
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2590658

Design Of Mutant Operators For The C Programming Language

Article · October 1999

Source: CiteSeer

CITATIONS

170
READS

1,664

9 authors, including:

Some of the authors of this publication are also working on these related projects:

Human Resilience for Cybersecurity View project

USENIX Conferences View project

Hira Agrawal

Applied Communication Sciences

35 PUBLICATIONS 2,756 CITATIONS

SEE PROFILE

Richard A. Demillo

Georgia Institute of Technology

112 PUBLICATIONS 7,159 CITATIONS

SEE PROFILE

Wynne Hsu

National University of Singapore

241 PUBLICATIONS 9,570 CITATIONS

SEE PROFILE

Aditya Mathur

Purdue University, and Singapore University of Technology and Design

217 PUBLICATIONS 5,428 CITATIONS

SEE PROFILE

All content following this page was uploaded by Richard A. Demillo on 11 February 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2590658_Design_Of_Mutant_Operators_For_The_C_Programming_Language?enrichId=rgreq-e4ba1e1406ec25a9a4efc89d07bd922d-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA2NTg7QVM6MTk1NjcxMTkwNzA4MjMwQDE0MjM2NjMwNTU1MDQ%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2590658_Design_Of_Mutant_Operators_For_The_C_Programming_Language?enrichId=rgreq-e4ba1e1406ec25a9a4efc89d07bd922d-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA2NTg7QVM6MTk1NjcxMTkwNzA4MjMwQDE0MjM2NjMwNTU1MDQ%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Human-Resilience-for-Cybersecurity?enrichId=rgreq-e4ba1e1406ec25a9a4efc89d07bd922d-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA2NTg7QVM6MTk1NjcxMTkwNzA4MjMwQDE0MjM2NjMwNTU1MDQ%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/USENIX-Conferences?enrichId=rgreq-e4ba1e1406ec25a9a4efc89d07bd922d-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA2NTg7QVM6MTk1NjcxMTkwNzA4MjMwQDE0MjM2NjMwNTU1MDQ%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e4ba1e1406ec25a9a4efc89d07bd922d-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA2NTg7QVM6MTk1NjcxMTkwNzA4MjMwQDE0MjM2NjMwNTU1MDQ%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hira_Agrawal?enrichId=rgreq-e4ba1e1406ec25a9a4efc89d07bd922d-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA2NTg7QVM6MTk1NjcxMTkwNzA4MjMwQDE0MjM2NjMwNTU1MDQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hira_Agrawal?enrichId=rgreq-e4ba1e1406ec25a9a4efc89d07bd922d-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA2NTg7QVM6MTk1NjcxMTkwNzA4MjMwQDE0MjM2NjMwNTU1MDQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Applied_Communication_Sciences?enrichId=rgreq-e4ba1e1406ec25a9a4efc89d07bd922d-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA2NTg7QVM6MTk1NjcxMTkwNzA4MjMwQDE0MjM2NjMwNTU1MDQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hira_Agrawal?enrichId=rgreq-e4ba1e1406ec25a9a4efc89d07bd922d-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA2NTg7QVM6MTk1NjcxMTkwNzA4MjMwQDE0MjM2NjMwNTU1MDQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Richard_Demillo?enrichId=rgreq-e4ba1e1406ec25a9a4efc89d07bd922d-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA2NTg7QVM6MTk1NjcxMTkwNzA4MjMwQDE0MjM2NjMwNTU1MDQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Richard_Demillo?enrichId=rgreq-e4ba1e1406ec25a9a4efc89d07bd922d-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA2NTg7QVM6MTk1NjcxMTkwNzA4MjMwQDE0MjM2NjMwNTU1MDQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Georgia_Institute_of_Technology?enrichId=rgreq-e4ba1e1406ec25a9a4efc89d07bd922d-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA2NTg7QVM6MTk1NjcxMTkwNzA4MjMwQDE0MjM2NjMwNTU1MDQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Richard_Demillo?enrichId=rgreq-e4ba1e1406ec25a9a4efc89d07bd922d-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA2NTg7QVM6MTk1NjcxMTkwNzA4MjMwQDE0MjM2NjMwNTU1MDQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wynne_Hsu?enrichId=rgreq-e4ba1e1406ec25a9a4efc89d07bd922d-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA2NTg7QVM6MTk1NjcxMTkwNzA4MjMwQDE0MjM2NjMwNTU1MDQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wynne_Hsu?enrichId=rgreq-e4ba1e1406ec25a9a4efc89d07bd922d-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA2NTg7QVM6MTk1NjcxMTkwNzA4MjMwQDE0MjM2NjMwNTU1MDQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_University_of_Singapore?enrichId=rgreq-e4ba1e1406ec25a9a4efc89d07bd922d-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA2NTg7QVM6MTk1NjcxMTkwNzA4MjMwQDE0MjM2NjMwNTU1MDQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wynne_Hsu?enrichId=rgreq-e4ba1e1406ec25a9a4efc89d07bd922d-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA2NTg7QVM6MTk1NjcxMTkwNzA4MjMwQDE0MjM2NjMwNTU1MDQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aditya_Mathur2?enrichId=rgreq-e4ba1e1406ec25a9a4efc89d07bd922d-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA2NTg7QVM6MTk1NjcxMTkwNzA4MjMwQDE0MjM2NjMwNTU1MDQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aditya_Mathur2?enrichId=rgreq-e4ba1e1406ec25a9a4efc89d07bd922d-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA2NTg7QVM6MTk1NjcxMTkwNzA4MjMwQDE0MjM2NjMwNTU1MDQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aditya_Mathur2?enrichId=rgreq-e4ba1e1406ec25a9a4efc89d07bd922d-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA2NTg7QVM6MTk1NjcxMTkwNzA4MjMwQDE0MjM2NjMwNTU1MDQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Richard_Demillo?enrichId=rgreq-e4ba1e1406ec25a9a4efc89d07bd922d-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA2NTg7QVM6MTk1NjcxMTkwNzA4MjMwQDE0MjM2NjMwNTU1MDQ%3D&el=1_x_10&_esc=publicationCoverPdf

