Accepted Manuscript

High-efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane

Yinbo Xiang, Guangli Liu, Renduo Zhang, Yaobin Lu, Haiping Luo

PII:	S0960-8524(17)30233-X
DOI:	http://dx.doi.org/10.1016/j.biortech.2017.02.104
Reference:	BITE 17676
To appear in:	Bioresource Technology
Received Date:	18 January 2017
Revised Date:	20 February 2017
Accepted Date:	22 February 2017

Please cite this article as: Xiang, Y., Liu, G., Zhang, R., Lu, Y., Luo, H., High-efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane, *Bioresource Technology* (2017), doi: http://dx.doi.org/10.1016/j.biortech.2017.02.104

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

High-efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane

Yinbo Xiang, Guangli Liu, Renduo Zhang, Yaobin Lu, Haiping Luo*

Guangdong Provincial Key Laboratory of Environmental Pollution Control and

Remediation Technology, School of Environmental Science and Engineering, Sun

Yat-sen University, Guangzhou 510275, China

Corresponding author: Phone: (86) 20-84110052, Fax: (86) 20-84110692, E-mail:

luohp5@mail.sysu.edu.cn

Address: School of Environmental Science and Engineering, Sun Yat-sen University,

Guangzhou, 510275, China

1	Abstract: The aim of this study was to develop an efficient bioanode microbial
2	electrosynthesis system (MES) to convert carbon dioxide into acetate using bioenergy
3	from the wastewater. The bioanode MESs were constructed using proton exchange
4	membrane (PEM) and bipolar membrane (BPM) as separator, respectively, and
5	operated under different voltages (i.e., 0.8, 1.0, 1.2, and 1.4 V). Since BPM could
6	dissociate H_2O into H^+ and OH^- in situ to buffer the pH change in the chambers, the
7	BPM-MES achieved 238% improvement in cathodic acetate production rate, 45%
8	increase in anodic substrate removal efficiency, and more than five times
9	enhancement in current output, as compared to the PEM-MES. The biomass on the
10	surface of anode and cathode, and the relative abundance of Acetobacterium in the
11	cathode of BPM-MES was higher than that in PEM-MES. Bioanode MES with
12	BPM should be a useful microbial electrosynthesis strategy for acetate production
13	using bioenergy from wastewater treatment.
14	Keywords: Microbial electrosynthesis system, bioanode, bipolar membrane, carbon
15	dioxide, acetate production
16	
	dioxide, acetate production
V	

	_
1	7
	. /
_	

18 **1. Introduction**

19	The microbial electrosynthesis system (MES) has recently garnered attention in the
20	fields of microbiological and electrochemical engineering, as the system can convert
21	carbon dioxide (CO ₂) to multi-carbon products using electrical energy with bacteria as
22	catalyst (Schroder et al., 2015; Wang & Ren, 2013). A typical double-chamber MES
23	comprises an anode chamber and a cathode chamber separated by proton exchange
24	membrane (PEM). The CO_2 conversion in the MES is basically occurred on the
25	cathode side because a set of acetogens can use cathode as the only electron donor to
26	convert CO_2 into acetate (Zhang et al., 2013). Theoretically, various renewable
27	energy such as solar energy, wind energy, and bioenergy, can be used in the MES as
28	the energy source (Gong et al., 2013; Rabaey et al., 2011; Tremblay & Zhang, 2015).
29	However, abiotic electrical current has been tested as the sole energy in most previous
30	studies (Jourdin et al., 2016; Jourdin et al., 2015; Marshall et al., 2013). The protons
31	and electrons generated by water electrolysis in the anode transfer to the cathode and
32	participate the microbial reduction of carbon dioxide. Such a pure electrochemical
33	reaction in anode may use intensive energy (Rabaey et al., 2011) and the produced
34	molecular oxygen can be detrimental to the anaerobic reduction of CO_2
35	(Mohanakrishna et al., 2015). As an alternative to water-electrolysis anode,
36	bioanode MES has been proposed using pure culture. Gong et al. reported that
37	hydrogen sulfide can be used as an electron source for MES using Desulfobulbus
38	propionicus as biocatalyst in anode (Gong et al., 2013). Use of mixed culture

X

39	bioanode is attractive as they are readily obtained in large biomass and are more
40	tolerant to environmental fluctuation. Despite various wastewater that containing
41	high potential energy had been tested as the energy source in other bioelectrochemical
42	systems (BESs), there is hardly any work reported for MES. Studies that use the
43	mixed culture bioanode are still needed to fully utilize wastewater as the energy
44	source.
45	Minimizing the pH imbalance is necessary for the construction of bioanode MES,
46	because the pH imbalance in BES produces a 0.059 V/ pH potential loss (Fornero et
47	al., 2010). Similar with other bioelectrochemical systems, the reactions in anode
48	chamber of MES generate the protons and electrons concurrently. The electrons will
49	be collected by the anode and transfer through the external circuit to the cathode.
50	Although the protons should transfer from the anode to the cathode chamber through
51	the membrane, accumulation of protons and lower the pH have been commonly
52	observed in the anolyte due to the limiting factors, such as membrane permeability,
53	competition from other cations, etc., resulting in inhibition to the start-up and
54	performance of bioanode (Fornero et al., 2010; Rabaey et al., 2011; Rozendal et al.,
55	2006). In the MES, hydrogen ions can be consumed by the bio-cathodic reduction,
56	which, results in the pH rise in cathode chamber according to the following equations:
57	$4H_2 + 2CO_2 \rightarrow CH_2COOH + 2H_2O \tag{1}$
58	$8H^+ + 8e^- + 2CO_2 \rightarrow CH_3COOH + 2H_2O \tag{2}$
59	The pH value of catholyte should influence the reduction rate and biofilm activity of
60	biocathode significantly. Previous studies reported that the pH range of many

61	homoacetogenic bacteria was acidic-like (Mohammadi et al., 2011). A higher
62	acetate production rate has achieved at lower pH (below 6.0) of catholyte than at
63	higher pH by improving substrate availability and enhancing microbial activity
64	(Batlle-Vilanova et al., 2016; Jourdin et al., 2016). While in most BES studies,
65	strong phosphate or carbon buffers (50 - 200 mM) have been utilized to maintain pH
66	neutrality in the chambers, such chemical modifications cannot be used in large scale
67	applications due to economic and environmental concerns. Since membrane is a
68	necessary component in the structure of MES, the bipolar membrane (BPM) could be
69	an alternative membrane because it dissociated H_2O into H^+ and OH^- in situ to support
70	anodic and cathodic reactions, respectively, minimizing the pH imbalance in the
71	chambers.
72	Therefore, the objective of this study was to develop a MES with bibioelectrodes
72 73	Therefore, the objective of this study was to develop a MES with bibioelectrodes using artificial wastewater as the energy source. As shown in Fig. 1, in the
73	using artificial wastewater as the energy source. As shown in Fig. 1, in the
73 74	using artificial wastewater as the energy source. As shown in Fig. 1, in the two-chamber MES, feeding artificial wastewater to the anode bacteria produce
73 74 75	using artificial wastewater as the energy source. As shown in Fig. 1, in the two-chamber MES, feeding artificial wastewater to the anode bacteria produce electrons, which are further used by the cathode bacteria to convert CO_2 into acetate.
73 74 75 76	using artificial wastewater as the energy source. As shown in Fig. 1, in the two-chamber MES, feeding artificial wastewater to the anode bacteria produce electrons, which are further used by the cathode bacteria to convert CO_2 into acetate. BPM was adopted as the separator between the anode and cathode chambers and its
73 74 75 76 77	using artificial wastewater as the energy source. As shown in Fig. 1, in the two-chamber MES, feeding artificial wastewater to the anode bacteria produce electrons, which are further used by the cathode bacteria to convert CO_2 into acetate. BPM was adopted as the separator between the anode and cathode chambers and its effects were compared with that using PEM. Different applied voltages (0.8, 1.0, 1.2,

