unit-step response in this case, which implies the
zero at s = —Kp/Kp of the closed-loop transfer function has a smaller impact on the response of the
system, and the overall response is similar to that of a prototype second-order system. However, in
either case, upon increasing Kp, the general conclusion is that the PD controller decreases the
maximum overshoot, the rise time, and the settling time.
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Unit-step responses of the system
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Figure 5-43 Unit-step response of Eq. (5-176) for two sets of Kp and Kp values,

Toolbox 5-11-1

The corresponding responses for Fig. 5-43 are obtained by the following sequence of MATLAB functions

clear all
t=0:0.001:5;

num= [2%3 16]; % KP=4 and XKD=3
den=[12+2*3 16];
step(num,den,t)};

hold on;

num= [2%.414 2]; % KP=1 and KD=0.414
den=[12+2%*.414 2];
step(num,den,t);

xlabel(‘Time(secs)’)
ylabel(‘y(t)’)
title(‘Unit-step responses of the system’)

% EXAMPLE 5-11-2 We saw in the previous example that the PD controller can improve the damping and rise time of
a control system. Because the PD controller does not change the system type, it may not fulfill the
compensation objectives in many situations involving steady-state error. For this purpose, an integral
controller may be used. The integral part of the PID controller produces a signal that is proportional to
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Figure 5-44 Control system with PI controller.

the time integral of the input of the controller. Fig. 5-44 illustrates the block diagram of the
prototype second-order system with a series PI controller. The transfer function of the PI
controller is

Go(s) = Kp + % (5-180)

Using the circuit elements given in Table 4-4 in Chapter 4, the forward-path transfer function of the
compensated system is

_ wz(Kps + K;)

G(s) = Ge(s)Gp(s) = 52(s + 24en,)

(5-181)

Clearly, the immediate effects of the PI controller are the following:

1. Adding a zero at s = —K;/Kp to the forward-path transfer function.

2. Adding a pole at s = 0 to the forward-path transfer function. This means that the system
type is increased by one. Thus, the steady-state error of the original system is improved by
one order; that is, if the steady-state error to a given input is constant, the PI control reduces
it to zero (provided that the compensated system remains stable).

Consider the second-order model

2

%) = I+ 2)

(5-182)

The system in Fig, 5-44, with the forward-path transfer function in Eq. (5-182), will now have a zero
steady-state error when the reference input is a step function. However, because the system is now of
the third order, it may be less stable than the original second-order system or even become unstable if
the parameters Kp and K; are not properly chosen. In the case of a type 0 system with a PD control, the
magnitude of the steady-state error is inversely proportional to Kp. When a type 0 system is converted
to type I using a PT controller, the steady-state error due to a step input is always zero if the system is
stable. The problem is then to choose the proper combination of Kp and X; so that the transient
response is satisfactory.

The pole-zero configuration of the PI controller in Eq. (5-180) is shown in Fig. 5-45. At first
glance, it may seem that PI control will improve the steady-state error at the expense of stability.
However, we shall show that, if the location of the zero of G () is selected properly, both the damping
and the steady-state error can be improved. Because the PI controller is essentially a low-pass filter,
the compensated system usually will have a slower rise time and longer settling time. A viable method
of designing the PI control is to select the zero at s = —K; /Kp so that it is relatively close 1o the
origin and away from the most significant poles of the process; the values of Kp and K, should be
relatively small.
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s-plane

Figure 5-45 Pole-zero configuration of a PI controller.

Applying the PI controller of Eq. (5-180), the forward-path transfer function of the system
becomes

_ 2Kp(s + K;/Kp) _2Kp(s+ Ki/Kp)

G(5) = G.(5)Gp(s5) = S+ 16 +2) = P 132+

(5-183)

The steady-state error due to a step input u(t) is zero. The closed-loop transfer function is

Y(s) _ 2Kp(s + K; /Kp) (5-184)
R(s) s*+3s24 2(1 + Kp)s + 2K;
The characteristic equation of the closed-loop system is
s 432 +2(1 +Kp)s + 2K =0 (5-185)

Applying Routh’s test to Eq. (5-185) yields the result that the system is stable for 0 < K;/Kp < 13.5.
This means that the zero of G(s) at s = —K;/Kp cannot be placed too far to the left in the left-half
s-plane, or the system will be unstable. Let us place the zero at —K; /Kp relatively close to the origin.
For the present case, the most significant pole of G,(s) is at —1. Thus, K;/K» should be chosen so that
the following condition is satisfied:

L i (5-186)
With the condition in Eq. (5-186) satisfied, Eq. (5-184) can be approximated by

Gls)= 2Kp (5-187)

+3s+2+4+2Kp

where the term K/ Kp in the numerator and X} in the denominator are neglected. As a design criterion,
we assume a desired percent maximum overshoot value of about 4.3 for a unit-step input, which
utilizing expression (5-104) results in a relative damping ratio of 0.707. From the denominator of Eq.
(5-187) compared with a prototype second-order system, we get natural frequency value of w, =
2.1213 rad/s and the required proportional gain of Kp = 1.25. This should also be true for the third-
order system with the PI controller if the value of K;/Kp satisfies Eg. (5-186). Thus, to achieve this,
we pick a small K;. If K, is too small, however, the system time response is slow and the desired
steady-state error requirement is not met fast enough. Upon increasing K; to 1.125, the desired
response is met, as shown in Fig. 5-46.
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Unit-step responses of the system
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Figure 5-46 Unit-step response of Eq. (5-185) for two sets of X; and Kp values,