DESIGN OF MUTANT OPERATORS FORTHE C PROGRAMMING LANGUAGEyHiralal AgrawalRichard A. DeMilloBob HathawayWilliam HsuWynne HsuE.W. KrauserR. J. MartinAditya P. MathurEugene Spa�ordSoftware Engineering Research CenterDepartment of Computer SciencesPurdue UniversityW. Lafayette, IN 47907 Revision 1.02March 20, 1989yThis work was supported by Rome Air Development Center ContractNo. F 30602-85-C-0255 and Georgia Institute of Technology subcontractB-10-653-1. 1

\Mutation decides the course of humanity."Not a software engineer

2

ContentsLIST OF FIGURES iiLIST OF TABLES iiiABSTRACT iv1 INTRODUCTION 12 AN OVERVIEW OF MUTATION BASED TESTING 23 THE RAISON D�ÊTRE OF A MUTANT OPERATOR 44 MUTANT OPERATOR CLASSIFICATION 65 NAMING CONVENTIONS 75.1 General : 75.2 Naming of Binary Operator Mutations : 86 WHAT IS NOT MUTATED? 107 OPTIMIZATIONS 128 CONCEPTS AND DEFINITIONS 138.1 Functions Introduced by Mutant Operators : 138.2 Range of Applicability : 148.3 Linearization : 148.4 Execution Sequence : 168.5 E�ect of An Execution Sequence : 228.6 Global and Local Identi�er Sets : 238.7 Global and Local Reference Sets : 23i

