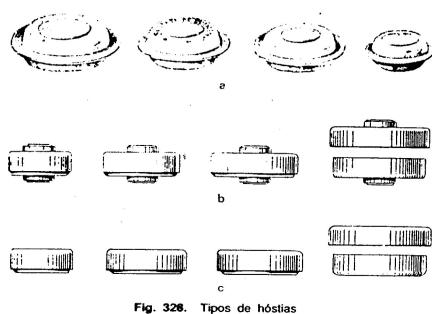


CÁPSULAS

Profa Dra Marilisa Guimarães Lara

CÁPSULAS

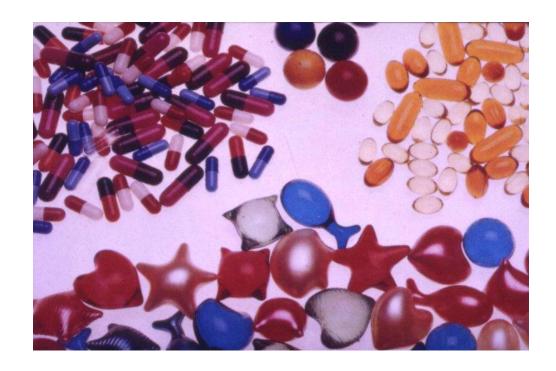
Forma farmacêutica sólida em que o princípio ativo e os excipientes estão contidos em um invólucro solúvel duro ou mole, de formatos e tamanhos variados, usualmente contendo uma dose única do princípio ativo.


Normalmente é formada de gelatina, mas pode também ser de outras substâncias.

Farm Bras. 5ª. ed

Cápsulas amiláceas Cápsulas gelatinosas moles Cápsulas gelatinosas duras

CÁPSULAS AMILÁCEAS


a - De fechar a húmido

b --- De fechar a seco (tipo Secca)

c - De fechar a seco (tipo Pastilha)

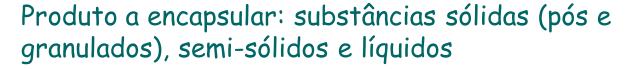
CÁPSULAS GELATINOSAS

CÁPSULAS

Vantagens:

- · proteção do meio ambiente
- mascarar gosto e odor desagradáveis
- fácil deglutição
- rápida liberação
- fácil manipulação
- flexibilidade na dosagem (esquema terapêutico individualizado)
- apresentação atraente, podendo ser colorida ou não, opaca ou transparente
- · várias vias de administração: oral, vaginal, uso externo

É a cápsula que consiste de duas seções cilíndricas pré-fabricadas (corpo e tampa) que se encaixam e cujas extremidades são arredondadas.


Cápsulas duras

Cápsulas duras de liberação prolongada

Cápsulas duras de liberação retardada

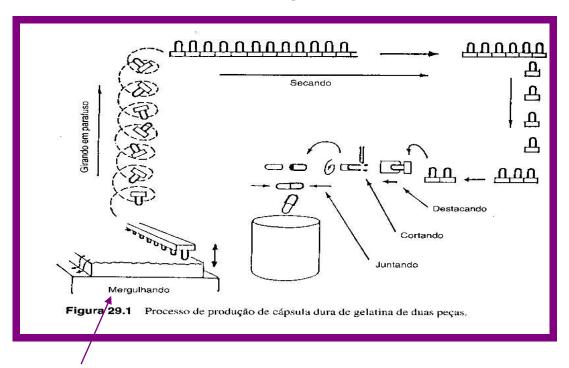
- composição
- preparo
- tamanho padronizado
- enchimento volumétrico
 - manual
 - semi-automático
 - automático

Substâncias compatíveis com gelatina.

