## TEFET/RJ

# An Introduction to Switched Systems 

Prof. Rafael F. Q. Magossi ${ }^{1}$<br>Prof. Vilma A. Oliveira ${ }^{2}$<br>${ }^{1}$ CEFET/RJ, Brazil<br>${ }^{2}$ USP, Brazil<br>June 1, 2020

## Note to the reader

This text is based on the following main references

- LIBERZON, Daniel. Switching in systems and control. Springer Science \& Business Media, 2003.
- GEROMEL, Jose C.; COLANERI, Patrizio. Stability and stabilization of continuous-time switched linear systems. SIAM Journal on Control and Optimization, v. 45, n. 5, p. 1915-1930, 2006.
- DEAECTO, Grace S. Lecture notes from IM420 - Continuous-Time Switched Dynamical Systems - UNICAMP.
- BOYD, Stephen et al. Linear matrix inequalities in system and control theory. Siam, 1994.


## Introduction

There are some simple examples of switched systems


Figure 1: Manual and automatic transmission of a car

## Introduction

In Power Electronics the central key for any conversion is regarding on switches. The DC-DC converter uses switching states to convert DC voltage into DC voltage.


Figure 2: Boost converter.

## Introduction

## How should I switch ?



## Fundamentals

Dynamical systems that are described by an interaction between continuous and discrete dynamics are usually called hybrid systems. The hybrid systems can be divided as
(1) Mainly discrete with simple continuous dynamic systems - usually dealt with in the field of automation.
(2) Mainly continuous with isolated discrete events - such hybrid system is called switched systems.

Switched systems can be classified, but not only, into

- State-dependent versus time-dependent;
- Autonomous (uncontrolled) versus controlled.


## Fundamentals

- State-dependent switched system are systems that use state information to select the subsystem - We use the speed of the car to decide which gear to use.
- Time-dependent switched system are systems that use time to select the subsystem - In DC - DC converters, usually a PWM circuit dictates how long to stay in each subsystem.
- Autonomous (uncontrolled) switched system are systems in which we do not have the possibility to select which subsystem to use - An airplane that has engine failure does not give the option of not going to this subsystem.
- Controlled switched system are systems that we can select the subsystem to achieve an objective - We can choose whether or not to turn on a refrigerator compressor to maintain the temperature.


## Fundamentals

We have interest in the following switched system with time-dependent switching

$$
\begin{equation*}
\dot{x}(t)=A_{\sigma(t)} x(t)+B_{\sigma(t)} u(t) \tag{1}
\end{equation*}
$$

where

- $x(t) \in \mathbb{R}^{n_{x}}$ is the state
- $u(t) \in \mathbb{R}^{n_{u}}$ is the control input
- $\sigma(\cdot): t \geq 0 \rightarrow \mathbb{K} \triangleq\{1,2, \cdots, m\}$ is the switching function that selects one of the $m$ available subsystems at each instant of time.


## Suposição 3.1

The switching function $\sigma$ is continuous from the right everywhere, which means that $\sigma(t)=\lim _{\tau \rightarrow t^{+}} \sigma(\tau)$ for each $\tau \geq 0$.

## Fundamentals

For instance, consider that $m=2$, therefore an example of switching function can be described as follow


Figure 3: A switching signal. Source: Liberzon, $2003^{1}$

[^0]
## Fundamentals

Let us focus on linear switched systems as

$$
\begin{equation*}
\dot{x}(t)=A_{\sigma(t)} x(t), \quad x(0)=x_{0}, \quad x_{0} \in \mathbb{R}^{n \times n}, \quad A_{p} \in \mathbb{R}^{n \times n} \quad \forall p \in \mathbb{K} \tag{2}
\end{equation*}
$$

The following example illustrates the importance of switching signal.
Example Let us consider the following subsystems

$$
A_{1}=\left[\begin{array}{rc}
-1 & 1  \tag{3}\\
0 & -1.5
\end{array}\right], \quad A_{2}=\left[\begin{array}{ll}
2 & 1 \\
0 & 5
\end{array}\right], \quad x(0)=\left[\begin{array}{c}
5 \\
10
\end{array}\right]
$$

## Fundamentals



Figure 4: Stabilizing switching signal.

## Fundamentals



Figure 5: Non stabilizing switching signal.