81 **2.** Materials and methods

82 2.1 Source of microorganisms and medium

83	Planktonic cells from a mature bioelectrochemical system described by Liu et al.(Liu
84	et al., 2015) were collected, centrifuged, suspended in fresh anolyte and used as anode
85	inocula for the MESs. The cathode inocula were enriched using granular sludge
86	from the Zhujiang beer brewery (Guangzhou, China), and domesticated under
87	hydrogen-containing syngas mixture $(H_2/CO_2(80/20,v/v))$ with half of year and
88	already had the ability to produce organics (with an acetate production rate of 5.16
89	mM/d).
90	The mineral synthetic medium as catholyte was prepared based on
91	DSMZ-recommended growth medium (DSMZ 311) (Nevin et al., 2010), with
92	deionized water containing per litre: 0.5 g NH ₄ Cl, 1.0 g NaCl, 0.1 g KCl, 0.4 g
93	MgCl ₂ ·6H ₂ O, 0.05 g CaCl ₂ , 2 mg FeSO ₄ ·7H ₂ O, 0.23 g KH ₂ PO ₄ , 0.35 g K ₂ HPO ₄ and
94	4 g NaHCO ₃ , 10 ml vitamin solution, 10 ml mineral solution, and adjusted pH to 7.
95	To inhibit methanogen, 10 mM sodium 2-bromoethanesulfonate (Marshall et al., 2013)
96	was added during the whole experimental period. The artificial wastewater was used
97	as anodic medium, with deionized water containing per litre: 4 g CH ₃ COONa, 4.09 g
98	Na ₂ HPO ₄ , 2.54 g NaH ₂ PO ₄ , 0.31 g NH ₄ Cl, 0.13 g KCl (Liu et al., 2015), 10 ml
99	vitamin solution and 10 ml mineral solution (pH about 6.9).
100	2.2 Reactor Construction and Operation.
101	The H type MES was constructed using two identical custom glass chambers that
102	clamped together separating with a 6.15 cm ² BPM (Fuma-sep-FBM, FuMA-Tech
103	GmbH, Germany) or PEM (Nafion117, DuPont, USA) (Fig. S1). Five pieces of
104	plain graphite plates (2 cm \times 5 cm \times 0.2 cm) were used as anodes and cathodes,

105	respectively. A saturated calomel electrode (+0.241 V vs standard hydrogen
106	electrode (SHE)) was used as a reference electrode to the cathode. All electrode
107	potentials were reported versus SHE.
108	After being assembled and sterilized (115°C for 20 min), the enriched cultures were
109	incubated in the anode and cathode chambers, each of which was with a volume of
110	150 mL containing 130 mL medium. The abiotic MESs were feeding with sterile
111	medium without the addition of inocula and operated under the voltage of 1.4 V. To
112	remove headspace air and dissolved oxygen after inoculation, the cathode and anode
113	chambers were bubbled with 100% CO_2 and 100% N_2 , respectively, then were sealed
114	with rubber stoppers. For the MESs reactors, an external resistor (10 Ω) was
115	connected with the negative electrode of the power supply and the cathode, while the
116	positive electrode was connected to the anode. Four fixed voltages (0.8, 1.0, 1.2 and
117	1.4 V) were applied to the above reactors circuit using a power supply (Itech, IT6720,
118	China). Current generation was monitored with a data logger (Keithley 2700,
119	module 7702). The MESs were operated at 30°C and the catholyte was bubbled
120	with 100% CO ₂ every 2 d (10 min per time) to buffer the pH (Marshall et al., 2013).
121	According to the current change, 12 d was defined as a cycle, and the MESs were
122	operated at least four cycles.
123	2.3 Chemical and Physiological Analysis Methods.
124	The medium pH values were monitored with a pH meter (PHS-3C, Leici, China)
125	every 2 d before and after sparging gas. Organic acids were quantified using a high

126 performance liquid chromatography (HPLC, Agilent Technology 1100 series,

127	AgilentInc., USA) equipped with an organic acid analysis column (Zorbax SB-Aq
128	$(4.6 \times 150 \text{ mm}, 5 \mu\text{m})$, Agilent Inc., USA), a UV detector was set at 210 nm. The
129	mobile phase was 0.09 mol/L K_2 HPO ₄ solution and with a flow rate of 0.8 mL/min.
130	Protein content was quantified to evaluate the biofilm followed Yang and Xiang (Yang
131	et al., 2014). To analyze the biofilm structure and cellular activity, two of carbon
132	plates (0.5 cm \times 1 cm) were cut from the electrode and analyzed with confocal laser
133	scanning microscopy (CLSM) (Yang et al., 2015). Biofilm on anode and cathode
134	was sampled and rinsed in sterilized PBS to remove the loosely attached planktonic
135	cells. The samples were then stained with an LIVE/DEAD BacLight staining kit
136	(Invitrogen) and subsequently observed under CLSM (LSM 700, Zeiss). At least 12
137	random view-fields (650 \times 650 μ m for each field) were selected and analyzed for each
138	biofilm sample. To obtain three-dimensional (3D) structure information, the biofilm
139	sample was observed using "Stack" model of the Zen software (Zeiss). Specific
140	viability of each biofilm layer was analyzed and presented by the ratio of viable/total
141	biofilm cells based on per area (obj./total) counting in software (Image-Pro Plus 6.0).
142	2.4 Calculation

144

The acetate production rates (P_v) was calculated by 143

$$P_{\nu} = \frac{P_{t} - P_{t0}}{t - t0}$$
(3)

 $\overline{}$

where P_{to} and P_t are the initial and final concentrations of the product (acetate) in the 145 cathode chamber, respectively, and t_0 and t are the initial and final time of the 146 147 measurements.

Electron recovery (ER) is the efficiency of capturing the electron from the electric 148

149 currents to the product (also called coulombic efficiency in cathodic processes (Patil 150 et al., 2015b)). In this study, only the acetate production was considered for electron efficiency calculations according to 151 $ER = 100\% \times \frac{C_p}{C_r}$ 152 Here the total coulombs consumed (C_T) is calculated by integrating the current over 153 154 the measurement time period, and C_P is coulombs consumed and calculated by 155 $C_P = b \cdot n \cdot F$, where b is the number of electrons (8 electron equivalent per mol for acetate), *n* is the number of moles of acetate product, and *F* is Faraday's constant 156 (96,485 C/mol). 157 158 Coulombic efficiency (CE) in anodic side, is the total coulombs to the theoretical consumption coulombs of acetate in anode and was calculated by 159 $CE = 100\% \times \frac{C_T}{b(C_t - C_{t0})VF}$ (5) 160 where C_{t0} and C_t are the initial and final concentrations of acetate in the anode 161 162 chamber (M), respectively, V is the volume of the cathode solution (L). The overall energy recovery (η_{E+C}) was the ratio of energy content of energetic 163 164 production (acetate) produced to the inputs from both electrical energy and substrate (acetate in anode) and was calculated by 165

$$\eta_{E+C} = 100\% \times \frac{(P_t - P_{t0})\Delta H}{\int_{t0}^t (IU - I^2 R_{ex})dt + (C - C_0)\Delta H}$$
(6)

166

Here Δ*H* is the combustion heat of acetate (Δ*H*=870.28 kJ/mol) (Call & Logan, 2008). *I* is the current (A), *U* is the applied voltage (V), and *R_{ex}* is the external resistance (Ω).
The total energy consumption (*E*) (i.e., the energy consumption for the production of

170 1 kg acetate, kWh/kg) in the MES included the electricity input from the power

supplier and the energy from acetate utilization by exoelectrogens in the anode

172 chamber (Liu et al., 2014)

173
$$E = \frac{\int_{t_0}^{t} UIdt + (C_t + C_{t_0})\Delta H}{3600(P_t - P_{t_0})MV}$$

where M is the acetate molar weight (60.05 g/mol).

