
Synthesis of Gaussian beam optical systems

Lee W. Casperson

Systematic procedures are presented for determining the the optical components needed to obtain an arbi-
trary transformation of a propagating light ray or Gaussian beam.

1. Introduction

A fundamental problem of optics, and quantum
electronics concerns the propagation of optical signals
from one reference plane to another. A variety of
techniques have been developed for addressing this
problem, and all these techniques are based directly or
remotely on Maxwell's equations. Of particular in-
terest in the present study are the propagation methods
that are based on a type of 2 X 2 transfer, matrix.1 The
basic idea is that the overall transfer matrix for an op-
tical system can be represented as the ordered matrix
product of the transfer matrices of the individual ele-
ments that constitute the system. When suitably
represented, many aspects of a ray or beam can be
propagated through an optical system by means of
simple operations on the corresponding matrix.

Previous studies of matrix methods in optics have
been directed primarily at the analysis of existing or
postulated optical systems. In a typical problem one
might be given a sequence of lenses, mirrors, lenslike
media, etc. and be required to find a relationship be-
tween an input Gaussian beam and the corresponding
output beam. Based on experience with many such
systems one is sometimes able to guess the type of sys-
tem that is needed to obtain a required beam transfor-
mation. The emphasis in the present study is on syn-
thesis. It ought not to be necessary to rely on experi-
ence or good luck to design an optical system that will
produce some required transformation of a ray or beam.
Systematicprocedures are developed for finding the
simplest possible system that will yield a specified
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transformation. One finds, for example, that for some
transformations only one lens may be needed, while for
others a minimum of two or three may be required.

In Sec. II are mentioned some ways in which matrices
can be applied to optical problems. From these for-
mulas one can deduce the matrix needed for a desired
transformation. The following sections address the
question of whether such a matrix can be synthesized
using real optical components. In Sec. III, it is shown
that almost any 2 X 2 matrix that can be encountered
in optics is factorable into at most four primitive ma-
trices of three basic types. It is demonstrated in Sec.
IV how each of these primitive matrices can be realized.
using actual laboratory components. A basic result is
that any complex ABCD matrix can be synthesized for
beam optical applications provided that the determi-
nant is real and positive. These techniques are illus-
trated in Sec. V by investigating some practical systems
in which the transfer matrix is equal to the identity
matrix. Such systems would be invisible in terms of
measurements made at the input and output reference
planes.

II. Propagation of Rays and Beams

An exact description of the electromagnetic field
distribution in a resonator or other optical system re-
quires a solution of Maxwell's equations subject to any
relevant boundary conditions. For practical applica-
tions a variety of approximate solution techniques are
available for obtaining useful information about such
field distributions. Many aspects of optical systems can
be derived simply from geometrical optics without
considering diffraction or other physical optics effects.
For paraxial light rays in geometrical optics, the ray
propagation formulas can be reduced to an equation
having the well-known form1

(1)
kr2 J (C D rJ

where the r and r' coordinates represent, respectively,
the radial position and slope of a light ray at reference
plane 1 or 2. The ABCD matrix may represent a single
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optical component, or it may refer to the product matrix
corresponding to a sequence of optical elements. In a
typical problem of optical analysis one is given a se-
quence of optical elements and is required to find a re:
lationship between the input and output light rays.
The solution then reduces to a matter of matrix multi-
plication. Many features of laser resonators can also
be deduced from such ray optical techniques.

The problem of synthesis is of exactly the opposite
nature. We assume that there is some desired rela-
tionship between the positions and slopes of the input
and output light rays, and the necessary optical system
is to be determined. For example, it might be desired
to design an optical system that would double the dis-
placement and halve the slope of a light ray in a distance
of 1 m. Clearly this problem would involve finding a set
of factors of the matrix
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where each factor corresponds to some realizable optical
element, and the total length constraint is also somehow
satisfied. The possible solutions to problems of this
type are discussed in this paper.

Another class of problems involves the propagation
of Gaussian beams through paraxial optical systems.
The basic parameters of a Gaussian beam are the le
amplitude spot size w and the phase front curvature R,
and these quantities may be combined to form a com-
plex beam parameter Q or q, given by

Q 1 1 iX
ko q R 7rw2

where X is the wavelength and ko is the propagation
constant in the material of interest.