COMPOSIÇÃO

Compostos	%	Finalidade
Gelatina	~91,5	Filmógeno
Metil/propilparabeno,	-	Conservante
Corante	q.s.	Corar
Dióxido de titâneo	0,2-1,2	Opacificante
Etilvanilina	0,1	Flavorizante
Óleos essenciais	2,0	Flavorizente
Sacarose	5,0	Edulcorante
Ácido fumárico	1,0	Neutr.aldeídos

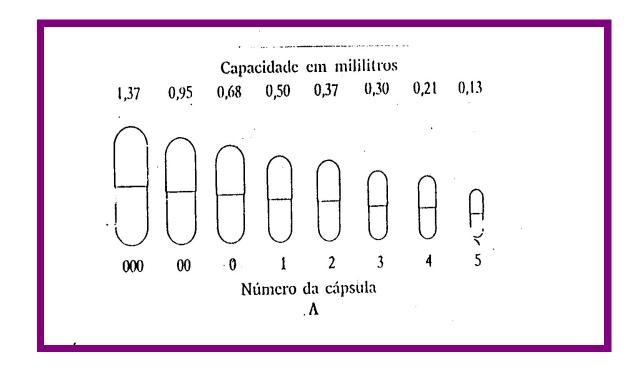
PREPARO


Imersão dos moldes em dispersão de gelatina

Gelatina tipo A, obtida por tratamento ácido (pI \sim 9,0) produz filme resistente que tende a ser turvo e quebradiço.

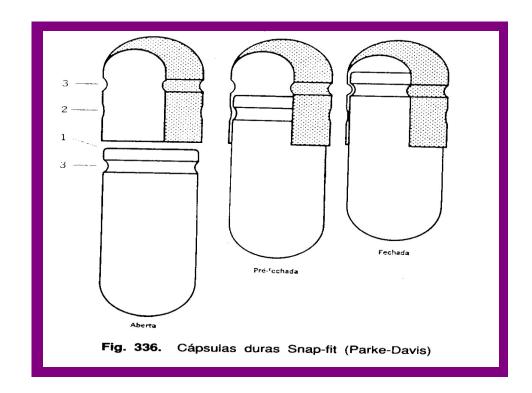
Gelatina tipo B, obtida por tratamento alcalino (pI~4,7) produz filme transparente e elástico

secagem


solução de gelatina

PRINCIPAIS PRODUTORES

Eli Lilly, Indianapolis IN
Capsugel, Greenwood SC, Rio de Janeiro
RT Sherer, Cardinal, Troi MI, Sorocaba
Parke-Davis, Detroir MI
Helty, Indaiatuba



TAMANHO E VOLUME DAS CÁPSULAS

Tamanho para uso humano	Capacidade (mililitros)
5	0,12
4	0,21
3	0,30
2	0,37
1	0,50
0	0,68
00	0,91
000	1,37

Capacidade para enchimento

Classificação numérica corresponde à capacidade volumétrica aproximada.

A capacidade em massa depende da densidade do(s) pó(s), distribuição de tamanho de partícula, forma e índice de compressividade

Peso (em mg) de diferentes pós que podem ser acondicionados em uma cápsula de tamanho 00.

Matéria-prima	Peso (mg)
Acetaminofeno	750
Ácido acetil salicílico	650
Ácido ascórbico	980
Amído de mílho	800
Bicarbonato de sódio	975
Carbonato de cálcio	790
Hídróxído de alumínio	1140
Lactato de cálcio	570
Lactose	850
Subnitrato de bismuto	1200
Sulfato de quinino	390

International Journal of Pharmaceutical Compounding Ed Brasileira, vol 2, n1, Jan/fev – 2000.

Enchimento volumétrico

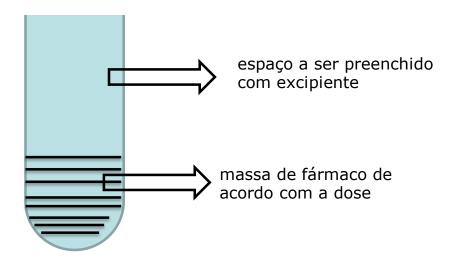
Enchimento volumétrico = calculado pelo volume da cápsula.

Dose do fármaco = é dada em massa (mg)

Portanto precisamos relacionar massa e volume do fármaco e para isso usamos a densidade aparente .

Dap = m/vap

Cálculo da densidade aparente e compactada


A densidade aparente de um pó pode ser calculada pela relação entre uma massa conhecida e o volume por ela ocupada.

Por exemplo, se numa proveta, 75 g de pó ocupam um volume de 100 mL, a densidade aparente do pó é 75 g/100 mL, ou 0,75 g/mL.