175 **2.5 Bacteria Community**

- 176 Samples were cut from the biofilm of anode and cathode electrodes with sterile
- 177 scissor at the end of cycle. Total genomic DNA extraction from the samples was
- 178 conducted with a DNA kit according to the manufacturer's manual (K182001,
- 179 Invitrogen Bio-Tek, USA). The DNA qualities of the samples were examined with
- 180 1% agarose gel electrophoresis. The V4 region of the 16S rRNA gene was amplified
- 181 for pyrosequencing using bacterial primers 515F (GTGCCAGCMGCCGCGGTAA)
- and 806R (GGACTACHVGGGTWTCTAAT) were used for PCR amplification. A
- 183 PCR reaction volume of 50 μ L was used with the following procedure: the initial
- denaturation of DNA for 3 min at 95 °C, 30 cycles of 30 s at 94 °C, 1 min at 55 °C, 1
- min at 72 °C, and then a final extension for 10 min at 72 °C. The final products were
 purified, quantified and then sequenced on an Illumina Miseq platform by Majorbio

187 (Shanghai, China).

188 **3. Results and discussion**

3.1 Enhanced acetate production and substrate utilization in the BPM-MES

As shown in Fig.2 A, in the cathode of the BPM-MES, the average acetate production

values were 4.80 ± 0.91 , 9.85 ± 0.37 , 12.26 ± 0.31 , and 16.74 ± 1.07 mM, respectively,

192	with the applied voltages of 0.8, 1.0, 1.2, and 1.4 V. The acetate yield in the
193	BPM-MES was positively correlated to the applied voltage. In the cathode of the
194	MES with PEM as separator (PEM-MES), the average acetate production values
195	ranged in 4.39-5.17 mM with the different applied voltages. The maximum acetate
196	yield in the BPM-MES was $238 \pm 6.76\%$ higher than that in the PEM-MES. The
197	maximum acetate production rate in the BPM-MES was 1.39 ± 0.09 mM/d
198	normalized to total catholyte volume, which was much higher than those in other
199	studies (0.42 - 1 mM/d) (Jourdin et al., 2014; Patil et al., 2015a). Besides acetate,
200	formate and propionate were detected but with concentrations lower than 5 mg/L,
201	indicating high product specificity in our system. In addition, acetate production
202	rates in the BPM-MES maintained at a relative constant value during 48 d of
203	operation (with 4 cycles), while, production rates in the PEM-MES decreased
204	significantly after 5 d within each cycle. The results might be attributable to the
205	changes of electron transfer rates that affected by many parameters in the MES as
206	discussed later.
207	In this study, bioanode was successfully applied to use artificial wastewater and its
208	performance under different applied voltages were investigated. As shown in Fig. 2
209	B, the average removal efficiencies of COD in the anode of the BPM-EMS during the
210	4 cycles were $51.5 \pm 4.5\%$, $63.2 \pm 5.8\%$, $71.3 \pm 5.5\%$ and $87 \pm 4.19\%$, respectively,
211	with 0.8, 1.0, 1.2, and 1.4 V. An increase of the electron donor removal rate in anode
212	with increasing of the applied voltage from 0 to 2 V has been reported previously by
213	Coma et al (Coma et al., 2013). The result was likely due to that higher applied

214	voltage could promote the electron transfer between anode and cathode, and further
215	stimulate the biofilm growth and activity (Gong et al., 2013). However, in the
216	PEM-MES, the average removal efficiencies were similar with the different applied
217	voltages (i.e., $45.2 \pm 2.6\%$, $45.6 \pm 0.4\%$, $47.8 \pm 0.8\%$ and $45.1 \pm 0.4\%$, respectively,
218	with 0.8 to 1.4 V). The result might be related to pH increase to offset the positive
219	effect by the electro-potential on anode biofilm. The improved performance of the
220	BPM-MES was most likely due to the improvement of microbial activities on both
221	anode and cathode chambers because little change of the acetate concentration was
222	observed in abiotic MES (Fig. S2A).
223	
224	3.2 BPM Enhanced the current output and energy efficiency of MES
225	With refreshment of substrate in the anode and cathode chambers, the current
226	output of the MES increased significantly within 48 h in each cycle (Fig. 2C),
226 227	output of the MES increased significantly within 48 h in each cycle (Fig. 2C), suggesting that the biofilm in the MES was mature and had a stable activity.
227	suggesting that the biofilm in the MES was mature and had a stable activity.
227 228	suggesting that the biofilm in the MES was mature and had a stable activity. A negligible current was obtained in the abiotic MES throughout the
227 228 229	suggesting that the biofilm in the MES was mature and had a stable activity. A negligible current was obtained in the abiotic MES throughout the experiments with applied voltage of 1.4 V (Fig. S2B), indicating that the
227 228 229 230	suggesting that the biofilm in the MES was mature and had a stable activity. A negligible current was obtained in the abiotic MES throughout the experiments with applied voltage of 1.4 V (Fig. S2B), indicating that the current output was promoted by the catalysis of electrochemical-active biofilm.
227 228 229 230 231	suggesting that the biofilm in the MES was mature and had a stable activity. A negligible current was obtained in the abiotic MES throughout the experiments with applied voltage of 1.4 V (Fig. S2B), indicating that the current output was promoted by the catalysis of electrochemical-active biofilm. The average current densities in the BPM-MES were 0.101 ± 0.009, 0.190 ±
227 228 229 230 231 232	suggesting that the biofilm in the MES was mature and had a stable activity. A negligible current was obtained in the abiotic MES throughout the experiments with applied voltage of 1.4 V (Fig. S2B), indicating that the current output was promoted by the catalysis of electrochemical-active biofilm. The average current densities in the BPM-MES were 0.101 ± 0.009 , $0.190 \pm$ 0.026 , 0.272 ± 0.033 , and 0.369 ± 0.041 A/m ² , respectively, with 0.8, 1.0, 1.2,

236	voltage with R^2 =0.999 (Fig. S3). The maximum current of 0.369 ± 0.041
237	A/m^2 was observed at the voltage of 1.4 V, which was more than five times
238	higher than that in the PEM-MES. The result was consistent with the
239	improved electrode reactions in the BPM-MES. To eliminate the effect of
240	CO_2 shortage, the cathode chamber of MES was bubbled with pure CO_2 gas
241	every 48 h. In the BPM-MES, current fluctuation in a range of 0.1-0.8 mA
242	was observed shortly after the batch supplement of CO_2 . The fluctuation
243	range was also positively correlated with the applied voltage. Interestingly,
244	such fluctuation was not observed in the PEM-MES. The results implied that
245	the CO ₂ supplement could be a rate-limiting factor in the BPM-MES and a
246	continuous mode could be adopted to achieve higher performance of the MES.
247	To better compare the performance between the MESs, the columbic output, current
248	efficiency, electron recovery efficiency, and energy consumption within a cycle was
249	calculated (Table 1). From 0.8 to 1.4 V, electrons (i.e bioenergy) harvested in the
250	BPM-MES increased gradually from 1033.5 ± 102.0 to 3780.9 ± 424.2 C, while
251	electrons in the PEM-MES ranged from 737.1 ± 18.8 to 800.9 ± 9.4 C. Compared to
252	the PEM-MES, the BPM-MES improved the columbic production from 40% to 405%
253	with the increase of applied voltages. In the BPM-MES, the average current
254	efficiencies (<i>CE</i>) were $41.2 \pm 2.5\%$, $62.6 \pm 3.8\%$, $80.0 \pm 4.9\%$ and $89.1 \pm 6.1\%$,
255	respectively, with 0.8, 1.0, 1.2. and 1.4 V. The correspondingly CE values in the
256	PEM-MES were $33.5 \pm 1.4\%$, $34.4 \pm 1.2\%$, $34.3 \pm 0.7\%$, and $34.1 \pm 0.9\%$,
257	respectively. The improvement of both COD removal rate and <i>CE</i> in the BPM-MES