The propagation formula for such a beam is the Ko-
gelnik transformation2
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Fig. 1. Matrices for a Gaussian beam incident from the left.

where A, B, C, and D are the elements of a beam matrix
describing the propagation from reference plane 1 to
reference plane 2. For our ptsent synthesis interests,
it is assumed that the input beam q is known, as is the
output beam q2. Then the initial stages of the synthesis
problem involved finding the appropriate matrix ele-
ments for use in Eq. (4), and some of the possible ele-
ments are listed for reference in Fig. 1. Most of these
matrices were discussed by Kogelnik,1 but the complex
lenslike medium3 4 and the Gaussian transmission filter5

are later additions.
For general complex values of the matrix elements,

Eq. (3) can be written in the expanded form

1 x \(CL + + X + i Ci R1 irwD

(Ar + R1+ 7rw + ( R1 rwlj

If this result is separated into its real and imaginary parts, one obtains
(C +Dr + Bi r)(A + Br+ (+ D+ D r Di (Ai +Bi BrX2

Rir7 1 IR, rwI RI rwJ R, rw}I

X
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BrX 1 + B2 + Bri R 2Ar++ A +--)
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(5)

(6)

(7)
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These are two equations to be solved for the real and
imaginary parts of the matrix elements, i.e., two equa-
tions in eight unknowns. Several additional constraints
may follow from other considerations.

Besides the phase front curvature and spot size, which
are characterized by the beam parameter q, there are
other properties of Gaussian beams that may also be of
interest. In many cases, these properties can be used
to derive additional constraints on the elements of the
beam matrix. For example, one of several useful sets
of higher-order beam modes involves the astigmatic
off-axis Hermite-Gaussian functions of real argu-
ment6 :

E(x,y,z) = EOHm (21/2 X) H. (21/2 3

X exp{-i koz + QX(zX2 + 2

+ SX(z)x + Sy(z)y + P(Z)IlI (8)

The subscripts x and y denote the fact that the x and
y variations may be unequal in an astigmatic system.
The S parameters show the displacement of the beam
away from the z axis. The x displacement of the am-
plitude center is given by dxa = -SxilQxi, and the x
displacement of the phase center is given by dxp =
-SxrIQxr. The subscripts i and r indicate, respectively,
the imaginary and real parts of the parameters Sx and
Qx, and similar relations apply to the functions Sy and
Qy. The parameter P measures the relative on-axis
complex phase of the propagating beam. This is the
mode dependent complex phase shift, excluding the
plane wave phase -ikoz, reflection losses at dielectric
boundaries, unknown constant phase shifts at thin
lenses, etc.

The propagation of the beam displacement and phase
through an optical system can also be expressed as
simple transformations involving the elements of the
corresponding beam matrix. Thus the complex pa-
rameter Sx propagates according to 7

SX2= SX (9)
=A. + B~/qx,

with a similar formula for Sy. These results would be
useful in beam scanning systems. If the deflection
properties of a system are specified, the real and imag-
inary parts of Eq. (9) can be used to obtain additional
constraints on the matrix elements. Similarly, the
propagation of the phase parameter is found to obey the
relation

P2-P 1 =--Reln Ax+-I + m- Imln AxI
2 qxJ 2) qx )

2-Re InAy + + n + - Im In Ay + B
Sx2 B SY By,

2koA, + Bx/qx, 2kolAy + By/qyl

where ko1 is the propagation constant at the input of the
optical element or system (ko changes when crossing a
dielectric boundary). Phase formulas of this type
would be useful in interferometry and resonator mode

frequency studies. For our synthesis interests it is clear
that any phase shift constraints can also be translated
into conditions on the matrix elements by means of Eq.
(10).