Toolbox 5-11-2
The corresponding responses for Fig. 5-46 are obtained by the following sequence of MATLAR functions

clear all
t=0:0.001:10;

num=[2%1.251.125]; % KP=1.25 and KI1=0.625
den=[132+2%1.251.125];
step(num,den,t);

hold on;

num= [2%1.252%1.,125]; %KP=1.25 and KI=1.125
den=1[132+2*1,252%1.125];
step(num,den,t);

xlabel(‘Time(secs)’)
ylabel('y(t)’)
title(‘Unit-step responses of the system’)

.- 5-12 MATLAB TOOLS

In this chapter we provided MATLAB toolboxes for finding the time response of simple
control systems. We also introduced the concepts of root contours and root locus and
included MATLAB codes to draw them for simple control examples. In Chapters 6 and 9,
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» 5-13 SUMMARY

where we address more complex control-system modeling and analysis, we will intro-
duce the Automatic Control Systems software (ACSYS) that utilizes MATLAB and
SIMULINK m-files and GUIs (graphical user interface) for the analysis of more complex
control engineering problems.

The reader is especially encouraged to explore the Control Lab software tools
presented in Chapter 6 that simulate dc motor speed and position control topics discussed
earlier in this chapter. These simulation tools provide the user with virtual experiments and
design projects using systems involving dc motors, sensors, electronic components, and
mechanical components.

This chapter was devoted to the time-domain analysis of linear continuous-data control systems. The
time response of control systems is divided into the transient and the steady-state responses. The steady-
state error is a measure of the accuracy of the system as time approaches infinity. When the system has
unity feedback for the step, ramp, and parabolic inputs, the steady-state error is characterized by the
error constants Kj, K. and K,,, respectively, as well as the system type. When applying the steady-state
error analysis, the final-value theorem of the Laplace transform is the basis; it should be ascertained that
the closed-loop system is stable or the error analysis will be invalid. The error constants are not defined
for systems with nonunity feedback. For nonunity-feedback systems, a method of determining the
steady-state error was introduced by using the closed-loop transfer function.

The transient response is characterized by such criteria as the maximum overshoot, rise time,
delay time, and settling time, and such parameters as damping ratio, natural undamped
frequency, and time constant. The analytical expressions of these parameters can all be related
to the system parameters simply if the transfer function is of the second-order prototype. For second-
order systems that are not of the prototype and for higher-order systems, the analytical relationships
between the transient parameters and the system constants are difficult to determine. Computer
simulations are recommended for these systems.

Time-domain analysis of a position-control system was conducted. The transient and steady-
state analyses were carried out first by approximating the system as a second-order system. The effect
of varying the amplifier gain K on the transient and steady-state performance was demonstrated. The
concept of the root-locus technique was introduced, and the system was then analyzed as a third-order
system. It was shown that the second-order approximation was accurate only for low values of X.

The effects of adding poles and zeros to the forward-path and closed-loop transfer functions
were demonstrated. The dominant poles of transfer functions were also discussed. This established
the significance of the location of the poles of the transfer function in the s-plane and under what
conditions the insignificant poles (and zeros) could be neglected with regard to the transient response.

Later in the chapter, simple controllers—namely the PD, PI, and PID—were introduced.
Designs were carried out in the time-domain (and s-domain). The time-domain design may be
characterized by specifications such as the relative damping ratio, maximum overshoot, rise time,
delay time, settling time, or simply the location of the characteristic-equation roots, keeping in mind
that the zeros of the system transfer function also affect the transient response. The performance is
generally measured by the step response and the steady-state error.

MATLAB toolboxes and the Automatic Control System software tool are good tools to study the
time response of control systems. Through the GUI approach provided by ACSYS, these programs
are intended to create a user-friendly environment toreduce the complexity of control systems design.
See Chapters 6 and 9 for more detail.

» REVIEW QUESTIONS

1. Give the definitions of the error constants K, K,, and K,..

2. Specify the type of input to which the error constant K, is dedicated.
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3. Specify the type of input to which the error constant X, is dedicated.

4. Specify the type of input to which the error constant X, is dedicated.

5. Define an error constant if the input to a unity-feedback control system is
described by r(t) = ru;(r)/6.

6. Give the definition of the system type of a linear time-invariant system.

7. If a unity-feedback control system type is 2, then it is certain that the steady-state
error of the system to a step input or a ramp input will be zero. (T)

8. Linear and nonlinear frictions will generally degrade the steady-state error
of a control system, (T)

9. The maximum overshoot of a unit-step response of the second-order prototype
system will never exceed 100% when the damping ratio £ and the natural undamped
frequency w, are all positive. Ty

10. For the second-order prototype system, when the undamped natural frequency w,
increases, the maximum overshoot of the output stays the same. §))

11. The maximum overshoot of the following system will never exceed 100% when

g, Wy, and T are all positive.,
Y(s)  wi(1+7) (T)
R(s) 2 +2wys + 02

12. Increasing the undamped natural frequency will generally reduce the rise time

of the step response. (o

13. Increasing the undamped natural frequency will generally reduce the settling time
of the step response. (T

14. Adding a zero to the forward-path transfer function will generally improve the
system damping and thus will always reduce the maximum overshoot of
the system. (O

