MAE0312 - Introdução aos Processos Estocásticos Lista 3 - Prof. Fábio Machado

- 1. Considere 3 processos de ramificação onde o número de filhos por indivíduo segue a distribuição B(n,p), com médias iguais as apresentadas na tabela 4.1 (pag 162) do livro do R.Dobrow, ou seja, $\mu=0.75,\ 1.0\ e\ 1.5$. A ideia do autor foi pegar um valor de média na região subcrítica ($\mu<1$), um valor de média na região crítica ($\mu=1$) e um valor de média na região supercrítica ($\mu>1$). Faça os itens abaixo, fixando valores para n e p de maneira a obter os valores de μ usados por R.Dobrow na tabela 4.1.
 - (a) Apresente uma estimativa, baseada em simulações, para a probabilidade de extinção do processo quando $\mu = 1, 5$ e compare sua estimativa com o valor teórico;
 - (b) Estime a distribuição do número de gerações até a extinção quando $\mu=1,0$ de maneira a considerar pelo menos 75% dos casos, a partir de 1 geração, 2 gerações etc. Encontre os valores teóricos para a probabilidade de extinção em exatamente 1, 2, 3, ... gerações até a soma das probabilidades ultrapassar pela primeira vez o valor 0,75. Compare estes últimos valores com as estimativas obtidas pela simulação.
 - (c) Estime, baseado em simulações, a esperança do total de indivíduos no sistema (total progeny) para o caso $\mu < 1$. Compare com o valor teórico, baseado na idéia apresentada no fim da página 172 do livro de R.Dobrow (exemplo 4.12 e idéias vindas do artigo de Sellke et al de (2008)).
 - (d) Sabemos que na região supercrítica ($\mu > 1$) a probabilidade de sobrevivência é maior do que zero, o que faz com que a esperança do número total de indivíduos no sistema seja infinito. É possivel perceber e apresentar indícios para este fato, baseando-se em simulações? É possivel estimar, baseado em simulações, a probabilidade de extinção neste caso? Tente fazer isto para $\mu = 1, 5$ e compare com o valor teórico.
 - (e) Estime, baseado em simulações, o número máximo de indivíduos em uma só geração para o caso $\mu=1$, até a extinção do processo. A distribuição estimada tem alguma cara conhecida?
- 2. Exercícios 4.24 e 4.25, página 177 do livro de R. Dobrow.