As mentioned above the most general complex beam
matrix encountered in a synthesis problem would in-
volve eight unknowns. The conditions on these un-
knowns that have been discussed so far all follow from
the propagation formulas for Gaussian beams. Other
types of conditions can also arise. For example, it will
be seen that the determinant of the beam matrix for an
optical system is always equal to the ratio of the index
of refraction at the input plane to the index of refraction
at the output. Therefore, any physically realizable
system must satisfy the condition

AD - BC = nl/n2. (11)

The real and imaginary parts of this equation provide
two more constraints. In a resonator or waveguide
synthesis problem one might require that the resulting
modes be stable with respect to perturbations. In this
case the matrix elements would have to satisfy the
condition 7

A+D 2 _A1 -1] 1,1 _< I i f
2 2 /

(12)

and other conditions could be deduced for high loss
resonators.8

Most often one would also be inclined to require that
the matrix elements be strictly real. Complex lenslike
media are typically more costly and complicated to
fabricate, and Gaussian transmission filters always re-
duce the total power in the transmitted beam. If the
matrix elements are required to be real, four of our eight
unknowns are abruptly set equal to zero. Still other
constraints might result from other practical consid-
erations. For example, it might be specified that the
optical system has a length of 1 between the reference
planes or that the spot size and beam displacement are
everywhere less than some specified value. For the
moment, it is simply assumed that the matrix elements
of the desired transformation have, by one means or
another, been determined.

Ill. Factoring the Matrix

Once the matrix elements are known, one is left with
the task of finding actual optical components from Fig.
1, which when placed in sequence yield the required
matrix. As a starting point, it may be observed that,
with the possible exception of the lenslike medium, all
the fundamental elements from Fig. 1 can be readily
expressed as products of the following three forms:

(°1 a

a ( ;

(O 0)

(13)

(14)

(15)

It is thus reasonable to inquire how broad a class of
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ABCD matrices can be represented as a product of these
matrices. In this connection one obtains the following
theorem:

THEOREM: Any nondegenerate 2 X 2 matrix can
be represented as a product of at most four matrices of
ai, A, and y type.

By degenerate matrices would here be meant certain
special cases in which simpler factorizations are possible
or more complicated factorizations are required. All
such cases are discussed in this section. The preceding
theorem is proved if one can find any example of four
matrices, which when multiplied together produce an
arbitary ABCD matrix. If the C element is unequal to
zero, one possibility is the following:

A B = 1 a 1 °l Al ° 1 of)
tC D |0 1 1 0 y 1 

1 (A- 1)/C 1 0 1 0 1 B + (1 -A)D/Cl
10 1 |/CC 1 AD- BC) (1

(16)

The validity of the factorization can be comfirmed by
direct multiplication, and it is clear that each of these
factors is of the a, /3, or y type.

It is also of interest to consider the uniqueness of
factorizations like that given in Eq. (16). For this
purpose certain preliminary considerations are re-
quired. First, it may be observed that the y matrix
quasi-commutes with matrices of the other types. By
this we mean that a product ya (or y/3) can be replaced
by a product a'-y (or fl',y). More specifically, one finds
the following relations:

(1 0) (1 ~In a alY) 11 0t74{1° (17)
(O Sy 1} tO 'Yl 1 / O '

(1 a) (, = Ab Sy = (Ae1 ) 0 ° (18)

On the other hand, one can show that there is no cor-
responding commutation relation between matrices of
types a and . In the nontrivial situations where the
elements a and are unequal to zero, such a commu-
tation relation would take the form

Carrying out the
1 m i p i c a t le ad1 1 -

multiplication leads to( -) (' 1 + a ,0) (20)

from which follow the equations a = a', = 3', and ao
= a'fl' = 0. But this is a contradiction since by as-
sumption a and are nonzero. Hence no such com-
mutation is possible.

Using the previous commutation considerations, it
is now straightforward to investigate the uniqueness of
expansions like that given in Eq. (16). The proof is by
contradiction, and we start by postulating that two
different factorizations of the same matrix exist in the
forms

alfliYla = a2#272a. (21)

These forms are exactly equivalent to Eq. (16) and are
similar to several other possible factorizations. First,
it may be noted that only the matrices of y type have
determinants different from unity. Since the deter-
minant of a matrix product is equal to the product of the
determinants, it follows that Y = 2 = Y'-

It can also be observed that all the component ma-
trices in Eq. (21) possess inverses and that matrix
multiplication is associative [a(fry) = (afl)y]. If this
equation is premultiplied by a 1and postmultiplied by
(,ya2)-1, the result is

B = al a202. (22)

But the inverse of an a matrix is still an a matrix, and
the product of two a matrices is also an a matrix.
Therefore, we can define two new a matrices a3 =
aQl(ya2)-' and a4 = ajl a 2, and Eq. (22) reduces to

flla3 = a42- (23)

But from the noncommutativity of a and : matrices
discussed previously, it follows that both a3 and a4 are
equal to the identity matrix and, therefore, that = 2.
Also, a4 can only equal the identity matrix if a = a 2,
and a3 can only equal the identify matrix if ya = a2
or a1 = a. Therefore, contrary to the initial assump-
tion of Eq. (21), the expansion of an arbitary matrix in
the aya' form is unique. It remains to be seen
whether expansions in other product forms might still
be possible.