258	indicated that the activity of anode bacteria especially the electrochemical active
259	bacteria was improved efficiently, therefore, more substrate (acetate) was converted to
260	electricity for acetate production in the cathode chamber (Gong et al., 2013). It's
261	worth to noted that, even though higher acetate was produced in the BPM-MES, the
262	energy consumption normalized to acetate production was lower than that in
263	PEM-MES in most cases. For example, with the applied voltage of 1.0 V, the energy
264	consumption was 19.6 \pm 1.59 and 24.3 \pm 2.17 kWh/kg (acetate) by the BPM-MES and
265	PEM-MES, respectively.
266	The electron recovery in acetate ranged from $44.6 \pm 6.6\%$ to $51.8 \pm 6.6\%$ in the
267	BPM-MES. In the PEM-MES, the higher electron recovery from $60.0 \pm 12.3\%$ to
268	66.4 \pm 4 % might be due to that BPM consumed part of the electrons for water
269	electrolysis. The energy recovery efficiency in the BPM-MES were comparable with
270	those in other mixed-culture MESs, but lower than those in pure culture MESs. In
271	the mixed-culture MESs, the pathways of electron loss may include the concomitant
272	production of non-identified products (Mohanakrishna et al., 2016; Nevin et al., 2011),
273	imperfect catalysis of mixed cultures on the cathode surface, ohmic loss due to the
274	electrode and the electrical circuit(Rabaey & Rozendal, 2010), and for biomass
275	maintenance and growth. The enhancement (Lu et al., 2016) of <i>ER</i> could be
276	achieved by cooperation of operation mode and MES structural optimization, to
277	realize the active acetate extraction from the cathode chamber.
278	

279 **3.3 Enhanced mechanisms for BPM-MES performance**

280 3.3.1 The pH variations

281	Microbial electrosynthesis from CO ₂ to acetate is strongly dependent on pH (Jourdin
282	et al., 2016). Fig. 3 shows the pH changes in anolyte and catholyte with the applied
283	voltages during four cycles. The pH change trends in the BPM-MES and PEM-MES
284	were similar, i.e., increase in catholyte and decrease in anolyte. The pH values of
285	catholyte were affected more by the applied voltages than those of anolyte. In the
286	MES, bio-anodic oxidation reactions release electrons and protons simultaneously,
287	which can lead to accumulation of protons and decrease pH due to the slow and
288	incomplete diffusion of protons from anode to cathode. The bio-cathodic reduction
289	process consumes hydrogen ions and results in pH rise in the cathode chamber
290	(Marshall et al., 2013). This result was different from some previous studies that
291	operated under continuous mode (Batlle-Vilanova et al., 2016; Patil et al., 2015a). In
292	the MES with continuously purged with N ₂ :CO ₂ mixed gases, the pH of catholyte
293	decreased with the production of acetate due to the accumulation of VFAs in the
294	system. The pH decline in the continuous MES also could be attributed to the
295	buffering capacity of CO_2 with the formation of bicarbonate. Moreover, a significant
296	difference in the change range was observed between the PEM-MES and BPM-MES.
297	For the PEM-MES, the pH values increased from 6.5 to 9.0 in the catholyte and
298	decreased from 7.0 to 5.2 in the anolyte. For the BPM-MES, the pH value increased
299	from 6.5 to 7.8 in the catholyte and decreased from 7.0 to 6.3 in the analyte. It has
300	been reported that pH 5.8 is the optimum value of catholyte achieved a higher acetate
301	production rate than at higher pH by improving substrate availability and enhancing

302	microbial electrosynthesis (Batlle-Vilanova et al., 2016; Jourdin et al., 2016).
303	Therefore, the BPM could be an important alternative membrane for the MES system
304	because it dissociated H_2O into H^+ and OH^- in situ to support anodic and cathodic
305	reactions, respectively, buffering the pH change in the chambers.
306	3.3.2 Biomass and Long-term Viability of Biofilm
307	In the BPM-MES, the biofilm protein values in the anode were 284 ± 8.26 , 365 ± 50.0 ,
308	422 ± 30.5 , and $596 \pm 47.9 \ \mu g/cm^2$, respectively, at 0.8, 1.0, 1.2, and 1.4 V (Fig. 4A).
309	Correspondingly, the biofilm protein values in the cathode were 35.9 ± 3.23 , $44.1 \pm$
310	3.23, 46.1 ± 4.67, and 70.2 ± 1.44 μ g/cm ² , respectively. The biomass in the
311	chambers increased with the applied voltages. In the PEM-MES, the highest protein
312	values in the anode and cathode of 250 ± 27.8 and $45.2 \pm 4.04 \ \mu g/cm^2$ were obtained
313	at 1.2 and 1.4 V, respectively. Compared with the PEM-MES, the biomass on the
314	surface of anode and cathode of the BPM-MES improved by $190 \pm 24.5\%$ and $56.3 \pm$
315	17.2%, respectively, at 1.4 V. This result was well consistent with the enhanced
316	performance in the BPM-MES as a result of pH changes. It was worth to note that
317	the biomass on the anode was significant higher than that on the cathode. For
318	example, the anode biomass values were 7.96 ± 0.95 , 8.26 ± 0.53 , 9.23 ± 1.6 , and
319	8.48 ± 0.51 times higher than the cathode biomass values in the BPM-MES at the
320	applied voltages. The relatively thin biofilm on the cathode has also been described
321	for other biocathodes using pure or mixed cultures(Strycharz et al., 2010; Strycharz et
322	al., 2008), which can be attributed to direct electrode-to-cell electron transfer
323	respiration of the cathode cells.

324	The long-term viability of electrode biofilm was further evident from confocal
325	scanning laser microscopy of biofilm under a condition of fixing CO_2 for over 48 d
326	(Fig. 4B). Cells in the biofilm treated with LIVE/DEAD BacLight viability stain,
327	stained green, suggesting that they were healthy and metabolically active (Nevin et al.,
328	2010). With 0.8 V applied voltage, scattered green cells were observed on the anode
329	surface of BPM-MES. The green cells covered most of the anode surface with the
330	applied voltages from 1.0 to 1.4 V, which was consistent with the biomass results.
331	As comparison, the green cells distributed lightly on the anode of PEM-MES, and the
332	lowest was observed at 1.4 V. Viability staining showed that the average viability
333	results of anode biofilm in the BPM-MES (0.723 \pm 0.002, 0.958 \pm 0.01, 0.961 \pm
334	0.0159, and 0.897 \pm 0.021) were higher than those in the PEM-MES (0.287 \pm 0.042,
335	0.68 ± 0.003 , 0.789 ± 0.013 , and 0.363 ± 0.018) with 0.8, 1, 1.2, and 1.4 V,
336	respectively. The significant difference between the anode biofilm of MESs was
337	most likely attributable to the effect of pH changes, as the pH value in anode
338	decreased to 5 in the PEM-MES and could significantly affect the metabolically
339	active of bacteria. Similarly, the number of active cells on the cathode of BPM-MES
340	was higher than that of PEM-MES (Fig. S4).
341	3.3.3 Bacterial community structure
342	To better understand the mechanism of MES and the difference between the

343 BPM-MES and PEM-MES, the microbial community composition on inocula and the

344 cathode biofilm were analyzed with pyrosequencing (Fig. 5). In the inoculum of

biocathode, the *Firmicutes* accounted for absolute dominance with the abundance of