9 STATEMENT MUTATIONS 279.1 Trap on Statement Execution: STRP : 289.2 Trap on if Condition: STRI : 299.3 Statement Deletion: SSDL : 309.4 return Statement Replacement: SRSR : 329.5 goto Label Replacement: SGLR : 349.6 continue Replacement by break: SCRB : 349.7 break Replacement by continue: SBRC : 349.8 Break Out to nth Enclosing Level: SBRn : 359.9 Continue Out to nth Enclosing Level: SCRn : 359.10 while Replacement by do-while: SWDD : 369.11 do-while Replacement by while: SDWD : 369.12 Multiple Trip Trap: SMTT : 379.13 Multiple Trip Continue: SMTC : 389.14 Sequence Operator Mutation: SSOM : 399.15 Move Brace Up or Down: SMVB : 419.16 Switch Statement Mutation: SSWM : 4210 OPERATOR MUTATIONS 4610.1 Binary Operator Mutations: Obom : 4810.2 Unary Operator Mutations: Ouor : 4810.2.1 Increment/Decrement: Oido : 5110.2.2 Logical Negation: OLNG : 5110.2.3 Logical context negation: OCNG : 5110.2.4 Bitwise Negation: OBNG : 5210.2.5 Indirection Operator Precedence Mutation: OIPM : : : : : : : : : : : : : : 5210.2.6 Cast operator replacement: OCOR : 5311 VARIABLE MUTATIONS 5511.1 Scalar Variable Reference Replacement: Vsrr : 56ii

11.2 Array Reference Replacement: Varr : 5611.3 Structure Reference Replacement: Vtrr : 5711.4 Pointer Reference Replacement: Vprr : 5711.5 Structure Component Replacement: VSCR : 5711.6 Array reference subscript mutation: VASM : 5911.7 Domain Traps: VDTR : 5911.8 Twiddle Mutations: VTWD : 6112 CONSTANT MUTATIONS 6112.1 Required Constant Replacement: CRCR : 6212.2 Constant for Constant Replacement: Cccr : 6212.3 Constant for Scalar Replacement: Ccsr : 6313 COMPARISON OF MUTANT OPERATORS FOR C AND FORTRAN 77 6314 FUTURE WORK 64ACKNOWLEDGEMENTS 64REFERENCES 64APPENDIX A : INDEX TO MUTANT OPERATORS 67APPENDIX B : CLASSIFICATION OF MUTANT OPERATORS 71APPENDIX C : REVISION HISTORY 73
iii

List of Figures1 Naming convention for categories. : 82 Naming convention for statement level mutation operators. : : : : : : : : : : : : : : 83 Naming convention for C-operator level mutation operators. : : : : : : : : : : : : : : 94 Naming convention for variable and constant level mutation operators. : : : : : : : : 105 Linearization examples. (+ denotes one or more derivation steps.) : : : : : : : : : : 175 Linearization examples(contd.)(+ denotes one or more derivation steps.). : : : : : : 186 Mutant operators for C operators. : 477 Binary operator mutation operator. : 498 Classi�cation of variable mutations. : 55

iv

List of Tables1 List of Functions Introduced by Mutant Operators : : : : : : : : : : : : : : : : : : : 132 Classi�cation of Binary Operators in C : 463 Domain and Range of Mutant Operators in Ocor : 494 Domain and Range of Mutant Operators in Oior : 505 Domain of Mutant Operators in Variable Mutations Category : : : : : : : : : : : : : 566 Functions Used by the VDTR Operator : 607 A Comparison of Fortran 77 and C Mutant Operators : : : : : : : : : : : : : : : : : 65

v

AbstractMutation analysis is a method for reliable testing of large software systems. It provides a methodfor assessing the adequacy of test data. Mothra is a mutation analysis based software testing envi-ronment that currently supports the testing of Fortran 77 programs. Work is underway to enhancethis tool along several dimensions. One of these is the addition of multilingual capability. C is oneof the languages that we plan to support.This report describes the mutant operators designed for the proposed ANSI C programminglanguage. Mutant operators are categorized using syntactic criteria. Such a classi�cation is expectedto be useful for an implementor of a mutation based testing system.Another classi�cation, useful for the tester, is based on the nature of tests that can be conductedusing mutation analysis. This classi�cation exposes the generality and completeness of mutationbased testing.Each mutant operator is introduced with illustrative examples. The rationale supporting eachoperator is also provided. An appendix provides a cross-reference of all mutant operators for easeof referencing.The design described here is the result of long deliberations amongst the authors of this report inwhich several aspects of the C language and program development in C were examined. We intendthis report to serve as a manual for the C mutant operators for researchers in software testing.
vi