15. Given the following characteristic equation of a linear control system,
increasing the value of K will increase the frequency of oscillation of the system.
S 43 +55+K=0 T

16. For the characteristic equation given in question 15, increasing the coefficient
of the s* term will generally improve the damping of the system. (T)

17. The location of the roots of the characteristic equation in the s-plane will give
a definite indication on the maximum overshoot of the transient response of
the system. (T

18. The following transfer function G(s) can be approximated by G,(s) because
the pole at —20 is much larger than the dominant pole at s = —1,

10 10
=T “O=Gen )

19. What is a PD controller? Write its input—output transfer function,

20. A PD controller has the constants Kp and Xp, Give the effects of these constants on
the steady-state error of the system. Does the PD contro} change the type of a
system?

21. Give the effects of the PD control on rise time and settling time of a control system.
22. How does the PD controller affect the bandwidth of a control system?

23. Once the value of Kp, of a PD controller is fixed, increasing the value of Kp will
increase the phase margin monotonically. (¢))

(F)

(¥

4

¥

(F)

®

(F)

(F)

¥

¥

(F)

(F)
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- REFERENCES

» PROBLEMS

24. If a PD controller is designed so that the characteristic-equation roots have better
damping than the original system, then the maximum overshoot of the system
is always reduced. T @

25. What does it mean when a control system is described as being robust?

26. A system compensated with a PD controller is usually more robust than the system
compensated with a PI controller. T

27. What is a PI controller? Write its input-output transfer function.

28. A PI controller has the constants Kp and K. Give the effects of the PI controller
on the steady-state error of the system. Does the PI control change the system type?

29. Give the effects of the PI control on the rise time and seltling time of a control system.

Answers to these review questions can be found on this book’s companion Web site:
www.wiley.com/college/golnaraghi.

1. J. C. Willems and S. K. Mitter, “Controllability, Observability, Pole Allocation, and State Reconstruction,”
IEEE Trans. Automatic Control, Vol. AC-16, pp. 582-595, Dec. 1971.
2. H.W. Smith and E. J. Davison, “Design of Industrial Regulators,” Proc. IEE (London), Vol. 119, pp. 1210~
1216, Aug. 1972.
3. FE N. Bailey and S. Meshkat, “Root Locus Design of a Robust Speed Control,” Proc. Incremental Motion
Control Symposium, pp. 49-54, June 1983.
4, M. Vidyasagar, “‘On Undershoot and Nonminimum Phase Zeros,” JEEE Truns. Automatic Control, Vol. AC-
31, p. 440, May 1986.
5. T. Norimatsu and M. Tto, “On the Zero Non-Regular Control System,” J. Inst. Elec. Eng. Japan, Vol, 81,
pp. 567-575, 1961.
K. Ogata, Modern Control Engineering, 4th Ed., Prentice Hall, NJ, 2002.
G. F. Franklin and J. D. Powell, Feedback Control of Dynamic Systems, 5th Ed., Prentice-Hall, NJ, 2006.
J. 1. Distefano, ITI, A. R. Stubberud, and 1. J. Williams, Schaum’s Outline of Theory and Problems of
Feedback and Control Systems, 2nd Ed. McGraw-Hill, 1990.

o ~Ns

In addition to using the conventional approaches, use MATLAB to solve the problems in this
chapter.

5-1. A pair of complex-conjugate poles in the s-plane is required to meet the various specifications
that follow. For each specification, sketch the region in the s-plane in which the poles should be
located.

(a) ¢>0.707 wp > 2rad/sec (positive damping)
M) 0<¢<0.707 wy < 2rad/sec (positive damping)
(© <05 1 < w, <5radfsec  (positive damping)
d) 05<¢<0.707 @, < Srad/sec (positive and negative damping)

5-2. Determine the type of the following unity-feedback systems for which the forward-path
transfer functions are given.

K 10e~ 0.25

@ 66 =rgarwaras %O = Traa 090+ 20
104D 1001
© )= G 5)6+6 @ o) s3(s +5)(s + 6)°
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_10(s+1) - 100
(e) G(S) _5‘3(5'2 +5.§’+5) (f) G(S) - SS(S+ 2)2
_ 5(s+2) _ 8(s+1)
® 6= H5va) ® G = @296+ D

5-3. Determine the step, ramp, and parabolic error constants of the following unity-feedback
control systems. The forward-path transfer functions are given.

1000 100

® ) =rowarioy P = @ris i)
X 100

© 60 =Firomarosm @ = rET im0

(e) G(S) _ __ﬂ_ (] G(S) =w4_s)

~ s(s + 10)(s + 100) s2(s2+s+1)

5-4, For the unity-feedback control systems described in Problem 5-2, determine the steady-state
error for a unit-step input, a unit-ramp input, and a parabolic input, {r?/2)u,(t). Check the stability of
the system before applying the final-value theorem.