Entretanto, se a proveta for delicadamente batida (100 até 200 vezes) sobre uma superfície acolchoada, o volume será reduzido, devido a compactação do pó. Com a divisão da massa por esse novo volume, o resultado será a "densidade compactada". Caso o novo volume seja 85 mL, a densidade compactada correspondente será 75 g/85 mL, ou 0,88 g/mL.

A diferença entre densidade aparente e densidade compactada representa o índice ou percentual de compressividade, o qual é calculado subtraindo do valor 1 a razão entre densidade aparente/compactada, cujo valor ser multiplicado por 100 (exemplo, 1- $(0.75/0.88) \times 100 = 14.8\%$ de compressibilidade).

·1-Formulação - escolha dos excipientes

DILUENTES : completar o volume da cápsula

Exemplos: amido, amido pré-gelatinizado, carbonato de cálcio, celulose, celulose microcristalina, dextrina, fosfato dicálcico, lactose, manitol

LUBRIFICANTES e DESLIZANTES: melhorar o escoamento do pó para garantir um enchimento uniforme

Exemplos: estearato de magnésio, ácido esteárico, talco, dióxido de silício

·1-Formulação - escolha dos excipientes

MOLHANTES: aumentar a molhabilidade de pós pouco solúveis em água

Exempos: lauril sulfato de sódio, tween

ABSORVENTES: evitar que pós higroscópicos absorvam umidade, controlar umidade do pó

Exemplo: Aerosil

2- Seleção do invólucro

Tamanho para uso humano	Capacidade (mililitros)
5	0,12
4	0,21
3	0,30
2	0,37
1	0,50
0	0,68
00	0,91
000	1,37

CÁPSULAS GELATINOSAS DURAS Seleção do invólucro

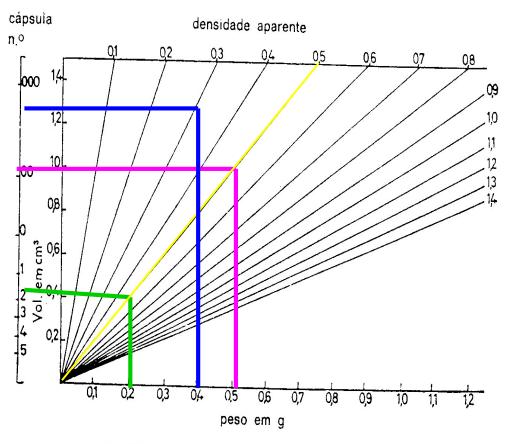


Fig. 333. Nomograma para enchimento de cápsulas

3- Mistura

4 - Enchimento das cápsulas

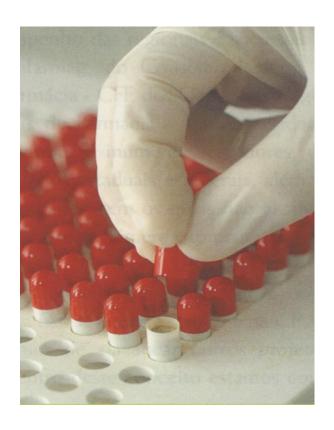
5 - Limpeza das cápsulas

ENVASE COM ENCAPSULADORA

Cápsulas gelatinosas vazias são colocadas no dispositivo, com a tampa voltada para cima, a qual é removida manual ou mecanicamente.

A extremidade superior do corpos das cápsulas deve ficar no mesmo nível da superfície de trabalho, onde a mistura de pós é depositada, e distribuída nos corpos das cápsulas, com auxilio de uma espátula de plástico.

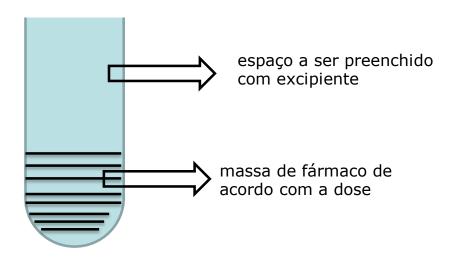
A matriz poderá ser ligeiramente agitada para acomodação do pó, ou ser compactado suavemente com auxilio de dispositivo com pinos. Repetir a operação até que toda a mistura de pós seja consumida.