1 INTRODUCTIONThis report documents the classi�cation, de�nition, rationale, and semantics of the mutant opera-tors designed for the (proposed) ANSI C programming language [Kern88]. The design of mutantoperators was carried out by the authors of this report over a six month period starting August,1988.Throughout the report, the following conventions are used: (a) keywords in C are emboldened,(ii) non-terminal symbols from the C grammar are italicized, (iii) mutant operators are emboldenedand appear in upper case letters, (iv) mutant operator category names are emboldened and beginwith an upper case letter followed by three lower case letters, and (v) P denotes the program undertest and hence the program to be mutated. In general, P will consist of several functions that couldbe mutated individually or as a group depending on how much of P is being tested.This report assumes that the reader is familiar with the underlying theory and techniques ofmutation analysis. However, the next section provides an overview of mutation analysis. [DeMi79]and [DeMi87] contain the in depth background material.The remainder of the report is organized into 13 sections. The next section provides an overviewof mutation analysis. Section 3 enumerates the reasons responsible for the mutant operators reportedhere. Section 4 presents a classi�cation of the mutant operators. We expect such a classi�cation tobe useful for the tool designer1 and for the software tester.Section 5 consolidates the naming conventions used while naming the large number of mutantoperators. The conventions are designed to simplify the expansion of the four letter mnemonics forall mutant operators. Not all entities in a program are subject to mutation. Section 6 lists all suchentities and the rationale for not mutating them. Section 7 lists various mutate-time and execute-time optimizations that can be performed by a tool to reduce the computational requirements of asoftware testing experiment.Some concepts and de�nitions needed to describe the mutant operators are listed in section 8.Sections 9-12 describe all the mutant operators for C. Section 13 compares the mutant operatorsfor Fortran 77 and C. Finally, section 14 outlines the on-going and planned work in mutation based1We use the term tool to refer to a software testing packagebased onmutation analysis, such as theMothra [DeMi88]system. 1

testing of large2 C programs.Three appendices at the end respectively provide index to mutant operators, classi�cation ofmutant operators, and a revision history of this report.2 AN OVERVIEW OF MUTATION BASED TESTINGIn this section we provide an overview of mutation based testing. For details see [DeMi79].Testing techniques can be classi�ed into two categories : functional testing and functional anal-ysis [Howd87]. Functional testing implies the existence of an input-output oracle. Such an oracledetermines if the output of a function f on a test case t is correct or not. Control ow coverageand fault based techniques fall into the functional testing category. Functional analysis implies theexistence of a sequence oracle. Such an oracle determines if a given sequence of actions takes placewhen f is executed on t.Mutation analysis is a fault based technique. It can be classi�ed into the functional testingcategory. It assumes the existence of a class F of faults. It provides a set O of operators, betterknown as mutant operators, that model one or more of the faults in F . For example, use of awrong variable is a fault. The scalar variable reference replacement set of operators, described insection 11.1, model this fault.A mutant operator is applied on the program P under test. Such an application transforms Pinto a similar, though a di�erent program, known as a mutant. In general, one application of amutant operator can generate more than one mutant. If P contains several entities that are in thedomain of a mutant operator, then the operator is applied to each such entity, one at a time. Eachapplication generates a distinct mutant. As an example, consider the mutant operator that deletesa statement from P . All statements in P are in the domain of this operator. When applied, it willgenerate as many mutants as there are statements in P . Each mutant will have all statements in Pexcept the one deleted by the mutant operator. Such mutants can be considered to be fault inducedversions of P .Certain mutants are instrumented versions of P . The instrumentation is designed to reveal somekind of coverage. For example, a mutant operator that provides domain coverage for variables,2We are referring to C codes that are over a million lines of code in length.2