5-5. The following transfer functions are given for a single-loop nonunity-feedback control system.
Find the steady-state errors due to a unit-step input, a unit-ramp input, and a parabolic input,

(2/2)us(9).
1 1

® 6=y MW=
® 66 = 15 H(s) =5

© 0O =g HO =i
@ 6O =z HO=56+2)

5-6. Find the steady-state errors of the following single-loop control systems for a unit-step input, a
unit-ramp input, and a parabolic input, (¢2/2)us(t). For systers that include a parameter K, find its
value so that the answers are valid.

s+4
(a) M(.\‘) T + 4852 + 45+ &4 Ky=1
B K(s+3) _
® M) = 532 sk < =]
s+5 10s
© M) = g rsersoe 1105 10 =555
(d) M(s) _ K(S+5) 1

= F IS £ 6057 + 5Ks 13K KH =

5-7. The output of the system shown in Fig. 5P-8 has a transfer function Y/X. Find the poles and
zeros of the closed loop system and the system type.
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5-8. Find the position, velocity, and acceleration error constants for the system given in Fig. 5P-8.

X s+1 5

X s+3 s(s+2)

> Y

Figure 5P-8

5-9. Find the steady-state error for Problem 5-8 for (a) a unit-step input, (b) a unit-ramp input, and
(c) a unit-parabolic input.

5-10. Repeat Problem 5-8 for the system given in Fig. 5P-10.

+ i s+1 1
X s+2

N E
v
~

|

Figure 5P-10

5-11. Find the steady-state error of the system given in Problem 5-10 when the input is

5 3 4
X=5 gtz

5-12. Find the rise time of the following first-order system:

G(s) = H with k| < 1

5-13. The block diagram of a control system is shown in Fig. 5P-13. Find the step-, ramp-, and
parabolic-error constants. The error signal is defined to be e(¢). Find the steady-state errors in terms of
K and K, when the following inputs are applied. Assume that the system is stable.

(a) r{t) = ut)
(b) r(1) = rus()
(© r(t) = (£ /2)us(2)

R(s) E(s) _ 100 1 Yes) |
2 e Oy =130 205 >

A 4

Figure 5P-13

5-14. Repeat Problem 5-13 when the transfer function of the process is, instead,

100

Crls) = T 0151 +059)

What constraints must be made, if any, on the values of X and X, so that the answers are valid?
Determine the minimum steady-state error that can be achieved with a unit-ramp input by varying
the values of X and X|.
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5-15. For the position-control system shown in Fig. 3P-7, determine the following.

(a) Find the steady-state value of the error signal 6, (f) in terms of the system parameters when the
input is a unit-step function.

{b) Repeat past (a) when the input is a unit-ramp function. Assume that the system is stable.
5-16. The block diagram of a feedback control system is shown in Fig. 5P-16. The error signal is
defined to be e(f).

(a) Find the steady-state error of the system in terms of X and K, when the input is a unit-ramp
function. Give the constraints on the values of X and K, so that the answer is valid. Let n(r) = 0 for
this part.

(b) Find the steady-state value of y(f) when n(z) is a unit-step function. Let r(z) = 0. Assume that the
system is stable.

N(s)

R(: E(
& Dy 10028 K Yo
+ + Sz(s +25)

Figure 5P-16

5-17. The block diagram of a linear control system is shown in Fig. 5P-17, where r(#) is the
reference input and n(¢) is the disturbance.

(a) Find the steady-state value of e(f) when n(t) = 0 and r(t) = tu,(r). Find the conditions on the
values of @ and K so that the solution is valid.

(b) Find the steady-state value of y{£) when r(z) = 0 and n{f) = u,(s).

N(s)
R E(s) p Y{s)
s) s s+a K(s+3) )
e T 2 2
+ + {s"~1)
Controller Process

Figure 5P-17

5-18. The unit-step response of a linear control system is shown in Fig. 5P-18. Find the transfer
function of a second-order prototype system to model the system.

125 [ 7/
[ 0 | i /\ /\M
b NS S

|

0 0.01 {sec)
Figure 5P-18
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5-19. For the control system shown in Fig, 5P-13, find the values of K and X, so that the maximum
overshoot of the output is approximately 4.3% and the rise time ¢, is approximately 0.2 sec. Use Eq.
(5-98) for the rise-time relationship. Simulate the system with any time-response simulation program
to check the accuracy of your solutions.

5-20. Repeat Problem 5-19 with a maximum overshoot of 10% and a rise time of 0.1 sec.
5-21. Repeat Problem 5-19 with a maximum overshoot of 20% and a rise time of 0.05 sec.

5-22. For the control system shown in Fig. 5P-13, find the values of K and X, so that the maximum
overshoot of the output is approximately 4.3% and the delay time ¢, is approximately 0.1 sec. Use
Eq. (5-96) for the delay-time relationship. Simulate the system with a computer program to check
the accuracy of your solutions.

5-23. Repeat Problem 5-22 with a maximum overshoot of 10% and a delay time of 0.05 sec.
5-24, Repeat Problem 5-22 with a maximum overshoot of 20% and a delay time of 0.01 sec.

5-25. For the control system shown in Fig. 5P-13, find the values of X and K, so that the damping
ratio of the system is 0.6 and the settling time of the unit-step response is 0.1 sec. Use Eq. (5-102) for
the settling time relationship. Simulate the system with a computer program to check the accuracy of
your results.

5-26. (a) Repeat Problem 5-25 with a maximum overshoot of 10% and a settling time of 0.05 sec.
(b) Repeat Problem 5-25 with a maximum overshoot of 20% and a settling time of 0.01 sec.

5-27. Repeat Problem 5-25 with a damping ratio of 0.707 and a settling time of 0.1 sec. Use
Eq. (5-103) for the settling time relationship.