346	90% and no Euryarchaeota was observed at the phyla level. The predominant
347	bacterial phyla at cathode biofilm were Euryarchaeota (37.5%-59.3%), Firmicutes
348	(5.5%-16.2%), Proteobacteria (8.8%-19.6%), Bacteroidetes (10.3%-20.3%), and
349	Synergistetes (6.6%-24.2%). The similar structure of microbial communities was
350	observed previously on microbial biocathodes that catalyzed acetate production
351	(Marshall et al., 2012). The difference between the inocula and biofilm could be
352	attributed to the change of electron donor supplying. For the inocula, H_2 was offered
353	as the sole electron donor and supplied in batch mode. For the biofilm, cathode was
354	used as the electron donor and the bacteria accept the electron from the cathode
355	through direct or indirect pathways as described in literatures previously (Bajracharya
356	et al., 2015; Blanchet et al., 2015; Nevin et al., 2010).
357	At the genus level, the predominant species on the cathode biofilm mainly included
358	Methanobrevibacter, Acetobacterium, Desulfovibrio, Aminivibrio, and Petrimonas.
359	Acetobacterium is a well-known homoacetogenic bacteria and can convert CO_2 into
360	acetate using electrode or H_2 as electron donor directly (LaBelle et al., 2014; Marshall
361	et al., 2012; Marshall et al., 2013; Patil et al., 2015a). With applied voltages of 0.8,
362	1, 1.2 and 1.4 V, the relative abundance of Acetobacterium in the cathode of
363	BPM-MES was 12.6%, 13.6%, 9.6% and 12.1%, respectively, which decreased to
364	2.7%, 3.6%, 2.8% and 9.1% in the PEM-MES, respectively. This results combined
365	with the biomass data well explained the higher acetate production rate in the
366	BPM-MES than in the PEM-MES. <i>Methanobrevibacter</i> accounted for 16.5%-59.3%
367	on the biofilm, which implied that some of the electron could be loss for the

368	methanogenesis during the operation. The high abundance of methanogenic bacteria
369	was found commonly in the biocathode of mixed culture MES (Marshall et al., 2012;
370	Patil et al., 2015a). Methanogenic bacteria have the ability to use the cathode as the
371	sole electron donor that was named by electromethanogenesis as reported by Cheng et
372	al. (Cheng et al., 2009). Methane production from H_2 consumption is one of the
373	most critical causes of low H_2 yield in the microbial electrolysis system. In this
374	study, the acetate prodution increased gradually with the operation time, suggesting
375	that electro-methanogenesis and hydrogenotrophic methanogenesis were the major
376	metabolic pathway of <i>Methanobrevibacter</i> . Several studies have reported that
377	acetate cannot be utilized by some genus of Methanobrevibacter (Ferrari et al., 1994;
378	Leadbetter & Breznak, 1996; Miller et al., 1982; Savant et al., 2002). And some
379	strains of Methanosarcina can excrete acetate during growth on H ₂ plus CO ₂
380	(Westermann et al., 1989). Besides, hydrogen-producing bacteria Petrimonas
381	reached 15% in the BPM-MES, indicating the hydrogenotrophic metabolism might
382	occurred for acetate production (Blanchet et al., 2015). Desulfovibrio has been
383	found commonly in the bioelectrochemical system, which can play a positive role on
384	electron transfer between the electrode and bacteria (Luo et al., 2014). The content
385	of gases including H_2 and methane was not detected as the air pressure became
386	negative at every 2 d (before bubbling 100% CO ₂). To investigate the relationship
387	between species such as Methanobrevibacter and Acetobacterium, further study
388	should be conducted under continuous air supplying mode which is outside the scope
389	of this study.

 $\boldsymbol{<}$

390 **4.** Conclusions

391	Bipolar membrane was successfully utilized in the MES, in which bioanode was used
392	to supply electrons to the cathode. The BPM could dissociate H_2O into H^+ and OH^-
393	in situ to minimize the pH imbalance in the MES chambers, which resulted in the
394	increase of acetate yield, current efficiency, and biomass and bacterial activity of
395	biofilm, compared with those in the PEM-MES. The relative abundance of
396	Acetobacterium in the cathode of BPM-MES was higher than that in the PEM-MES.
397	Further study is needed to investigate the relationship between species in the mixed
398	culture biocathode of MES.
399	
400	Acknowledgements
401	This work was partly supported by grants from the National Natural Science
402	Foundation of China (Nos. 51308557, 41471181, and 51278500), the Natural Science
402 403	Foundation of China (Nos. 51308557, 41471181, and 51278500), the Natural Science Foundation of Guangdong Province (Nos. 2015A030313169, S2013010012984,
403	Foundation of Guangdong Province (Nos. 2015A030313169, S2013010012984,
403 404	Foundation of Guangdong Province (Nos. 2015A030313169, S2013010012984, 2015A030313102), the project of National Key Scientific Instrument and Equipment
403 404 405	Foundation of Guangdong Province (Nos. 2015A030313169, S2013010012984, 2015A030313102), the project of National Key Scientific Instrument and Equipment
403 404 405 406	Foundation of Guangdong Province (Nos. 2015A030313169, S2013010012984, 2015A030313102), the project of National Key Scientific Instrument and Equipment
403 404 405 406 407	Foundation of Guangdong Province (Nos. 2015A030313169, S2013010012984, 2015A030313102), the project of National Key Scientific Instrument and Equipment Development (No. 2012YQ0301110803).

411 pure cultures in microbial electrosynthesis using an assembly of graphite felt and

412		stainless steel as a cathode. Bioresource Technology, 195, 14-24.
413	[2]	Batlle-Vilanova, P., Puig, S., Gonzalez-Olmos, R., Balaguer, M.D., Colprim, J.
414		2016. Continuous acetate production through microbial electrosynthesis from
415		CO2 with microbial mixed culture. Journal of Chemical Technology and
416		<i>Biotechnology</i> , 91 (4), 921-927.
417	[3]	Blanchet, E., Duquenne, F., Rafrafi, Y., Etcheverry, L., Erable, B., Bergel, A.
418		2015. Importance of the hydrogen route in up-scaling electrosynthesis for
419		microbial CO2 reduction. Energy & Environmental Science, 8(12), 3731-3744.
420	[4]	Call, D., Logan, B.E. 2008. Hydrogen production in a single chamber microbial
421		electrolysis cell lacking a membrane. Environmental Science & Technology,
422		42 (9), 3401-3406.
423	[5]	Cheng, S.A., Xing, D.F., Call, D.F., Logan, B.E. 2009. Direct Biological
424		Conversion of Electrical Current into Methane by Electromethanogenesis.
425		Environmental Science & Technology, 43(10), 3953-3958.
426	[6]	Coma, M., Puig, S., Pous, N., Balaguer, M.D., Colprim, J. 2013. Biocatalysed
427		sulphate removal in a BES cathode. <i>Bioresource Technology</i> , 130 , 218-223.
428	[7]	Ferrari, A., Brusa, T., Rutili, A., Canzi, E., Biavati, B. 1994. Isolation and
429	0	characterization of Methanobrevibacter oralis sp. nov. Current Microbiology,
430		29 (1), 7-12.
431	[8]	Fornero, J.J., Rosenbaum, M., Cotta, M.A., Angenent, L.T. 2010. Carbon Dioxide
432		Addition to Microbial Fuel Cell Cathodes Maintains Sustainable Catholyte pH
433		and Improves Anolyte pH, Alkalinity, and Conductivity. Environmental Science