Because of the quasi-commutative property of the y
matrix it follows immediately that there are three other

.variations of the factorization given in Eq. (16), de-
pending on the position in the product of the matrix y.
For completeness we write down all four possibilities:

AA BD - BC) 1 (A- 1)(AD - BC)/C /ADI 0B )1 B + (1-A)D/C)
\C D O AD-0Bj} to / ( CI(AD-BC 1 

(al (A- 1 )/C)(I A D B (C 1 BC ( B + (1- A)D/C)

1 1C) (C 1 B ( AD -BC( A D 
al (A - 1)/C Al 01 {l [B + (1- A)DIC]I(AD -BC) 1 0 
\0 1 C 11 t 1 } tO AD -BC}
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Except for the position of the y matrix these four ex-
pansions all have the same basic afla' form.

In a similar manner, one finds that there are four
additional expansions having a basic /3a/3' form. These
are

A Bl= I 1 B 11 1 0 

C D) lo AD - BC) ([C + (1-A)D/B]I(AD-BC) ) 1 (A -1)/B 1 (28)

= (C + 1-ADIB ) ( AD-BC) () ((A-1)/B 1)

( 1 0) 1 B/(AD- BC)) ( (A ) (1 0 (31)

+ (1-A)D/B 1 0 1 (A-1) (AD- BC)/B 1 0 AD-BCJ

Only these eight four-matrix factorizations exist for an
arbitrary nondegenerate ABCD matrix. Since each
component matrice can in turn be factored, there are,
of course, an infinite number of factorizations involving
five or more component matrices.

As indicated above, there are certain special cases in
which the number or form of the factorization possi-
bilities simplifies substantially. For example, it has
been tacitly assumed in the preceeding analysis that
none of the initial matrix elements are equal to zero.
This restriction was necessary to avoid division by zero
in some of the resulting factorizations: Thus, if the B
element is equal to zero, the factorizations given in Eqs.
(28)-(31) must be excluded, and if the C element is
equal to zero Eqs. (24)-(27) are not acceptable. Simi-
larly, if the determinant vanishes, only Eqs. (26) and
(29) can be considered. In the worst case, both the B
and C elements are equal to zero [as in Eq. (2)], and no
four matrix factorization is possible. We will show,
however, that for such diagonal matrices a five-matrix
factorization can always be found.

The first step in the decomposition of a diagonal
matrix is to factor out an arbitrary matrix of a or /3 type.
The four possibilities are

(A 0~l (O1) ( D A(2Ao Di='l0a ) (-aD) (32)

(A 0 (1 a) (35)

-O D J'0 1)-

The remaining matrix can be readily factored using the
matrix expansions found in Eqs. (24)-(31). For ex-
ample, if one wanted a diagonal optical system to begin
with a thin lens that happened to be lying around the
laboratory, the appropriate starting point would be Eq.
(35). The remaining factorization could use any of Eqs.
(24)-(27).

An extremely important special case occurs when the
ABCD matrix to be factored is unimodular (AD - BC
= 1). The importance of this case is a consequence of
the following theorem:

THEOREM: The matrix corresponding to a phys-
ically realizable optical system is unimodular if and only
if the output reference plane occurs in a medium having
the same refractive properties as the medium sur-
rounding the input reference plane.