5-28. The forward-path transfer function of a control system with unity feedback is

K
Gls) = s(s +a)(s + 30)
where a and K are real constants.
(a) Find the values of g and K so that the relative damping ratio of the complex roots of the
characteristic equation is 0.5 and the rise time of the unit-step response is approximately 1 sec. Use
Eq. (5-98) as an approximation of the rise time. With the values of # and X found, determine the actual
tise time using computer simulation.
(b) With the values of @ and K found in part (a), find the steady-state errors of the system when the
reference input is (i) a unit-step function and (ii) a unit-ramp function.
5-29. The block diagram of a linear control system is shown in Fig. 5P-29.
(a) By means of trial and error, find the value of K so that the characteristic equation has two equal

real roots and the system is stable. You may use any root-finding computer program to solve this
problem.

(b) Find the unit-step response of the system when K has the value found in part (a). Use any
computer simulation program for this. Set all the initial conditions to zero.

(c) Repeat part (b) when K = —1. What is peculiar about the step response for small ¢, and what may
have caused it?

R(s) E(s) Kis-1) ¥(s)
¥ s(s + 1)(s+2)

v

Figure 5P-29
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5-30. A controlled process is represented by the following dynamic equations:

B () + 500
220 _ _bs1(1) + ult)
¥ = x(r)

The control is obtained through state feedback with
w(f) = —kixt (£) — koxat) + r(1)
where k; and k;, are real constants, and r(z) is the reference input.

(a) Find the locus in the k;-versus-k; plane (k; = vertical axis) on which the overall system has a
natural undamped frequency of 10 rad/sec.

(b) Find the locus in the k,-versus-k, plane on which the overall system has a damping ratio of 0.707.
(¢) Find the values of k and %, such that ¢ = 0.707 and w, = 10rad/sec.

(d) Let the error signal be defined as e(t) = r(t) — y(¢). Find the steady-state error when r(z) = u;(¢)
and &, and %, are at the values found in part (c).

(e} Find the locus in the k,-versus-k, plane on which the steady-state error due to a unit-step input is
zero.

§-31. The block diagram of a linear control system is shown in Fig. 5P-31. Construct a parameter
plane of K, versus K (K}, is the vertical axis), and show the following trajectories or regions in the
plane.

(a) Unstable and stable regions

(b) Trajectories on which the damping is critical (£ = 1)

(¢) Region in which the system is overdamped (¢> 1)

(d) Region in which the system is underdamped (£ < 1)

(€) Trajectory on which the parabolic-error constant K, is 1000 sec™2

() Trajectory on which the natural undamped frequency wy is 50 rad/sec

(g) Trajectory on which the system is either uncontrollable or unobservable ¢hint: look for pole-zero
cancellation)

R Es) | ¥(s)
+ 5
Figure 5P-31

5-32. The block diagram of a linear control system is shown in Fig. 5P-32, The fixed parameters of
the system are given as T = 0.1, J = 0.01, and K; = 10.

(a) When r(f) = 1u,(f) and 74(t) = 0, determine how the values of X and X, affect the steady-state
value of e(?). Find the restrictions on K and X, so that the system is stable.

(b) Let r(t) = 0. Determine how the values of X and K, affect the steady-state value of y(t) when the
disturbance input T(r) = u:(f).

(e) LetK; = 0.01 and #(¢) = 0. Find the minimum steady-state value of y(r) that can be obtained by
varying X, when T;(t) is a unit-step function. Find the value of this K. From the transient standpoint,
would you operate the system at this value of K? Explain.

(d) Assume that it is desired to operate the system with the value of X as selected in part (c). Find the
value of K| so that the complex roots of the characteristic equation will have a real part of —2.5. Find
all three roots of the characteristic equation.
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R(s) E(s)

1+7Ts

-

N

+ C Js

Ks

Y

Figure 5P-32

Y(s)

§-33. Consider a second-order unity feedback system with £ = 0.6 and w,, = 5rad/sec. Calculate
the rise time, peak time, maximum overshoot, and settling time when a unit-step input is applied to

the system.

5-34. Fig. 5P-34 shows the block diagram of a servomotor. Assume J = 1kg-m” and B = 1 N-m/
radfsec. If the maximum overshoot of the unit-step input and the peak time are 0.2 and 0.1 sec.,

respectively,

(a) Find its damping ratio and natural frequency.

(b) Find the gain K and velocity feedback K. Also, calculate the rise time and settling time.

A 4

Fy

Figure 5P-34

§-35. Find the unit-step response of the following systems assuming zero initial conditions:

(@) To] [-1 -17(x +[l 17
M‘qus Osz] 1 OHuz]
[y‘l_ 1 0] vt|:|+[0 0] nl]
yi o1 [xz 00 [uz

by [ _ [ 0 1 X1 4]

P B [ RS HE

y=n ol %]+ (o

© |1 0 1 0f|x 0
2l =|-1 =1 O |xa|+|1]u
13 1 0 0| |x; 0
x1

X3
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5-36. Use MATLAB to solve Problem 5-35.

5-37. Find the impulse response of the given systems in Problem 5-35.
5-38. Use MATLARB to solve Problem 5-37.

5-39. Fig. 5P-39 shows a mechanical system.

(a) Find the differential equation of the system.