- 434 *& Technology*, **44**(7), 2728-2734.
- 435 [9] Gong, Y.M., Ebrahim, A., Feist, A.M., Embree, M., Zhang, T., Lovley, D.,
- 436 Zengler, K. 2013. Sulfide-Driven Microbial Electrosynthesis. *Environmental*
- 437 *Science & Technology*, **47**(1), 568-573.
- 438 [10] Jourdin, L., Freguia, S., Donose, B.C., Chen, J., Wallace, G.G., Keller, J., Flexer,
- 439 V. 2014. A novel carbon nanotube modified scaffold as an efficient biocathode
- 440 material for improved microbial electrosynthesis. *Journal of Materials Chemistry*
- 441 *A*, **2**(32), 13093-13102.
- 442 [11] Jourdin, L., Freguia, S., Flexer, V., Keller, J. 2016. Bringing High-Rate,
- 443 CO2-Based Microbial Electrosynthesis Closer to Practical Implementation
- 444 through Improved Electrode Design and Operating Conditions. *Environmental*
- 445 *Science & Technology*, **50**(4), 1982-1989.
- 446 [12] Jourdin, L., Grieger, T., Monetti, J., Flexer, V., Freguia, S., Lu, Y., Chen, J.,
- 447 Romano, M., Wallace, G.G., Keller, J. 2015. High Acetic Acid Production Rate
- 448 Obtained by Microbial Electrosynthesis from Carbon Dioxide. *Environmental*
- 449 Science & Technology, **49**(22), 13566-13574.
- [13] LaBelle, E.V., Marshall, C.W., Gilbert, J.A., May, H.D. 2014. Influence of Acidic
 pH on Hydrogen and Acetate Production by an Electrosynthetic Microbiome. *Plos One*, 9(10).
- 453 [14] Leadbetter, J.R., Breznak, J.A. 1996. Physiological ecology of
- 454 Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp.
- 455 nov., isolated from the hindgut of the termite Reticulitermes flavipes. *Appl*

- 456 *Environ Microbiol*, **62**(10), 3620-31.
- 457 [15]Liu, G.L., Luo, H.P., Wang, H.H., Wang, B.W., Zhang, R.D., Chen, S.S. 2014.
- 458 Malic acid production using a biological electrodialysis with bipolar membrane.
- 459 *Journal of Membrane Science*, **471**, 179-184.
- 460 [16] Liu, G.L., Zhou, Y., Luo, H.P., Cheng, X., Zhang, R.D., Teng, W.K. 2015. A
- 461 comparative evaluation of different types of microbial electrolysis desalination
- 462 cells for malic acid production. *Bioresource Technology*, **198**, 87-93.
- 463 [17]Lu, L., Hou, D., Wang, X., Jassby, D., Ren, Z.J. 2016. Active H2 Harvesting
- 464 Prevents Methanogenesis in Microbial Electrolysis Cells. *Environmental Science*
- 465 & Technology Letters, **3**(8), 286-290.
- 466 [18]Luo, H.P., Fu, S.Y., Liu, G.L., Zhang, R.D., Bai, Y.P., Luo, X.N. 2014.
- 467 Autotrophic biocathode for high efficient sulfate reduction in microbial
- 468 electrolysis cells. *Bioresource Technology*, **167**, 462-468.
- 469 [19] Marshall, C.W., Ross, D.E., Fichot, E.B., Norman, R.S., May, H.D. 2012.
- 470 Electrosynthesis of Commodity Chemicals by an Autotrophic Microbial
- 471 Community. *Applied and Environmental Microbiology*, **78**(23), 8412-8420.
- 472 [20] Marshall, C.W., Ross, D.E., Fichot, E.B., Norman, R.S., May, H.D. 2013.
- 473 Long-term Operation of Microbial Electrosynthesis Systems Improves Acetate
 474 Production by Autotrophic Microbiomes. *Environmental Science & Technology*,
- **475 47**(11), 6023-6029.
- 476 [21] Miller, T.L., Wolin, M.J., Conway de Macario, E., Macario, A.J. 1982. Isolation
- 477 of Methanobrevibacter smithii from human feces. *Appl Environ Microbiol*, **43**(1),

478	227-32.	

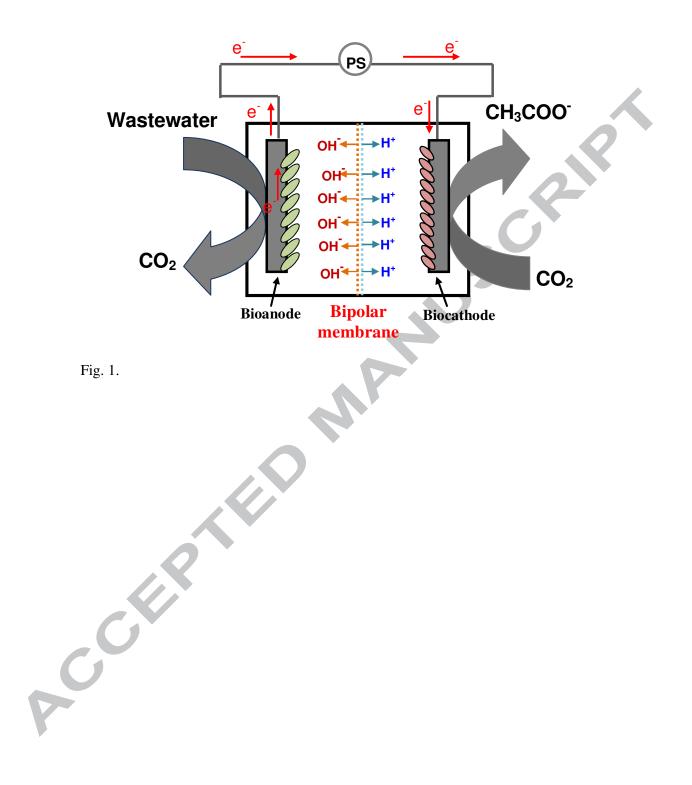
479	[22] Mohammadi, M., Najafpour, G.D., Younesi, H., Lahijani, P., Uzir, M.H.,
480	Mohamed, A.R. 2011. Bioconversion of synthesis gas to second generation
481	biofuels: A review. Renewable and Sustainable Energy Reviews, 15(9),
482	4255-4273.
483	[23] Mohanakrishna, G., Seelam, J.S., Vanbroekhoven, K., Pant, D. 2015. An enriched
484	electroactive homoacetogenic biocathode for the microbial electrosynthesis of
485	acetate through carbon dioxide reduction. Faraday Discussions, 183, 445-462.
486	[24] Mohanakrishna, G., Vanbroekhoven, K., Pant, D. 2016. Imperative role of applied
487	potential and inorganic carbon source on acetate production through microbial
488	electrosynthesis. Journal of Co2 Utilization, 15, 57-64.
489	[25] Nevin, K.P., Hensley, S.A., Franks, A.E., Summers, Z.M., Ou, J.H., Woodard,
490	T.L., Snoeyenbos-West, O.L., Lovley, D.R. 2011. Electrosynthesis of Organic
491	Compounds from Carbon Dioxide Is Catalyzed by a Diversity of Acetogenic
492	Microorganisms. Applied and Environmental Microbiology, 77(9), 2882-2886.
493	[26] Nevin, K.P., Woodard, T.L., Franks, A.E., Summers, Z.M., Lovley, D.R. 2010.
494	Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon
495	Dioxide and Water to Multicarbon Extracellular Organic Compounds. <i>Mbio</i> , 1 (2).
496	[27]Patil, S.A., Arends, J.B.A., Vanwonterghem, I., van Meerbergen, J., Guo, K.,
497	Tyson, G.W., Rabaey, K. 2015a. Selective Enrichment Establishes a Stable
498	Performing Community for Microbial Electrosynthesis of Acetate from CO2.
499	Environmental Science & Technology, 49(14), 8833-8843.