generates one mutant for each occurrence of a scalar reference. When executed, this mutant informsthe tester whether or not the desired domain was covered for that reference.Once generated, a mutant M is executed against a suite T of test cases. For a fault inducedmutant, if for any t 2 T , the output of M di�ers from that of P , we say that M is killed. Aninstrumented mutant is killed when the trap function, inserted into P by the mutant operator,terminates mutant execution. The trap functions are described in section 8.1. A mutant not killedby any t 2 T is considered to be live. A live mutant M implies that either (a) T needs to beaugmented with additional test cases that can kill M or (b) M is equivalent to P . T is consideredadequate if it is able to kill each of those mutants that are not equivalent to P . Thus, mutationanalysis is often referred to as a technique for determining the adequacy of a test suite [DeMM87].Several control ow and other coverage techniques popular amongst software testers, are sub-sumed by mutation analysis. For example, statement coverage, branch coverage, and domain cover-age are provided by mutation analysis. The STRP, STRI, and VDOM operators described in thisreport, provide statement, branch, and domain coverage for C programs. Several coverage operatorsprovide partial path analysis. For example, the SMTT operator provides iteration coverage byensuring that each loop in a C program is executed at least n times, where n is a tester de�nedparameter.As mentioned earlier, a mutant is generated by the application of one mutant operator on oneentity in its domain in P . Mutants so generated are also known as �rst order mutants. In princi-ple, however, it is possible to apply simultaneously more than one mutant operator or one mutantoperator on more than one entity in its domain. Such an application will generate k-order mutantsfor k > 1. However, past experimental [Budd80] work has shown that such mutants do not pro-vide any signi�cant advantage with respect to the construction of a better test suite T . Further,the generation and execution of such mutants can be computationally expensive. Thus, mutationanalysis is generaly accredited with the generation of �rst-order mutants. If higher order mutantsare generated, then mutation analysis subsumes path analysis.A tool based on mutation analysis, such as Mothra [DeMi88], automates several of the tasksimplicit in the above description. For example, Mothra performs the tasks associated with mutantgeneration, mutant execution, live/kill analysis, test case management, and automatic test case3

generation.3 THE RAISON D�ÊTRE OF A MUTANT OPERATORErrors could be introduced into a program in a variety of ways. Assuming the validity of thecompetent programmer hypothesis [DeMi79], we can conclude that errors are introduced into aprogram through syntactic aberrations, also known as faults. These aberrations alter the semanticsof the program so that it fails to perform the desired input-output mapping. Note that we are notconcerned with syntactic aberrations that result in syntax errors. Such errors are obviously caughtby the compiler. Instead, we are concerned with aberrations that cause a change in the intendedsemantics of the program, thereby inducing an incorrect input-output behavior. A few examples ofsuch errors appear below.1. Incorrect use of a variable name in a speci�c context, e.g. using the statement next line = 1instead of new line = 1, where next line and new line denote variables, with similar thoughdi�erent meanings, declared in the program.2. Using an incorrect relational operator in a loop condition, e.g. using the loop formulationwhile (dosage > max-value) instead of while (dosage < max-value).3. Misplacing a statement, e.g. using the sequence:x satellite position = x satellite position + x shiftx satellite position = x satellite position - x shiftbreakinstead of the sequence:x satellite position = x satellite position + x shiftbreakx satellite position = x satellite position - x shift4