(b) Use MATLAB to find the unit-step input response of the system.

no friction

W
Figure 5P-39

5-40. The dc-motor control system for controlling a printwheel described in Problem 4-49 has the
forward-path transfer function
0,(s)  nK KK K

) = 8e(s) =~ a0)

where A(s) = s[LodJis* + J(Radm + BuLa)s

+ (WK Ladr + KLLodm + KiKpJi, + RaBuJ1)s*
+ (P*RoK 1L + RaKim + BuKLLa)s + RaBuKL + KiKyKy

where K; = 90z-in./A, K, =0.636 V/rad/sec, R, = 5Q, L,=1mH, K;=1 Vhad,n=1/10,J,=J.=
0.001 oz-in.-sec?, and B, =0. The characteristic equation of the closed-loop system is

A{s) + KKK K =0

(a) Let K; = 10,000 oz-in./rad. Write the forward-path transfer function G(s) and find the poles of
G(s). Find the critical value of X for the closed-loop system to be stable. Find the roots of the
characteristic equation of the closed-loop system when K is at marginal stability.

(b) Repeat part (a) when K; = 1000 oz-in./rad.

(¢) Repeat part (a) when Kj, = oo; that is, the motor shaft is rigid.

(d) Compare the results of parts (a), (b), and (¢), and comment on the effects of the values of K, on
the poles of G(s) and the roots of the characteristic equation.

5-41. The block diagram of the guided-missile attitude-control system described in Problem 4-20 is
shown in Fig. 5P-41. The command input is (), and d(¢) represents disturbance input. The objective
of this problem is to study the effect of the controller G,.(s) on the steady-state and transient responses
of the system.
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(a) Let G.(s)=1. Find the steady-state error of the systemm when r(f) is a unit-step function.
Set d(2) = 0.

(b) Let G.(s) = (s + a)/s. Find the steady-state error when r(#) is a unit-step function.

() Obtain the unit-step response of the system for 0 < r < 0.5 sec with (s} as given in part (b) and
a =5, 50, and 500. Assume zero initial conditions. Record the maximum overshoot of y(z) for each
case. Use any available computer simulation program. Comment on the effect of varying the value of
o of the controller on the transient response.

(d) Set #(r) = 0 and G.(s) = 1. Find the steady-state value of y(£) when d{t) = u,(r).

(e) Let Go(s) = (s + a)/s. Find the steady-state value of y(#) when d(t) = u,(2).

{f) Obtain the output response for 0 < ¢ < 0.5 sec, with G (s) as given in part () when r(z) = 0 and
d(t) = us(t); @ = 5, 50, and 500. Use zero initial conditions.

(g) Comment on the effect of varying the value of « of the controller on the transient response of y(¢)
and d(z).

D(s)
R(s) E(s) 3 ¥(s)
G5 1002(5 + 2 s s
+ + (s"—1)
Controller Missile dynamics

Figure 5P-41

5-42, The block diagram shown in Fig. 5P-42 represents a liquid-level control system. The liquid
level is represented by /i(t), and N denotes the number of inlets.

(a) Because one of the poles of the open-loop transfer function is relatively far to the left on the
real axis of the s-plane at s = —10, it is suggested that this pole can be neglected. Approximate the
system by a second-order system by neglecting the pole of G(s) at s = —10. The approximation
should be valid for both the transient and the steady-state responses. Apply the formulas for the
maximum overshoot and the peak time f,,, to the second-order model for N = | and N = 10,

{b) Obtain the unit-step response (with zero initial conditions) of the original third-order system with
N =1 and then with N = 10. Compare the responses of the original system with those of the second-
order approximating systern. Comment on the accuracy of the approximation as a function of N.

R(s) E{s) 50 0.01N H(s)
+ 5(0.05s5 + 0.5) s+1 4

A 4

Figure 5P-42

5-43. The forward-path transfer function of a unity-feedback control system is

14T

G = sy

Compute and plot the unit-step responses of the closed-loop system for 7. = 0, 0.5, 1.0, 10.0, and
50.0. Assume zero initial conditions. Use any computer simulation program that is available.
Comment on the effects of the various values of T. on the step response.
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5-44. The forward-path transfer function of a unity-feedback control system is
i
gis)l =——mmr——
) s(s + 1)%(1 + Tps)

Compute and plot the unit-step responses of the closed-loop system for T, = 0,0.5,and 0.707. Assume
zero initial conditions. Use any computer simulation program. Find the critical value of 7, so that the
closed-loop system is marginally stable. Comment on the effects of the pole at s = —1/T in G(s).

5-45. Compare and plot the unit-step responses of the unity-feedback closed-loop systems with the
forward-path transfer functions given. Assume zero initial conditions.

1+ 75 _
(a) Gls) = e 0m)s+1s  for Te=01520
1+ T.s
§) = 7.=0,1,5,2
® G6) = o a For T.=0, 0
2
= * _ F T,=0,051.0
© GO = ta g e,y o =0
10

G§)=——————— For T,=0,05, 1.0

(d) (J) s(s+ 5)(] +Tp.§') or P
K

(€) Gls) = s(s + 1.25)(s +2.55 + 10)

(i) For K =35

(i) For K =10

(iii) For K = 30

_ K(s+2.5)
® GO) = T TS+ 257 10)
(i) ForK =5
(if) For K = 10

(iii) For K = 30
5-46. Fig. 5P-46 shows the block diagram of a servomotor with tachometer feedback.
(a) Find the error signal E(s) in the presence of the reference input X(s) and disturbance input D(s).
(b) Calculate the steady-state error of the system when X(s) is a unit ramp and D(s) is a unit step.
(c) Use MATLAB to plot the response of the system for part (b).