Colocar as tampas e proceder a limpeza das cápsulas

Profa Dra Marilisa Guimarães Lara

ENCAPSULADORES AUTOMÁTICOS

Erly máquinas



1 - ambiente de trabalho

2 - lavar as mãos, vestir luvas, touca e máscara apropriada para pós

Como calcular a quantidade de excipiente necessária para encher uma cápsula?

Cálculo da quantidade de excipiente

Quantidade do principio ativo
Escolher a cápsula mais apropriada para a quantidade desejada
Pesar a cápsula vazia
Colocar a quantidade de princípio ativo na cápsula
Completar a cápsula com o excipiente
Pesar a cápsula cheia

Cápsula cheia- principio ativo - cápsula vazia = excipiente

Obs: em qualquer um dos métodos é necessário trabalhar com o mínimo de 5 cápsulas para que a média seja válida

CÁPSULAS GELATINOSAS DURAS Cálculo da quantidade de excipiente

Pesar a quantidade de PA para todas as cápsulas.

Selecionar o tamanho de cápsulas a ser usado.

Calcular o volume necessário para preencher todas as cápsulas.

Colocar a massa de pó numa proveta.

Completar com excipiente até atingir o volume adequado.

Retirar o pó da proveta e homogeneizar.

Cálculo da quantidade de excipiente

Calcular a densidade aparente do PA
Calcular a densidade aparente do excipiente

Calcular o volume do PA (através da densidade)
Volume da cápsula – volume do PA = volume do
excipiente

Calcular a massa do excipiente (através da densidade)

Cálculo da quantidade de excipiente

Quantidade de fármaco 350,0mg Tamanho da cápsula = 00 Volume da cápsula = 0,91mL

Calcular a densidade aparente do PA 5g de PA ocupam o volume de 10,7mL $D_{ap} = 5/10,7 = 0,4672g/mL$

Calcular a densidade aparente do excipiente 5g de excipiente ocupam o volume de 11,38mL $D_{ap} = 5/11,38 = 0,4393g/mL$

Cálculo da quantidade de excipiente

```
Calcular o volume do PA ( através da densidade)

0,4672 = 0,35 v = 0,749 ( volume de PA)

V

Volume da cápsula - volume do PA = volume do excipiente

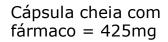
0,91 - 0,749 = 0,161mL ( volume de excipiente)

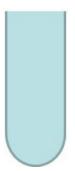
Calcular a massa do excipiente ( através da densidade)

0,4393 = m m = 0,0707g = 70,7mg

0,161
```

Cálculo da quantidade de excipiente


Quantidade de fármaco (A) = 350,0mg Peso de pó na cápsula cheia completamente com o PA (B) = 425,0mg Peso de pó na cápsula cheia completamente com o excipiente (C) = 400,0mg


Peso específico = <u>peso de pó na cápsula cheia com excipiente</u> x dose peso de pó na cápsula cheia com PA

Peso específico = (400/425) x 350 = 329, 41 (massa de excipiente que ocupa o mesmo volume que a massa do PA)

400 - 329,41 = 70,59 = 70,6mg de excipiente

Cápsula cheia com excipiente = 400mg

massa de fármaco de acordo com a dose = 350mg

Cálculo da quantidade de excipiente

Quantidade de fármaco (A) = 350,0mg Peso de pó na cápsula cheia completamente com o PA (B) = 425,0mg Peso de pó na cápsula cheia completamente com o excipiente (C) = 400,0mg

400mg de fármaco ocupam o mesmo volume que 425mg de excipiente Dose do fármaco = 350mg

425mg de fármaco ocupam o mesmo volume que 400mg de excipiente 350mg de fármaco -----x = 329,41