## Some recalls

Consider a $\mathcal{C}^{1}$ (i.e., continuously differentiable) function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

## Definition 1

$V$ is called positive definite if $V(0)=0$ and $V(x)>0$ for all $x \neq 0$.

## Definition 2

$V$ is said to be radially unbounded if $V(x) \rightarrow \infty$ as $|x| \rightarrow \infty$
Let,

$$
\begin{equation*}
\dot{x}=f(x) \quad x \in \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a locally Lipschitz function $\left(\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq m\left|x_{1}-x_{2}\right|, m \in \mathbb{R}\right)$.

## Stability

## Theorem 3

(Lyapunov ${ }^{2}$ ) Suppose that there exists a positive definite $\mathcal{C}^{1}$ function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ whose derivative along solutions of the system (4) satisfies

$$
\dot{V}(x) \leq 0 \quad \forall x
$$

Then the system (4) is stable. If the derivative of $V$ satisfies

$$
\dot{V}(x)<0 \quad \forall x \neq 0
$$

then (4) is asymptotically stable. If in the latter case $V$ is also radially unbounded, then (4) is globally asymptotically stable.

[^1]
## Stability

Before we deal with stability by itself we need to state an important definitions

## Definition 4

(Dwell-time) If $\exists h \in \mathbb{R}_{>0}$ such that

$$
\inf _{q} t_{q}-t_{q-1} \geq h
$$

then $h$ is called dwell-time.

## Definition 5

(Hurwitz Matrix) A square matrix $A$ is called a Hurwitz matrix if all eigenvalues of $A$ have strictly negative real part

## Stability

## Definition 6

Consider $n \times n$ symmetric real matrix $M$. Then,

- $M$ is positive definite $\Longleftrightarrow x^{\top} M x>0$ for all $x \in \mathbb{R}^{n} \backslash \mathbf{0}$
- $M$ is positive semi-definite $\Longleftrightarrow x^{\top} M x \geq 0$ for all $x \in \mathbb{R}^{n}$
- $M$ is negative definite $\Longleftrightarrow x^{\top} M x<0$ for all $x \in \mathbb{R}^{n} \backslash \mathbf{0}$
- $M$ is negative semi-definite $\Longleftrightarrow x^{\top} M x \leq 0$ for all $x \in \mathbb{R}^{n}$


## Stability

## Proposition 4.1

Let $M$ be an $n \times n$ Hermitian matrix.

- $M$ is positive definite if and only if all of its eigenvalues are positive.
- $M$ is positive semi-definite if and only if all of its eigenvalues are non-negative.
- $M$ is negative definite if and only if all of its eigenvalues are negative
- $M$ is negative semi-definite if and only if all of its eigenvalues are non-positive.
- $M$ is indefinite if and only if it has both positive and negative eigenvalues.


## Stability

## Definition 7

(Linear Matrix Inequality - LMI) An LMI is expressed as

$$
\mathcal{A}(x)<0
$$

with

$$
\mathcal{A}(x)=A_{0}+\sum_{i=1}^{n} A_{i} x_{i}
$$

where $A_{i} \in \mathbb{R}^{m \times m}, i=1, \cdots, n$ are symmetric matrices and $x_{i} \in \mathbb{R}$ is the $i$-th component of vector $x$.

## Stability

Consider $\dot{x}=A x, A \in \mathbb{R}^{n \times n}$. The following theorem holds.

## Theorem 8

(Lyapunov Theorem) Matrix $A$ is Hurwitz stable if and only if for any given $Q>0$ there exists a positive definite symmetric matrix $P$ satisfying the Lyapunov equation

$$
A^{\prime} P+P A+Q=0
$$

Moreover, matrix $P$ is the unique solution of this equation.
Note that from this theorem, it is suffice that

$$
P>0, \quad A^{\prime} P+P A<0
$$

## Stability

## Proof

Consider $V(x)=x^{\prime} P x$. Note that,

$$
V(0)=0 \quad \text { and } \quad V(x)>0, \forall x \neq 0 \Longleftrightarrow P>0
$$

Now we should verify that $\dot{V}(x)<0$, which means by Gateaux differential that

$$
\dot{V}(x)=\langle\nabla V(x), \dot{x}\rangle .
$$

Using the Leibniz's formula, we have

$$
\begin{aligned}
\dot{V}(x) & =\dot{x}^{\prime} P x+x^{\prime} P \dot{x}<0 \\
& =(A x)^{\prime} P x+x^{\prime} P(A x)<0 \\
& =x^{\prime}\left(A^{\prime} P+P A\right) x<0 \Longleftrightarrow A^{\prime} P+P A<0 .
\end{aligned}
$$