(d) Use MATLARB to plot the response of the system when X(s) is a unit-step input and () is a unit
impulse input.

D
+ E + )
+ k Ny
X K J5+a s rr
3
K e

Figure 5P-46
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5-47. The feedforward transfer function of a stable unity feedback system is G{s). If the closed-loop
transfer function can be rewritten as

Y(s)  G(s)  (Ais+1)(Aas+1)...(Ays+1)

(5) " 14+G(s)  (Bis+1)(Bas+1)...(Bus+1)

(a) Find the steady-state error to a unit-step input.
(b) Calculate ',I? = m .

5-48. If the maximum overshoot and 1% settling time of the unit-step response of the closed-loop
system shown in Fig. 5P-48 are no more than 25% and 0.1 sec, find the gain X and pole location P of
the compensator. Also, use MATLAB to plot the unit-step input response of the system and verify
your controller design.

+ s+ K 10
s+p 7] s+25

B
y
v
]

Figure 5P-48

5-49, Ifa given second-order system is required to have a peak time less than ¢, find the region in the
s-plane corresponding to the poles that meet this specification.

5-50. A unity feedback control system shown in Fig. 5P-50(a) is designed so that its closed-loop
poles lie within the region shown in Fig. 5P-50(b).

+ + K
R E b K N f— > C
s+tp
- +
K
5

(a)

» Re (s)

OEE:

(b)
Figure 5P-50
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(a) Find the values for @, and ¢.
(b) If K, =2 and P =2, then find the values for K and K.

(c) Show that, regardless of values K, and p, the controller can be designed to place the poles
anywhere in the left side of the s-plane.

5-51. The equation of a dc motor is given by

R 0,,,=7v

Assuming Jm = 0.02 kg-m?, B =0.002 N-m-sec, K; =0.04 N-m/A, K» =0.04 V-sec, and
R=200.

(a) Find the transfer function between the applied voltage and the motor speed.

(b) Calculate the steady-state speed of the motor after applying a voltage of 10 V.

(c) Determine the transfer function between the applied voltage and the shaft angle 8,,,.

(@) Including a closed-loop feedback to part (c) such that v = K (8 — 6,,), where K is the feedback
gain, obtain the transfer function between 8, and 6,,,.

(e) If the maximum overshoot is less than 25%, determine X.

(f) If the rise time is less than 3 sec, determine K.

(g) Use MATLAB to plot the step response of the position servo system for K = 0.5,1.0, and 2.0.
Find the rise time and overshoot.

. K\. K
T + (B +K 2) d

5-52. In the unity feedback closed-loop system in a configuration similar to that in Fig. 5P-48, the
plant transfer function is
Gs) = ﬁ)-
and the controller transfer function is
_ k(s+a)
(s+8)

Design the controller parameters so that the closed-loop system has a 10% overshoot for a unit step
input and a 1% settling time of 1.5.sec.

H(s)

5-53. An autopilot is designed to maintain the pitch attitude o of an airplane. The transfer function
between pitch angle « and elevator angle B are given by

afs) 60(s + 1)(s +2)
B(s) ~ (s + 65 + 40)(s? + 0.04s + 0.07)

The autopilot pitch controller uses the pitch error ¢ to adjust the elevator as

B(s) K(s+3)

E(s) ~ s+10
a unity feedback configuration and utifiz)e L
Use MATLAB to find K with an overshoot of less than 10% and a rise time faster than 0.5 sec for a

unit-step input. Explain controller design difficulties for complex systems.

5-54. The block diagram of a control system with a series controller is shown in Fig. 5P-54. Find the
transfer function of the controller G.(s) so that the following specifications are satisfied:

(a) The ramp-error constant X, is 5.
(b) The closed-loop transfer function is of the form

Y K
M(s) = R(s) ~ (52 +20s + 200)(s + a)

where K and g are real constants. Use MATLAB to find the values of K and a, and confirm the results.
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The design strategy is to place the closed-loop poles at —10 4 j10 and —10 — j10, and then
adjust the values of K and « to satisfy the steady-state requirement. The value of a is large so that
it will not affect the transient response appreciably. Find the maximum overshoot of the designed

system,
R(s5) E(s) 100 ¥(s)
N (A el ——— >
: Gds) )= 105 + 100)
Figure 5P-54

5-55. Repeat Problem 5-54 if the ramp-error constant is to be 9. What is the maximum value of X,
that can be realized? Comment on the difficulties that may arise in attempting to realize a very
large K,.