400 - 329,41 = 70,6mg

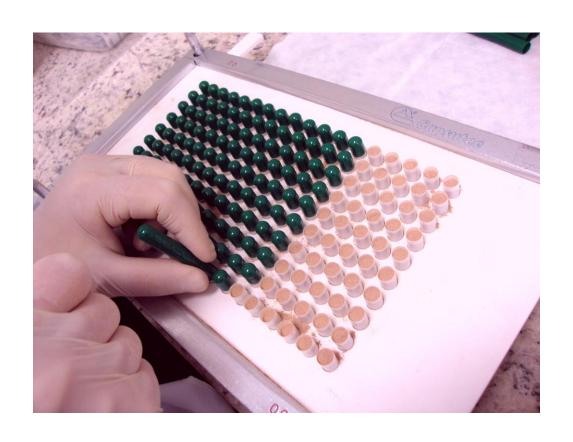
massa de excipiente necessária para completar o volume da cápsula massa de excipiente que ocupa o mesmo volume que a massa do PA

Cálculo da quantidade de excipiente

Quantidade de fármaco (A) = 350,0mg Peso de pó na cápsula cheia completamente com o PA (B) = 425,0mg Peso de pó na cápsula cheia completamente com o excipiente (C) = 400,0mg

Peso do PA = 350,0mg % de enchimento da cápsula com PA = $A/B \times 100 = 82,35\%$ (D) % de excipiente necessário = 100-D = 100-82,35 = 17,65% (E) Peso de pó na cápsula cheia com excipiente =400,0mg Quantidade de excipiente necessária = $(C \times E)/100 = 400 \times 0,1765 = 70,6mg$





Variação de peso

Peso das cápsulas

limites de variação de peso

- até 300,0mg $\pm 10,0\%$

- acima de 300,0mg $\pm 7,5$ %

Pesar individualmente 20 unidades, remover o conteúdo d ecada uma, limpar adequadamente e pesar novamente.

Determinar o peso do conteúdo de cada cápsula pela diferença de peso entre a cápsula cheia e a vazia. Com os valores obtidos, determiinar o peso médio do conteúdo.

Pode-se tolerar não mais que 2 unidades fora dos limites especificados em relação ao peso médio do conteúdo, porém nenhuma poderá estar acima ou abaixo do dobro das porcentagens indicadas.

Farm Bras 5a. ed

CÁPSULAS GELATINOSAS DURAS Variação de peso

Peso médio das cápsulas (**Pmédio**): pesar individualmente dez unidades de cápsulas manipuladas integras e determinar o peso médio em gramas.

Forma Farmacêutica	Peso Médio	Limites de Variação
Cápsulas duras	menos que 300 mg	± 10,0%
	300 mg ou mais	± 7,5%

Formulário Nacional

Variação de peso

Desvio padrão relativo: O desvio padrão relativo (DPR) não deve ser maior que 4%, sendo calculado conforme a equação:

DPR = $DPPmedio \times 100$ onde:

DP é o desvio padrão médio, sendo calculado pela seguinte equação:

$$DP = \frac{\sqrt{\sum_{i=1}^{n} (Pcap. i - Pm\acute{e}dio)^{2}}}{n-1}$$

Em que:

 $\mathbf{P_{caps.i=}}$ peso de cada unidade de cápsulas manipuladas \mathbf{n} =número de cápsulas duras manipuladas empregadas na determinação do peso médio

Formulário Nacional

Variação do conteúdo teórico das cápsulas: seguidas as Boas Práticas de Manipulação, no que se refere à mistura de pós, pode-se inferir que a quantidade de fármaco esteja distribuída uniformemente entre as cápsulas e, portanto, a variação aceitável do conteúdo teórico nas cápsulas deve estar contida no intervalo de 90 a 110%

Determinar o peso médio das casulas vazias (n=20)

A variação teórica de conteúdo das cápsulas é estimada determinando a Quantidade teórica mínima de pó ($\mathbf{Q}_{teor\ min}$) e a Quantidade teórica máxima de pó ($\mathbf{Q}_{teor\ max}$), conforme a equação:

$$\mathbf{Q}_{\text{teor min}} = \frac{P cap sula ma i s leve}{P te \acute{o}rico} X \mathbf{100} \qquad \qquad \mathbf{Q}_{\text{teor Max}} = \frac{P cap sula ma i s p e s a da}{P te \acute{o}rico} X \mathbf{100}$$

P_{capsulamaisleve=} é o menor peso individual observado na pesagem das cápsulas manipuladas para determinação de peso médio.