This result follows from the facts that (1) the only
primary nonunimodular matrix is the y type corre-
sponding to a dielectric boundary, and (2) the deter-
minant of a matrix product is equal to the product of the
determinants of the component matrices. Therefore,
for a sequence of j dielectrics, this product is

det(A B n n2 n3 nj_

~C D j n2 n3 n4 .. ni
(36)

from which the theorem follows.
The importance of unimodular matrices is that they

correspond to most of the optical configurations that
one encounters in practice. Typically, both the input
and output reference planes are in air, and the deter-
minant of the transfer matrix is unity. In addition to
this practical significance, there are also substantial
analytical simplications that occur when the matrix is
unimodular. In particular one finds that Eqs. (24)-(27)
reduce to the single equation

(A B = (I (A 1)/ (I 0) 1 (D- 1)C (37)

(C D) EO (12 'I (C redu 1to
and Eqs. (28)-(31) reduce to

{AB{1 O(1 By 1 

tC D (D W)B 0}t 1 (A 1)IB 
(38)

Thus there are exactly two distinct ways to factor an
arbitrary unimodular matrix into a three-matrix
product, subject to the previously discussed restrictions
on matrices with zeros as the B or C elements.

As a final comment on matrix factorization, we note
that some matrices may be decomposed into forms in-
volving only one each of ar and type matrices. To
avoid unnecessary cost in system design and fabrication,
it is important to be able to recognize such simplifica-
tions when they exist. For this purpose a convenient
and easily demonstrated result is the following:

THEOREM: A matrix can be decomposed using at
most one and one factor if and only if A = 1 (the
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1/f, -2(1/A- 1/a) 1/f,=4(1l/-a /1) 1/f, =2(1/1- 1/a)

Fig. 2. Possible representation of a complex a type element.

order would be /3, a) or D = AD - BC (the order would
be a, ).

Because of the consequent simplifications, one might
sometimes employ this result as a constraint in estab-
lishing the original matrix to be synthesized.

IV. Practical Realizations

Our discussions thus far have emphasized the facto-
rization of arbitrary 2 X 2 matrices into certain primitive
matrix factors. It remains now to be shown that these
factors can actually be represented by practical optical
elements. As a starting point, one finds that any type
matrix can be realized in practice. In particular, the
product (in either order) of the matrix for a thin lens or
spherical mirror with the matrix for a Gaussian trans-
mission filter yields a matrix having an arbitrary
complex / element:

(1 0) 1 1) (-i/f-iS/iwa 1) (ir i 0W )

(39)

It is, of course, true that the inverse Gaussian trans-
mission characteristic (W2 < 0) cannot be maintained
to arbitrary radii, but it is only necessary that this
profile be approximated to the largest radius of the
beam. This same restriction applies to the radial phase
shift characteristics of finite diameter lenses.

The realization of arbitrary a matrices is a bit more
complicated. The only practical matrix that is auto-
matically of the a type is the matrix for a uniform me-
dium of length 1. But is always a positive real number,
so this matrix is totally inadequate for representing the
negative or complex a elements that might result from
the factorization of an arbitrary complex matrix. For
this purpose a more general representation is needed,
and one possibility consists of three complex lenses
separated by two uniform media. A symmetric version
of such a system is shown in Fig. 2. In the figure the
elements represented as thin lenses are to be understood
as general type optical elements having complex focal
lengths. As indicated previously, such elements can be
easily realized from an ordinary thin lens followed (or
preceded) by a Gaussian transmission filter.

For the system of interest the matrix product corre-
sponding to Fig. 2 reduces to an a matrix according
to

(1 =el { 1 0) 1 1/2)4 1 )

o ( 2(a-1 1-1) 1 1/ 04a-2 -) 

0 1 ) 2(oa-1 - 1-1) (0

Thus an arbitrary complex a matrix can be represented
as a product of five realizable factors, and this result can
be easily checked by multiplication.

To illustrate the use of Eq. (40), let us imagine that
we are trying to find a practical realization for a given
unimodular ABCD matrix using the factorization given
in Eq. (38). With good luck each of the resulting three
matrix factors can be realized by a single optical element
(or perhaps two elements, depending on how one fa-
bricates a combination of a lens and Gaussian aperture).
Thus only three elements are required. With bad luck,
however, the B element of the a matrix may not be a
positive real number. Then a more complicated rep-
resentation of the a matrix is required, and the five-
element system shown in Fig. 2 works well. The initial
and final lenses of this system may be combined with
the initial and final lenses implies by the matrices in
Eq. (38), so the total number of elements used in such
a decomposition is five. Since the factorization in Eq.
(37) involves two a matrices, with bad luck this alter-
native procedure could lead to six or nine optical ele-
ments.