The intent of software testing is to reveal as many such syntactic aberrations as feasible in a program.Mutation analysis aids in this process by identifying the common syntactic aberrations and usingmutant operators to model them. The identi�cation itself is carried out primarily by using pastprogramming experience.A mutant operator mutates one syntactic entity of a program. Further, only one mutant operatoris applied at a time to the program under test. The intent of a mutant operator is to make simplesyntactic changes. Mutation analysis as a testing technique hopes to reveal errors in the programby showing that either the syntactic change that has been induced by a mutant operator is incorrector the syntactic entity that is mutated is the incorrect one. Thus, mutation analysis helps in boththe revelation of errors and in establishing the con�dence of the tester in the program.In general, it is di�cult to show how a mutant operator can help reveal an error in a program.On the other hand, a mutant operator encourages the tester to construct test data that reveals thatthe syntactic change induced is indeed incorrect. If the programmer fails to do so, or fails to showthat the syntactic change generates an equivalent mutant, then the existence of an error becomeshighly probable.While designing the mutant operators for C, we had the following goals in view:1. A mutant operator should cause single-step changes. Thus, only simple faults are induced.Transforming next line = next line + 1to next line = next line - 1is a single-step change carried out by replacing + by {. However, transformingnext line = next line + 1to 5

new line = new line + 1is a two step change as two instances of the syntactic entity next line are replaced.2. A mutant operator should generate a syntactically correct program. This ensures that mutantscan be compiled and executed.3. Mutant operators should be designed and classi�ed so that the tester using a tool based onsuch operators, can selectively apply them. This ensures that the tester has complete controlover the organization and the computational requirement of the test.For example, according to the current classi�cation, a tester can decide to mutate only binaryarithmetic operators, such as + and {, in the program under test. However, if there was onlyone mutant operator that would systematically mutate all operators in the program undertest, such a selective application would not be possible.4 MUTANT OPERATOR CLASSIFICATIONTo aid in the understanding, documentation, and use during testing, mutant operators have beenclassi�ed using a hierarchical structure. The structure is syntax-directed. It is intended for theimplementors of a tool that uses the mutant operators described in this report.Appendix B exhibits the complete syntax-directed classi�cation. According to this classi�cation,each mutant operator belongs to one of the following categories:1. statement mutations,2. operator mutations,3. variable mutations, and4. constant mutations.Mutant operators in these categories are designed to model errors made by programmers in:1. selection of identi�ers and constants while formulating expressions;6

2. composition of expression functions; and3. composition of functions using iterative and conditional statements.Note that the faults modeled by mutant operators belong to both the commission and omissioncategories �rst proposed by Basili [Basi84]. For example, mutant operators in the Vsrr categorymodel some faults that belong to the commission category. Mutant operator OCNG models a faultthat belongs to the omission category.Another classi�cation, useful for a tester, also appears in Appendix B. According to this classi�-cation, mutant operators are designed either for providing coverage or for inducing faults. Coverageoperators aid the tester in obtaining statement, iteration, branch, and domain coverage. A combina-tion of these operators provide partial path coverage. Fault inducing operators induce possible faultsin the program under test. Faults in statements, operators, variables, and constants are modeled bysuch operators.This classi�cation reveals the fact that mutation analysis encompasses several other commonlyused testing techniques such as statement coverage, branch coverage, and path analysis.5 NAMING CONVENTIONSIn this section we describe the naming conventions for mutant operator sub-categories and mutantoperators. These naming conventions have been set up to provide easy elicitation of the function ofa mutant operator from its mnemonic. Due to a plethora of mutant operators in C, it has not beenpossible to adhere to 3-letter mnemonics used for Fortran 77 mutant operators. Instead, a 4-lettermnemonic has been developed for each mutant operator.5.1 GeneralFor each mutant operator we distinguish between its category and subcategory. There are foursyntax-directed categories mentioned above. These are denoted by letters S, O, V, and C for,respectively, statement, operator, variable, and constant level mutations. The remaining threeletters either serve as a mnemonic for the mutant operator or are further classi�ed, depending onthe category and subcategory. Figs. 2{4 exhibit this classi�cation.7

Figure 1: Naming convention for categories.
Figure 2: Naming convention for statement level mutation operators.A subcategory of mutant operators also has a 4-letter mnemonic. The �rst letter denotes thecategory to which it belongs. The remaining three letters serve as the mnemonic for the subcategory.To enable easy distinction between subcategory and mutant operator mnemonics, the last threeletters of a subcategory mnemonic are in lower case letters. The operator mutations have a moreelaborate naming convention below.5.2 Naming of Binary Operator MutationsThe binary operator mutations are described in section 10. As shown in Fig. 3, each mutant operatorhas a 4-letter name starting with the letterO. The naming conventions for the remaining three letters8