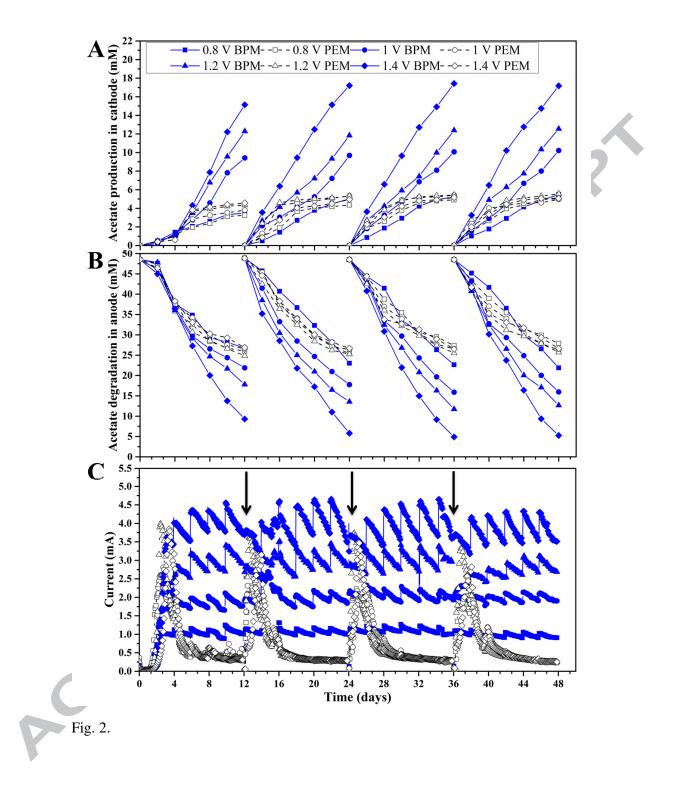
- 500 [28] Patil, S.A., Gildemyn, S., Pant, D., Zengler, K., Logan, B.E., Rabaey, K. 2015b. A
- 501 logical data representation framework for electricity-driven bioproduction
- 502 processes. *Biotechnology Advances*, **33**(6), 736-744.
- 503 [29] Rabaey, K., Girguis, P., Nielsen, L.K. 2011. Metabolic and practical
- 504 considerations on microbial electrosynthesis. *Current Opinion in Biotechnology*,
- **22**(3), 371-377.
- 506 [30] Rabaey, K., Rozendal, R.A. 2010. Microbial electrosynthesis revisiting the
- 507 electrical route for microbial production. *Nature Reviews Microbiology*, **8**(10),
- 508 706-716.
- 509 [31] Rozendal, R.A., Hamelers, H.V.M., Buisman, C.J.N. 2006. Effects of membrane
- 510 cation transport on pH and microbial fuel cell performance. *Environmental*
- 511 *Science & Technology*, **40**(17), 5206-5211.
- 512 [32] Savant, D.V., Shouche, Y.S., Prakash, S., Ranade, D.R. 2002. Methanobrevibacter
- 513 acididurans sp. nov., a novel methanogen from a sour anaerobic digester. Int J
- 514 *Syst Evol Microbiol*, **52**(Pt 4), 1081-7.
- 515 [33] Schroder, U., Harnisch, F., Angenent, L.T. 2015. Microbial electrochemistry and
- 516 technology: terminology and classification. *Energy & Environmental Science*,
 517 8(2), 513-519.
- 518 [34] Strycharz, S.M., Gannon, S.M., Boles, A.R., Franks, A.E., Nevin, K.P., Lovley,
- 519 D.R. 2010. Reductive dechlorination of 2-chlorophenol by Anaeromyxobacter
- 520 dehalogenans with an electrode serving as the electron donor. *Environmental*
- 521 *Microbiology Reports*, **2**(2), 289-294.

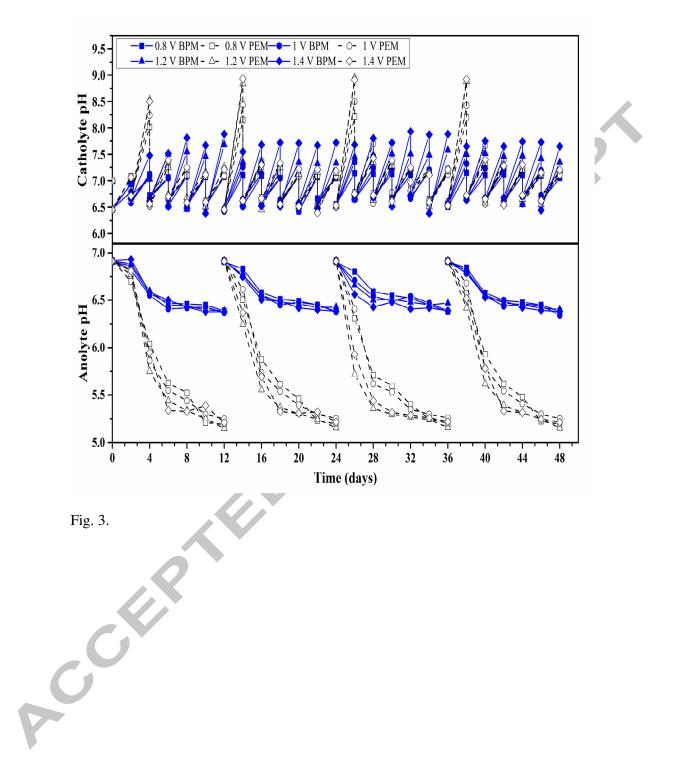
- 522 [35] Strycharz, S.M., Woodard, T.L., Johnson, J.P., Nevin, K.P., Sanford, R.A., Loffler,
- 523 F.E., Lovley, D.R. 2008. Graphite electrode as a sole electron donor for reductive
- 524 dechlorination of tetrachlorethene by Geobacter lovleyi. *Applied and*
- 525 *Environmental Microbiology*, **74**(19), 5943-5947.
- 526 [36] Tremblay, P.L., Zhang, T. 2015. Electrifying microbes for the production of
- 527 chemicals. *Frontiers in Microbiology*, **6**.
- 528 [37] Wang, H.M., Ren, Z.Y.J. 2013. A comprehensive review of microbial
- 529 electrochemical systems as a platform technology. *Biotechnology Advances*,
- **31**(8), 1796-1807.
- [38] Westermann, P., Ahring, B.K., Mah, R.A. 1989. Acetate production by
- 532 methanogenic bacteria. *Appl Environ Microbiol*, **55**(9), 2257-61.
- 533 [39] Yang, Y.G., Xiang, Y.B., Sun, G.P., Wu, W.M., Xu, M.Y. 2015. Electron
- 534 Acceptor-Dependent Respiratory and Physiological Stratifications in Biofilms.
- 535 Environmental Science & Technology, **49**(1), 196-202.
- 536 [40] Yang, Y.G., Xiang, Y.B., Xia, C.Y., Wu, W.M., Sun, G.P., Xu, M.Y. 2014.
- 537 Physiological and electrochemical effects of different electron acceptors on
- 538 bacterial anode respiration in bioelectrochemical systems. *Bioresource*
- 539 *Technology*, **164**, 270-275.
- 540 [41]Zhang, T., Nie, H.R., Bain, T.S., Lu, H.Y., Cui, M.M., Snoeyenbos-West, O.L.,
- 541 Franks, A.E., Nevin, K.P., Russell, T.P., Lovley, D.R. 2013. Improved cathode
- 542 materials for microbial electrosynthesis. *Energy & Environmental Science*, **6**(1),
- 543 217-224.