P_{capsulamaispesada=} é o maior peso individual observado na pesagem das cápsulas manipuladas para determinação do Peso médio

Formulário Nacional

ENSAIOS

Uniformidade de conteúdo: avaliar a quantidade de componente ativo em unidades individuais do lote e verificar se esta quantidade é uniforme nas unidades testadas

ENSAIOS

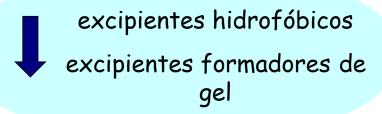
Desintegração das cápsulas

Cápsulas gelatinosas duras: realizar o teste de desintegração e observar as cápsulas após 45 minutos. Todas as cápsulas devem estar completamente desintegradas.

Cápsulas gelatinosas moles: realizar o teste de desintegração e observar as cápsulas após 30 minutos. Todas as cápsulas devem estar completamente desintegradas.

Dissolução do fármaco

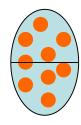
- √tamanho de partícula
- √excipientes

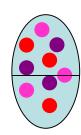

Fármaco	Excipiente	DISSOLUÇÃO	
hidrossolúvel	hidrofílicos	rápida	
hidrossolúvel	hidrofóbicos	lenta	
pouco solúvel em água	hidrofílicos	rápida	
pouco solúvel em água	insolúvel	lenta	

DISSOLUÇÃO DO FÁRMACO

excipientes hidrofílicos molhantes

tamanho de partícula




CÁPSULAS REVESTIDAS

- revestimento dependentes de pH
- revestimento que sofre erosão

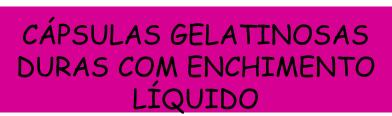
- revestimento das cápsulas
- revestimento de grânulos encapsulado
- liberação programada

CÁPSULAS REVESTIDAS

Cápsulas contendo "pellets"

CÁPSULAS DURAS

Cápsulas de HPMC: Vcaps®, Quali-V®, EMBO Caps VC®



CÁPSULAS DURAS

- fármacos líquidos
- fármacos com baixo ponto de fusão
- fármacos com dose muito baixa
- uso de veículos lipídicos
- sistemas de liberação SEDDS (Self Emulsifying Drug Delivery Systems)
 - solvente / tensoativos / co-tensoativos

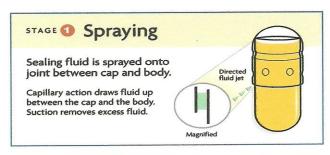
ENVASE DE LÍQUIDO

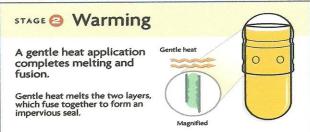
Utilizar líquido no qual a gelatina não seja solúvel:

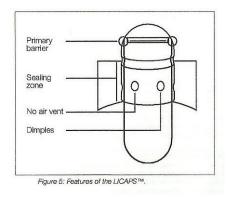
O líquido deve ser medido com precisão (pipeta ou conta-gota calibrado)

Gotejado no interior do corpo da cápsula, sem tocar na borda. Selar as cápsulas

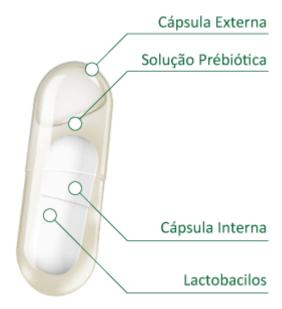
Antes do acondicionamento, verificar se há vazamento



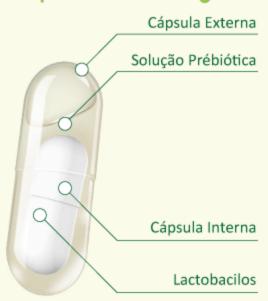

ENVASE DE LÍQUIDO


LEMSTM

Liquid Encapsulation by Micro-Spray



Profa Dra Marilisa Guimarães Lara


Cápsulas de
hidroxipropilmetilcelulose,
Lactobacillus acidophilus La-14,
veículos glicerina e
frutooligossacarídeos, estabilizante
celulose microcristalina,
antiumectante dióxido de silício e
corante dióxido de titânio.