The previous remarks have implied that it is unfor-
tunate when one encounters an a matrix in which the
B element is not real and positive. However, a highly
desirable feature of the expansion shown in Fig. 2 is that
the distance I between the reference planes is totally
arbitrary. In a practical situation one might like to
specify the length of the optical system which is to
produce a desired beam transformation. In the simpler
three-matrix realizations where an expansion like that
shown in Fig. 2 is not required, there is no length flexi-
bility.

The emphasis so far in this section has been on the
possibility of obtaining practical realizations for arbi-
trary a and matrices. Relatively little needs to be said
about realizing y matrices. As mentioned previously,
these matrices only occur if the output reference plane
involves a medium with different refracting properties
from the input reference plane. In such cases it seems
probable that the matrix determinant and hence the y
matrix will have been specified at the outset. Otherwise
one might discover at the end of the synthesis process
that the desired output beam occurs within an unde-
sirable refracting medium.

V. Example: The Identity System

The concepts developed in the previous sections can
be illustrated by considering as an example the identity
optical system. The identity matrix is a diagonal ma-
trix in which the diagonal elements are equal to unity.
It follows from Eq. (1) that the effect of the identity
matrix in ray optics is that it leaves the position and
slope of a light ray unchanged. In beam optics, one
finds from Eq. (4) that the identity matrix produces no
change in the beam spot size or phase front curvature.
A reasonable question to ask is whether a nontrivial
identity optical system can be fabricated from realizable
optical components. In fact, one finds that there are
infinitely many such systems.
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Fig. 3. Identity systems for (A) transmission and (B) reflection of rays or beams.

The identity matrix is a special case of the diagonal
matrices considered previously. Thus Eq. (33) would
suggest the factorization

(1 )1 -11 1 1 (41)

where the second matrix represents free space of length
11. The first matrix can be decomposed using Eq. (40),
and the final result is

11 0 = I 1 Ol 1 12/28 1 0) 1 12/28,(O 1 -2(1'+ 1-) 1 0 1 2- 4 (l1l2 + ) 1 lz 12)

x -2(1- + -l)1) 0 1 1) 42

The length 12 in this expansion is, as noted previously,
completely arbitrary, but the results look most elegant
if we choose the relationship 12 = 21 = 21. Then Eq.
(42) simplifies to

{10\ 1H 1 owl 11{ 1 0A{1 1X 1 0 1 1

to1 -3/ 1 O 1 3/ 1} t 1/ -3 1} \ 1J
(43)

The experimental setup corresponding to this result is
sketched in Fig. 3(A). Except for translation along the
optical axis, a light ray or Gaussian beam leaving this
system will be identical to the light ray or Gaussian
beam as it entered the system.

The identity system just described operates on
transmitted rays and beams. It is also possible to
synthesize a reflective identity system, and an easily
verified example is given in Fig. 3(B). This system
would behave in a manner identical to a flat mirror lo-
cated at the reference plane, and we have confirmed this
behavior in visual and He-Ne laser experiments. As
a practical application, such a system could be used as
the end mirror on a waveguide laser.9 A flat waveguide
mirror is the ideal, but practical problems often force
one to position the mirror away from the end of the
waveguide. The field distribution emerging from the

waveguide can be expanded in Hermite-Gaussian
modes, and it follows from Eqs. (4), (9), and (10) that
for an identity reflector the amplitude and phase dis-
tributions of the reentering fields would be exactly the
same as if the waveguide had been terminated by a flat
mirror.

VI. Conclusion

The techniques for analyzing the propagation of light
rays and Gaussian beams through paraxial optical sys-
tems are well known. The purpose of this study has
been to develop systematic methods for the opposite
process of synthesis, the design of an optical system
which will produce some desired transformation of a ray
or beam. The synthesis process, as developed here,
involves three more-or-less distinct steps: (1) con-
verting the desired performance characteristics of an
optical system into explicit values or constraints on the
values of the transformation matrix elements; (2) fac-
toring the matrix into certain primitive matrix forms;
and (3) replacing each of these primitive matrices with
realizable optical components. In most cases this
process is straightforward and systematic, and it is also
well suited for computer calculation.

The author is pleased to acknowledge valuable dis-
cussions with H. J. Orchard and J. Vetrovec.
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