## Stability

If there exists $P>0$ such that

$$
A^{\prime} P+P A<0
$$

then there exists also $Q>0$ such that

$$
A^{\prime} P+P A+Q=0
$$

which is the Lyapunov equation. Moreover, let $\lambda$ be the eigenvalue of $A$ with eigenvector $v \neq 0$ and $v^{*}$ the notation for conjugate transpose. Then,
$-v^{*} Q v=v^{*}\left(A^{\prime} P+P A\right) v=v^{*} A^{\prime} P v+v^{*} P A v=(\lambda v)^{*} P v+v^{*} P(\lambda v)=\left(\lambda^{*}+\lambda\right) v^{*} P v=\operatorname{Re}(\lambda) v^{*} P v$
therefore, $\operatorname{Re}(\lambda)<0$. In other words, there exists $P>0 \Longleftrightarrow A$ is Hurwitz.
For a linear system, as $x=0$ is the only equilibrium point, $P>0$ and $A^{\prime} P+P A<0$ ensures that $x=0$ is globally asymptotically stable.

## How to solve a LMI ?

There are several forms and algorithms to solve LMI. Mathworks offers a toolbox called LMILab on Matlab. However, the most common combination is the use of SeDuMi and YALMIP combination.
(SeDuMi) SeDuMi is a great piece of software for optimization over symmetric cones. It was developed by Jos F. Sturm, who passed away in 2003.


## How to solve a LMI ?

(YALMIP) YALMIP is a toolbox for modeling and optimization in MATLAB created by Johan Löfberg.
YALMIP Download Search Tutorials Examples Commands Solvers Index FAQ References Forum

What does YALMIP mean?
樃 Updated: September 17, 2016
Nothing, you decide

## How to solve a LMI ?



## Johan Löfberg

Automatic Control, Linköping University, Sweden
Verified email at liu.se - Homepage
Control Optimization Model Predictive Control Mathematical programming

| TITLE | CITED BY |
| :--- | :---: |
|  | YEAR |
| YALMIP: A toolbox for modeling and optimization in MATLAB |  |
| J Lōfberg |  |
| Computer Aided Control Systems Design, 2004 IEEE International Symposium on ... | 7799 |

## How to solve a LMI ?

You'll need,
(1) Matlab installed;
(2) Download SeDuMi package from http://sedumi.ie.lehigh.edu/
(3) Download YALMIP from https://yalmip.github.io/

Then, extract those files from SuDuMi and YALMIP to a folder where you would like to
work by adding the to path the folder and subfolders as shown next.


## How to solve a LMI ?

## Hand's on! Write the following code

```
close all
clear
clc
A = [-1 2;-3 -4]; % define matrix A
P = sdpvar(2,2); % create symmetric P
% Set LMI
T = A'* *P +P*A;
F}=[\textrm{P}>0; T<0; trace (P)==1]; % trace(P)=1 is an additional restriction
% to ensure that we have a matrix P with values not so close to zero.
about = optimize(F) % solve LMI
P_feasible = double(P); % evaluate P
```


## How to solve a LMI ?

## The code should return something like

```
SeDuMi 1.3 by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003.
Alg = 2: xz-corrector, theta = 0.250, beta = 0.500
Put 1 free variables in a quadratic cone
eqs m = 3, order n = 7, dim = 11, blocks = 4
nnz(A)=12 + 0, nnz(ADA) = 9, nnz(L) = 6
    it: b*y gap delta rate t/tP* t/tD* feas cg cg prec
        O < 3.72E+01 0.000
        1: 0.00E+00 3.25E+00 0.000 0.0874 0.9900 0.9900 1.07 1 1 2.6E+00
        2: 0.00E+00 1.31E-01 0.000 0.0403 0.9900 0.9900 1.63 1 1 5.1E-02
        3: 0.00E+00 4.43E-06 0.000 0.0000 1.0000 1.0000 1.00 1 1 1 2.8E-05
        4: 0.00E+00 2.01E-12 0.000 0.0000 1.0000 1.0000 1.00 1 2 6 6 2 - < 12
\begin{tabular}{ccccc} 
iter seconds digits & \(c \star x\) & \(b * y\) \\
4 & 0.1 & 14.0 & \(8.8470230081 e-15\) & \(0.0000000000 e+00\)
\end{tabular}
```