Anode	Separator	Applied	Current	Electrons	$P_{\rm v}$	Electron	CE in	η_{E+C}	Total	Ref.
	Types	voltage	Density	Harvesting	(mM/d)	recovery in	anodic	(%)	energy	
		(V)	(A/m^2)	(C)		product	side		consumption	
						(%)	(%)		(%)	
Mixed culture	BPM	0.8	0.101 ± 0.009	1033.5 ± 102.0	0.41 ± 0.075	46.5 ± 6.6	41.2 ± 2.5	14.8 ± 1.7	27.6 ± 2.47	This study
		1.0	0.190 ± 0.026	1943.3 ± 269.7	0.82 ± 0.032	51.8 ± 6.6	62.6 ± 3.8	20.7 ± 1.8	19.6 ± 1.59	
		1.2	0.272 ± 0.033	2785.1 ± 339.3	1.02 ± 0.025	44.7 ± 6.2	80.0 ± 4.9	19.3 ± 2.1	21.1 ± 2.16	
		1.4	0.369 ± 0.041	3780.9 ± 424.2	1.39 ± 0.089	44.6 ± 2.5	89.1 ± 6.1	18.8 ± 0.4	21.4 ± 0.43	
Mixed culture	PEM	0.8	0.072 ± 0.002	737.1 ± 18.8	0.36 ± 0.063	60.0 ± 12.3	33.5 ± 1.4	16.1 ± 3.4	26.0 ± 2.04	This study
		1.0	0.075 ± 0.002	765.6 ± 20.4	0.41 ± 0.062	64.3 ± 10.8	34.4 ± 1.2	16.9 ± 2.6	24.3 ± 2.17	
		1.2	0.078 ± 0.001	800.9 ± 9.4	0.43 ± 0.045	64.9 ± 7.5	34.3 ± 0.7	16.3 ± 1.9	25.0 ± 2.27	
		1.4	0.073 ± 0.002	749.3 ± 12.6	0.41 ± 0.022	66.4 ± 4	34.1 ± 0.9	15.9 ± 0.8	25.4 ± 1.32	
Abiotic	CEM	-0.4 ^a	0.208	-	0.17	85	-	-	-	(Nevin et al., 2010)
Abiotic	CEM	-1.26 ^a	5 ^b	-	1.0 ± 0.09	58 ± 5		-	-	(Patil et al., 2015a)
Abiotic	PEM	-0.60 ^a	39.11	-	1.125	26.26	-	-	-	(Mohanakris hna et al.,
Granular activated sludge	None ^c	-0.4 ^a	0.142	-	0.949	29.91	-	-	-	2016) (Mohanakris hna et al., 2015)
Desulfobulbus propionicus	PEM	+0.498 ^d	0.15	-	0.23	>90	-	-	-	(Gong et al., 2013)
^a F	ixed cathode	e potential;			\mathbf{V}					
	ixed current									
	ingle chamb									
	ixed anode p									
1	ixeu alloue p									
			6							

Figures List


Fig. 1. Schematic diagram of MES using BPM as membrane.


Fig. 2. Temporal distributions of (A) acetate production in the catholyte, (B) acetate removal in the anolyte and (C) current of microbial electrosynthesis systems with proton exchange membrane (PEM) and bipolar membrane (BPM) with applied voltages of 0.8, 1, 1.2 and 1.4 V. Each black arrow indicates a cycle of 12 d.


Fig. 3. Changes of pH values of anolyte and catholyte in the microbial electrosynthesis systems with proton exchange membrane (PEM) and bipolar membrane (BPM) with the applied voltages of 0.8, 1, 1.2, and 1.4 V.

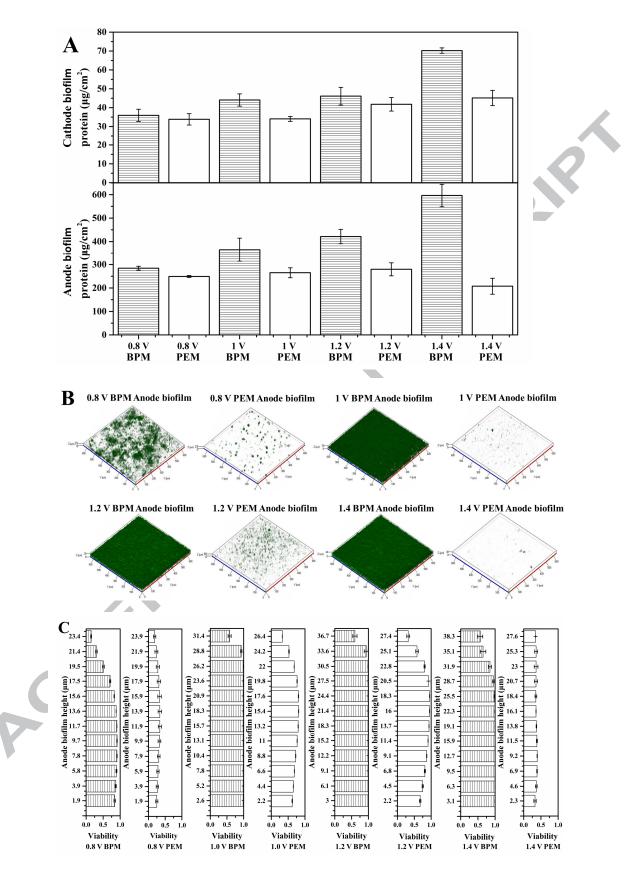
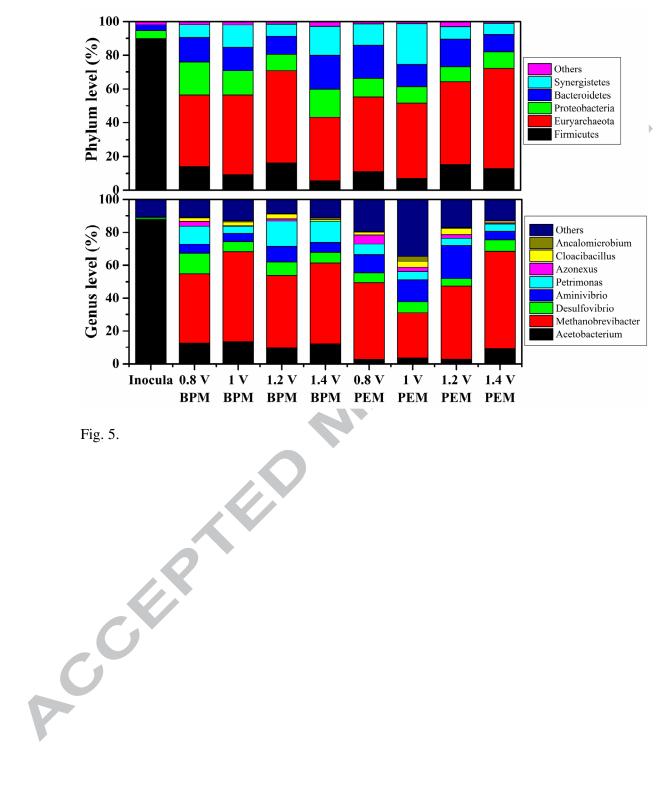

Fig. 4. Cathode and anode biofilm cell growth (A), the 3D biofilm morphology of anode (B), and viability profiles of anode (C) in the microbial electrosynthesis systems with proton exchange membrane (PEM) and bipolar membrane (BPM) with different applied voltages.

Fig. 5. Composition and relative abundance of inocula and cathode biofilm bacterial communities at phylum level and genus level based on 16s rRNA sequences in the microbial electrosynthesis systems with proton exchange membrane (PEM) and bipolar membrane (BPM) with different applied voltages.



Highlights

- 1. Bioanode MES was constructed using BPM and PEM as separator, respectively.
- BPM-MES achieved 238% improvement in acetate production rate compared to PEM-MES.
- 3. The biofilm biomass on the electrodes of BPM-MES were higher than the PEM-MES.
- 4. Higher abundance of Acetobacterium was observed in the cathode of BPM-MES.