1-)

Considere o modelo abaixo onde uma massa rígida pode realizar movimentos de translação no plano x - y, presa à três molas idênticas de comprimento natural L, como mostrado. Seu trabalho é determinar as frequências naturais e correspondentes modos normais de vibração para o modelo para $\theta_1 = 30^o$ e $\theta_2 = 45^o$. Assuma que o sistema vibra a partir da posição de equilíbrio estático bem como as molas exibam elongações de pequena amplitude.

2-) Determine as frequências naturais e correspondentes autovetores para o modelo abaixo. Considere: $m_1 = 10 \ kg, \ m_1 = 20 \ kg, \ k_1 = 100 \ N.m^{-1}, \ k_2 = 100 \ N.m^{-1}$ e $k_3 = 50 \ N.m^{-1}$. Refaça os cálculos considerando agora $k_1 = k_3 = 0$ e $k_2 = 100 \ N.m^{-1}$.

3-) Determine o modelo modal (frequências naturais e modos de vibrar) para o modelo abaixo. Esboçe os autovetores e busque identificar suas principais características. Dado: $m_1 = m_2 = 1200 \ kg \ e \ k_1 = k_2 = k_3 = 4800 \ kN.m^{-1}$.

4-) A fim de estudar a dinâmica vertical de um veículo, o modelo abaixo, comumente denominado modelo de 1/4 de veículo é proposto. Determine seu modelo modal e avalie a distribuição de amortecimento do modelo. Dados: $m_1 = 80 \ kg, \ m_2 = 80 \ kg, \ k_1 = 300 \ kNm^{-1}, \ k_2 = 30 \ kNm^{-1}, \ c_1 = 5000 \ Nms^{-1}.$

5-) Um veículo trator-trailer leva um cilindro preso por meio de um acoplamento elástico cuja constante equivalente de mola é k_2 , conforme mostrado na figura anexa. O cilindro pode movimentar-se sobre a carroceria do trator. Considerando os demais elementos do modelo, pede-se: (*i*) Obtenha

o modelo espacial (equações diferenciais no domínio do tempo) do sistema na forma matricial; (*ii*) Considerando $k_1 = k_2 = k$ e $m_1 = m_2 = m$ e $m_3 = 2m/3$, determine o modelo modal do sistema.

6-) Para o modelo abaixo, obtenha as amplitudes de movimento dos respectivos graus de liberdade para uma força de natureza harmônica do tipo $F(t) = F_0 e^{i \omega t}$, com $m = 1 \ kg$, $k = 1000 \ Nm^{-1}$, $F_0 = 5 \ N \ e \ \omega = 10 \ rad/s$. Sugestão: determine inicialmente o modelo modal e em seguida obtenha as equações desacopladas no espaço modal.