## How to solve a LMI ?

```
|Ax-b| = 3.2e-13, [Ay-c]_+ = 3.6E-14, |x|= 9.2e-01, |y|= 7.5e-01
Detailed timing (sec)
    Pre IPM
    Post
1.500E-02 6.600E-02 4.003E-03
Max-norms: ||b|=0, ||c||=1,
Cholesky |add|=0, |skip| = 1, ||L.L|| = 1.
about =
    struct with fields:
    yalmiptime: 1.0610
    solvertime: 0.0870
        info: 'Successfully solved (SeDuMi-1.3)'
    problem: 0
```


## How to solve a LMI ?

Focus your attention to "info: 'Successfully solved (SeDuMi-1.3)'" this allows you to move on and get $P$ from "P_feasible" as

$$
P=\left[\begin{array}{ll}
0.678 & 0.058  \tag{5}\\
0.058 & 0.322
\end{array}\right]
$$

using the command "eig(P_feasible)" we got the eigenvalues of $P$ as 0.3130 and 0.6870 , confirming that $P>0$. Moreover, the solution satisfy $\operatorname{trace}(P)=1$. When we deal with Lyapunov equation, $P$ is unique, which does not follows for Lyapunov inequality, then if you got a different matrix $P$ you're good.
(On a side note) You can minimize the trace (or something else) of a variable $X$ using "about $=$ optimize $(F$,trace $(X)$ )". Minimizing the trace of a matrix is common for problems involving the $\mathcal{H}_{2}$ norm (;

## On stability of switched linear systems

Consider the following general switched linear system with time-dependent switching function $\sigma(\cdot): t \geq 0 \rightarrow \mathbb{K}=\{1,2, \cdots, m\}$

$$
\begin{equation*}
\dot{x}(t)=A_{\sigma(t)} x(t), \quad x(0)=x_{0}, \quad x_{0} \in \mathbb{R}^{n \times n}, \quad A_{p} \in \mathbb{R}^{n \times n} \quad \forall p \in \mathbb{K} . \tag{6}
\end{equation*}
$$

A simple stability criterion is by assumption that all subsystems are Hurwitz, which means that any time a new subsystem is choose it will decrease to zero. Therefore, assume that $\left\{A_{p}: p \in \mathbb{K}\right\}$ is a compact set of Hurwitz matrix, then the following is true

## Theorem 9

(Liberzon, 2003a ${ }^{\text {a }}$ ) The system (6) has global uniform exponential stability (GUES) if and only if it is locally attractive for every switching signal

[^2]
## On stability of switched linear systems

From that, it is natural to consider quadratic common Lyapunov functions as

$$
V(x)=x^{\prime} P x
$$

which in view of the compactness assumption made earlier, it is suffice that

$$
\begin{equation*}
A_{p}^{\prime} P+P A_{p}<0, \quad \forall p \in \mathbb{K} \tag{7}
\end{equation*}
$$

Otherwise speaking, in that way the energy function is guaranteed to decrease for any subsystem. Moreover, in this framework, the switching function can be any.

## On stability of switched linear systems

Example Let us consider the following subsystems

$$
A_{1}=\left[\begin{array}{rr}
-3 & 1  \tag{8}\\
0 & -1
\end{array}\right], \quad A_{2}=\left[\begin{array}{rr}
-2 & 1 \\
0 & -5
\end{array}\right], \quad x(0)=\left[\begin{array}{c}
5 \\
10
\end{array}\right]
$$

Firstly, note that the eigenvalues of $A_{1}$ and $A_{2}$ are $-3,-1$ and $-2,-5$, respectively. Therefore, both $A_{1}$ and $A_{2}$ are Hurwitz matrices. Then, we can solve apply (7), resulting in

$$
\left\{\begin{array}{l}
A_{1}^{\prime} P+P A_{1}<0 \\
A_{2}^{\prime} P+P A_{2}<0
\end{array}\right.
$$

Now, we need to find $P>0$ which solves such problem, so let's go to Matlab.