O que é Prolive?

Prolive é o probiótico em cápsula com a tecnologia exclusiva LICAPS[®], que contém em sua composição o Lactobacillus acidophilus. A ingestão de Prolive contribui para o equilíbrio da microbiota (flora) intestinal, e deve estar associada a uma dieta equilibrada e hábitos de vida saudáveis.

O que é a tecnologia Licaps®?

É uma tecnologia exclusiva que protege o probiótico e permite que o mesmo seja liberado vivo diretamente no intestino. Além do alcance do local de ação, o sistema defende o probiótico da umidade, protegendo os lactobacilos durante o armazenamento do produto.

Prolive é constituído por duas cápsulas, uma delas disposta internamente à cápsula externa. A cápsu interna contém o probiótico Lactobacillus acidophilus em uma concentração de 10º UFC/g (1 bilhão).

Essa cápsula contendo células de L. acidophilus é suspendida no interior de uma segunda cápsula (cápsula selante), que é preenchida com um líquido contendo um componente prebiótico (frutooligossacarídeo).

O sistema de cápsula dupla utilizado em Prolive garante que o probiótico Lactobacillus acidophilus permaneça inativo e protegido da ação do suco gástrico durante o processo de digestão, já que o estômago é o local do trato gastrintestinal onde ocorrem as maiores reduções nas populações de probióticos ingeridos, devido à ação do suco gástrico e baixo pH.

Após a total digestão da cápsula externa, o probiótico atinge o intestino delgado e o cólon, locais com pH e condições mais favoráveis à sua sobrevivência.

Equaliv Termolen Celulite

Equaliv Termolen

Óleo de cártamo: absorção rápida

Grânulos de cafeina: liberação gradual

Exemplos de cápsulas preenchidas com formulações líquidas ou semi-sólidas

- Vancocin (vancomicina) Lilly USA
- · Captoril-R (captopril) Sankyo Japão
- · Solufen (ibuprofeno) SMB, Ivax Europe
- Fenogal (fenofibrate) Azupharm Europe
- · Colpermin (peppermint oil) Pharmacia Upjohn- Europe
- Suxilep (ethosuximid) Jenapharm Europe
- · Lipostabil 300 (fosfolipideos essenciais) Aventis Europe
- Cholagogum (curcuma/ extra chelidonium) Aventos Europe
- ·Solicam (piroxican) SMB Europe
- · Aprical (nifedipine) Rentschler Europe
- Plascledine (extra soya/avicado) Pharmascience Europe
- ·Permixon 160 (extract sabal) Pierre Fabre) Europe
- · Co-Danthramer (danthron) Naap Europe
- Isoday 40mg (isosorbide dinitrate) Tillots Europe

É a cápsula constituída de um invólucro de gelatina, de vários formatos, mais maleável do que o das cápsulas duras.

Normalmente são preenchidas com conteúdos líquidos ou semi-sólidos, mas podem ser preenchidas também com pós e outros sólidos secos.

- · PREPARO
- -imersão
- -compressão
- -outros métodos

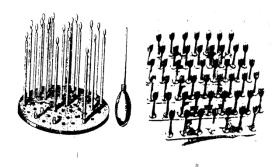


Fig. 339. Aparelhos para preparar cápsulas moles por imersão

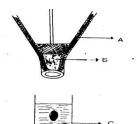



Fig. 342. Preparação de cápsulas pelo método holandês (esquema)