5-56. A control system with a PD controller is shown in Fig. 5P-56. Use MATLAB to

(a) Find the values of Kp and Kp so that the ramp-error constant K, is 1000 and the damping ratio

is 0.5.
(b) Find the values of Kp and K so that the ramp-error constant K, is 1000 and the damping ratio
is 0.707.
(c¢) Find the values of K and K so that the ramp-error constant K, is 1000 and the damping ratio
is 1.0.
R(s) £(s) 1000 Ye)
% Kp+Kps "l s(s+10) v

Figure 5P-56

5-57. TFor the control system shown in Figure 5P-36, set the value of Kp so that the ramp-error
constant is 1000. Use MATLAB to

(a) Vary the value of Kp from 0.2 to 1.0 in increments of 0.2 and determine the values of rise time and
maximum overshoot of the system.
(b) Vary the value of K from 0.2 to 1.0 in increments of 0.2 and find the value of K so that the
maximum overshoot is minimum.
5-58. Consider the second-order model of the aircraft aititude control system shown in Fig. 5-29.
. ; _ _4500K ; ;

The transfer function of the process is Gp(s) = T+3613) Use MATLAB to design a series PD
controller with the transfer function G.(s) = Kp + Kps so that the following performance specifi-
cations are satisfied:

Steady-state error due to a unit-ramp input < 0.001

Maximum overshoot < 5%

Risetime s, < 0.005sec

Settling time £, < 0,005 sec

5-59, Fig. 5P-59 shows the block diagram of the liquid-level control system described in Problem
5-42. The number of inlets is denoted by N. Set N = 20. Use MATLARB to design the PD controller so
that with a unit-step input the tank is filled to within 5% of the reference level in less than 3 sec
without overshoot,
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Figure 5P-59

5-60. For the liquid-level control system described in Problem 5-59, set Kp so that the ramp-error
constant is 1. Use MATLAB to vary K, from 0 to 0.5 and determine the values of rise time and
maximum overshoot of the system.

5-61. A control system with a type 0 process Gy(s) and a PI controller is shown in Fig. 5P-61. Use
MATLAB 10

(a) Find the value of K; so that the ramp-error constant K, is 10.

(b) Find the value of K so that the magnitude of the imaginary parts of the complex roots of the
characteristic equation of the system is 15 rad/sec. Find the roots of the characteristic equation.

(¢) Sketch the root contours of the characteristic equation with the value of K, as determined in part
(a) and for 0 < Kp < oc.

R(s) E(s) K; ] A 100 Hs) o
+ S g 7= %+ 105+ 100 "
Figure 5P-61

5-62. For the control system described in Problem 5-61, set X so that the ramp-error constant is 10.
Use MATLAB to vary Kp and determine the values of rise time and maximum overshoot of the
system.

5-63. For the control system shown in Fig. 5P-61, use MATLAB to perform the following:

(a) Find the value of K so that the ramp-error constant K, is 100.

(b} With the value of X; found in part (a), find the critical value of Kp so that the system is stable.
Sketch the root contours of the characteristic equation for 0 < Kp < cc.

(¢) Show that the maximum overshoot is high for both large and small values of Kp. Use the value of
K, found in part (a). Find the value of X when the maximum overshoot is a minimum. What is the
value of this maximum overshoot?

5-64. Repeat Problem 5-63 for X, = 10.

5-65. A control system with a type 0 process and a PID controller is shown in Fig. 5P-65. Use
MATLAB to design the controller parameters so that the following specifications are satisfied:
Ramp-error constant K, = 100

Rise timez, < 0.01 sec.
Maximum overshoot < 2%
Plot the unit-step response of the designed system.
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Figure 5P-65
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5-66. Consider the quarter-car model of vehicle suspension systems in Example 4-11-3.
The Laplace transform between the base acceleration and displacement is given by

Z(s) _ —1
Y(s) 52 4+ 2tw,s + w,.z

(a) It is desired to design a proportional controller. Use MATLAB to design the controller
parameters where the rise time is no more than 0.05 sec and the overshoot is no more than 3%.

Plot the unit-gten resnonse of the desioned gsvstem
Flot the unit-step response of the designed system.

(b) It is desired to design a PD controller. Use MATLAB to design the controller parameters where
the rise time is no more than 0.05 sec and the overshoot is no more than 3%. Plot the unit-step
response of the designed system.

(c) It is desired to design a PI controller. Use MATLAB to design the controller parameters where
the rise time is no more than 0.05 sec and the overshoot is no more than 3%. Plot the unit-step
response of the designed system.

(d) Itis desired to design a PID controller. Use MATLAB to design the controller parameters where
the rise time is no more than 0.05 sec and the overshoot is no more than 3%. Plot the unit-step
response of the designed system.

5-67. Consider the spring-mass system shown in Fig. 5P-67.

Its transfer function is given by % = TR

Repeat Problem 5-66 where M = 1kg, B = 10 N.s/m, K = 20 N/m.

M —»fln

B
Figure 5P-67

5-68. Consider the vehicle suspension system hitting a bump described in Problem 4-3, Use
MATLAB to design a proportional controller where the 1% settling time is less than 0.1 sec and the
overshoot is no more than 2%. Assumem = 25kg,J =5 kg-mz, K = 100 N/m, and r = 0.35 m. Plot
the impulse response of the system.

5-69. Consider the train system described in Problem 4-6. Use MATLAB to design a proportional
controller where the peak time is less than 0.05 sec and the overshoot is no more than 4%. Assume
M =1%kg m=05kg k=1N/m, u = 0.002 sec/m, and g = 9.8 m/s>

5-70. Consider the inverted pendulum described in Problem 4-9, where M = 0.5 kg, m = 0.2 kg,
= 0.1 N/m/sec (friction of the cart), / = 0.006 kg-m?, g = 9.8 m/s®, and 1 = 0.3 m.

Use MATLARB to design a PD controller where the rise time is less than 0.2 sec and the overshoot is
no more than 10%.