## On stability of switched linear systems

```
close all
clear
clc
A1 = [-3 1;0 -1];
A2 = [-2 1;0 -5]; % declare matrices
P = sdpvar (2,2);
% Set LMI problem
T1 = A1'*P+P*A1;
T2 = A2'*P+P*A2;
F = [P > 0; T1 < 0; T2<0];
about = optimize(F)
P_feasible = double(P);
```


## On stability of switched linear systems

We got as solution,

$$
P=\left[\begin{array}{cc}
0.265 & 0.0267 \\
0.0267 & 0.245
\end{array}\right]
$$

which has 0.2268 and 0.2838 as eigenvalues, therefore $P>0$ and the switched system has GUES.

Well, theory is good, but how do we check this on practice ? We can simulate it and in order to simulate a switched system, we need

- Simulink;
- Matlab Function block.


## On stability of switched linear systems

## Simulation of a switched system



Figure 6: MATLAB/Simulink.

## On stability of switched linear systems

Inside of Matlab Function block use a code like as follows

```
function xdot = fcn(x,sigma,A1, A2)
if(sigma==1)
    xdot = A1*x;
else
    xdot = A2*x;
end
end
```

The idea is realize integration of $\dot{x}$ outside Matlab Function block to get $x$ whereas $\sigma(t)$ selects the subsystem. To create $\sigma(t)$ you can use the block called "PWM Generator" or you can create with a random signal generator, be creative!.

## On stability of switched linear systems




## On stability of switched linear systems



## On stability of switched linear systems

Although we got suffice condition of stability with

$$
\begin{equation*}
A_{p}^{\prime} P+P A_{p}<0, \quad \forall p \in \mathbb{K} \tag{9}
\end{equation*}
$$

such approach is very conservative! For instance, consider that

$$
A_{1}=\left[\begin{array}{rr}
-1 & -1  \tag{10}\\
1 & -1
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
-1 & -10 \\
0.1 & -1
\end{array}\right]
$$

which are both Hurwitz. Now, without loss of generality, we can pick up

$$
P=\left[\begin{array}{ll}
1 & q \\
q & r
\end{array}\right]
$$

## On stability of switched linear systems

Now, $A_{1}^{\prime} P+P A_{1}<0$ is true only if

$$
q^{2}+\frac{(r-3)^{2}}{8}<1
$$

and $A_{2}^{\prime} P+P A_{2}<0$ is true only if

$$
q^{2}+\frac{(r-300)^{2}}{800}<100
$$

We can obtain the solution graphically as next.

## On stability of switched linear systems



Figure 7: Ellipses showing that is not possible get a solution. Source: Liberzon, 2003²

[^3]
## On stability of switched linear systems

Conclusion: Even the subsystems are Hurwitz we can not ensure that there exists a common matrix $P>0$ for them. In other words, we can not say that the switched system is stable even with all subsystems stable. Local stability does not implies in global stability.

Solution: We can relax such condition by considering a matrix $P$ for each subsystem.

The next theorem shows an alternative to obtain stability of switched linear system.

## On stability of switched linear systems

Let $\left\{A_{i}: i \in \mathbb{K}\right\}$ be a compact set of Hurwitz matrix, $t_{k}$ and $t_{k+1}$ be successive switching times of $\sigma(t)$, consider that

$$
\begin{equation*}
\dot{x}(t)=A_{\sigma(t)} x(t), \quad x(0)=x_{0}, \quad x_{0} \in \mathbb{R}^{n \times n}, \quad A_{p} \in \mathbb{R}^{n \times n} \forall p \in \mathbb{K} . \tag{11}
\end{equation*}
$$

furthermore consider that

$$
V(x)=x^{\prime} P_{\sigma(t)} x
$$

then the next theorem proposed by Geromel and Colaneri, $2006^{3}$ uses the concept of multiple Lyapunov function with the innovation that the classical nonincreasing assumption at switching times is no longer needed.

[^4]
## On stability of switched linear systems

## Theorem 10

(Geromel and Colaneri, 2006²) Assume that for some $T>0$, there exists a collection of positive definite matrices $\left\{P_{1}, \cdots, P_{m}\right\}$ of compatible dimensions such that

$$
A_{i}^{\prime} P_{i}+P_{i} A_{i}<0, \quad \forall i \in \mathbb{K}
$$

and

$$
e^{A_{i}^{\prime} T} P_{j} e^{A_{i} T}-P_{i}<0, \quad \forall i \neq j \in \mathbb{K} .
$$

The time-switching function $\sigma(t)$ with $t_{k+1}-t_{k} \geq T$ (Dwell-Time) makes the equilibrium solution $x=0$ of (11) globally asymptotically stable (GAS).