A — folhas de gelatina B — substâncias medica-

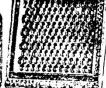
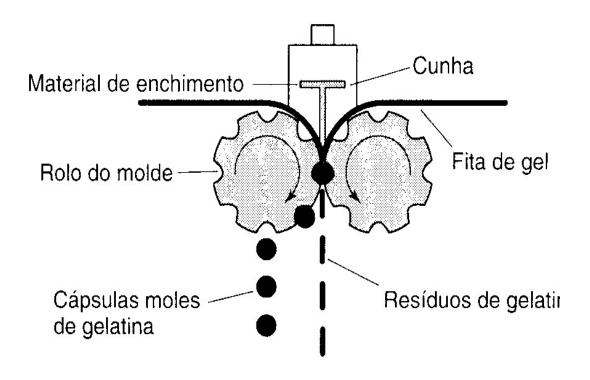
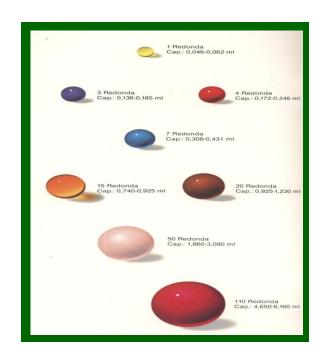
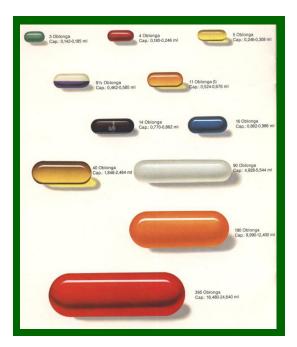
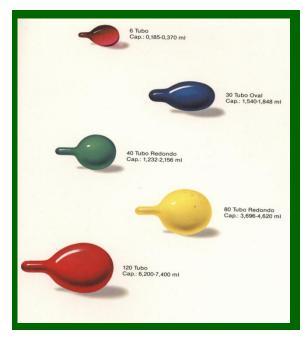
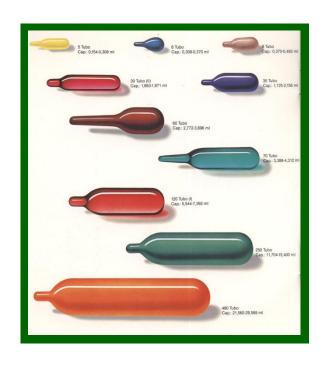



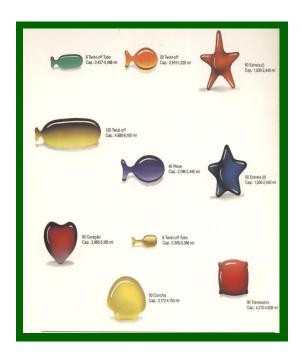
Fig. 340. Capsulador




- · líquidos (soluções ou suspensões)
- sistemas lipídicos
- · sistemas formadores de microemulsões




· Grande variedade de tamanhos e formas



· Grande variedade de tamanhos e formas

Produto a encapsular: substâncias sólidas, líquidas ou pastosas

ACONDICIONAMENTO

- pote plástico
- blister
- sachet

REFERÊNCIAS BIBLIOGRÁFICAS

- Ansel HC, Popovich NG, Allen Jr, LV. Formas farmacûticas de sistemas de liberação de fármacos. 6 ed., Willians & Wilkins, Baltimore, EUA. Tradução editorial Premier, 2000.
- Lachman, L., Lieberman JHA, Kanic JL. The theory and practice of industrial pharmacy. 3 de., Lea & Febiger, Philadelphia, USA, 1976
- Yalkowsky SH, Bolton S. Particle size and content uniformity. Pharm. Res., 4: 962-966, 1990
- Jones BE. Hard gelatin capsules and the pharmaceutical formulator Pharm. Tech., 9: 106-112, 1985
- Aulton, M.E. Delineamento de formas farmacêuticas.2° edição.Artmed Editora, 2005.
- Prista, L.N.; Alves, A.C.; Morgano, R.M.R. Técnicas Farmacêuticas e Farmácia galênica 4° edição, Fundação Calouste Gulbekian, Lisboa, 1996, vols I, II e III.
- DE LUCCA, J.M.; TEIXEIRA, R.M.; TEIXEIRA, H.F.; KOESTER, L.S. Cápsulas duras com enchimento líquido ou semi-sólido: uma revisão sobre sua produção e aplicação na liberação de fármacos. Acta Farm Bonaerense, v.24, n.3, p.458-67, 2005.
- STEGEMANN, S. Hard gelatin capsules today and tomorrow. Capsugel Library. www.capsugel.com

www.capsugel.com