[^5]
## On stability of switched linear systems

Example Let us consider the following subsystems with dwell-time switching function with $T=1 / 5$ as

$$
A_{1}=\left[\begin{array}{rr}
-1 & -1  \tag{12}\\
1 & -1
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
-1 & -10 \\
0.1 & -1
\end{array}\right], \quad x(0)=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

From theorem 10 we have,

$$
\left\{\begin{array}{l}
A_{1}^{\prime} P_{1}+P_{1} A_{1}<0 \\
A_{2}^{\prime} P_{2}+P_{2} A_{2}<0 \\
e^{A_{1}^{\prime} T} P_{2} e^{A_{1} T}-P_{1}<0 \\
e^{A_{2}^{\prime} T} P_{1} e^{A_{2} T}-P_{2}<0 .
\end{array}\right.
$$

We need to find $P_{1}>0$ and $P_{2}>0$, which can be done on Matlab with the next code.

## On stability of switched linear systems

```
close all
clear
clc
% Parameters
A1 = [-3 1;0 -1];
A2 = [-2 1;0 -5];
x0 = [5;10];
T = 1/5;
% Declare SDP matrices
P1 = sdpvar (2,2);
P2 = sdpvar(2,2);
```


## On stability of switched linear systems

```
% Set LMI
T1 = A1'*P1+P1*A1;
T2 = A2'*P2+P2*A2;
T3 = expm(A1'*T)*P2*expm(A1*T) -P1;
T4 = expm(A2'*T)*P1*expm(A2*T) -P2;
F = [P1>0; P2>0 ; T1<0; T2<0; T3<0; T4<0];
about = optimize(F)
P1_num = double(P1)
P2_num = double(P2)
```


## On stability of switched linear systems

From that, we got

$$
P_{1}=\left[\begin{array}{cc}
0.358 & 0.299 \\
0.299 & 1.48
\end{array}\right]
$$

and

$$
P_{2}=\left[\begin{array}{cc}
0.145 & -0.309 \\
-0.309 & 3.55
\end{array}\right]
$$

which are both symmetric positive definite matrices.

Therefore, from theorem 10, we can tell that system has GAS. As a matter of fact, next we showed the simulation upholding that.

## On stability of switched linear systems




## On stability of switched linear systems



## Homework

Consider the following subsystems with dwell-time switching function with $T=1 / 10$ as

$$
A_{1}=\left[\begin{array}{rr}
-2 & 0  \tag{13}\\
1 & -3
\end{array}\right], \quad A_{2}=\left[\begin{array}{rr}
-1 & 0 \\
6 & -4
\end{array}\right], \quad x(0)=\left[\begin{array}{l}
3 \\
4
\end{array}\right]
$$

(1) Is the linear switched system stable with a common Lyapunov function?
(2) Is the linear switched system stable with a multiple Lyapunov function ?
(3) If we change $x(0)$, it does affect the stability ?
(9) Bring up a drawback in consider multiple Lyapunov function to state stability with switched linear systems.


[^0]:    ${ }^{1}$ Daniel Liberzon (2003). Switching in systems and control. Springer Science \& Business Media. $\bar{\equiv}$, $\bar{\equiv}$

[^1]:    ${ }^{a}$ Daniel Liberzon (2003). Switching in systems and control. Springer Science \& Business Media.

[^2]:    ${ }^{a}$ Daniel Liberzon (2003). Switching in systems and control. Springer Science \& Business Media.

[^3]:    ${ }^{2}$ Daniel Liberzon (2003). Switching in systems and control. Springer Science \& Business Media. इ ,

[^4]:    ${ }^{3}$ Jose C Geromel and Patrizio Colaneri (2006). "Stability and stabilization of continuous-time switched linear systems". In: SIAM Journal on Control and Optimization 45.5, pp. 1915-1930.

[^5]:    ${ }^{\text {a }}$ Jose C Geromel and Patrizio Colaneri (2006). "Stability and stabilization of continuous-time switched linear systems". In: SIAM Journal on Control and Optimization 45.5, pp. 1915-1930.