Figure 3: Naming convention for C-operator level mutation operators.9

Figure 4: Naming convention for variable and constant level mutation operators.are as follows:� Non-assignment type: The mutant name has the structure: OXYN. Here X and Y could beany of A, L, R, or B for, respectively, arithmetic, logical, relational, and bitwise operators.For mutant operators that belong to the Ocor category, X = Y. Thus, for example, OBBNmutates operators amongst the set of bitwise operators de�ned in Table 2. As another example,OABN mutates operators in the arithmetic operators set with those in the bitwise operatorsset.� Assignment type: The mutant name has the structure: OXYA. For mutant operators thatbelong to Ocor category, X=Y. Here X and Y can be A, S, or B for, respectively, arithmetic,bitwise, plain, and shift assignment operators. See Table 2 for a list of these operators.For the Oior category, X and Y could also be E. For example, OBBA mutates C operatorsin the bitwise assignment operator set. OASA mutates elements of arithmetic assignment setto elements of shift assignment set. OSEA mutates C operators belonging to the set of shiftassignment operators to the plain assignment operator (=).6 WHAT IS NOT MUTATED?Every mutation operator has a possibly in�nite domain on which it operates. The domain itselfconsists of instances of syntactic entities, that appear within the program under test, mutated by10

the operator. For example, the mutation operator that replaces a while statement by a do-whilestatement has all instances of the while statements in its domain. This example, however, illustratesa situation in which the domain is known.Consider a C function having only one declaration statement int x, y, z. What kind of syntacticaberrations can one expect in this declaration ? One aberration could be that though the programmerintended z to be a real variable, it was declared as an integer. Certainly, a mutation operator canbe de�ned to model such an error. However, the list of such aberrations is possibly in�nite and,if not impossible, di�cult to enumerate. The primary source of this di�culty is the in�nite set oftype and identi�er associations to select from. Thus, it becomes di�cult to determine the domainfor any mutant operator that might operate on a declaration.The above reasoning leads us to treat declarations as universe de�ning entities in a program. Theuniverse de�ned by a declaration, such as the one mentioned above, is treated as a collection of facts.Thus, the declaration int x, y, z states three facts, one for each of the three identi�ers. Once weregard declarations to be program entities that state facts, we cannot mutate them because we haveassumed that there is no scope for any syntactic aberration. With this reasoning as the support, wedecided not to mutate any declaration in a C program. We expect that errors in declarations wouldmanifest through one or more mutants.Following is the complete list of entities that are not mutated:� declarations,� the address operator (&),� format strings in input-output functions,� function declaration headers,� control line,� function name3 indicating a function call, and� preprocessor conditionals.3Note that actual parameters in a call are mutated, but the function name is not. This implies that I/O functionnames such as scanf, printf, open, etc. are not mutated. 11

7 OPTIMIZATIONSIn certain situations, it is possible that two mutant operators generate mutants that are equivalentto each other. A simple example is provided by the VTWD operator described in section 11.8.When applied to the expression (a+ b), it will mutate a to a+ 1 and b to b+ 1. This generates twoequivalent mutants. We assume that the mutant generation tool will detect this equivalence andgenerate only one of these mutants.As another example, consider a C function containing the following statement4:... if (x < 0)x = x-y; F 1...One of the mutant operators, namely SSDL de�ned in section 9.3, will mutate the above statementto the following:... if (x < 0); M1...and ... ; /* Entire if statement replaced by a null statement. */ M2...The mutants so generated are equivalent as can be concluded by examining the two mutated state-ments above. It is expected that a tool that implements various mutant operators will attempt notgenerate a mutant that is equivalent to the one already generated.4Program fragments used in examples, are numbered sequentially as F1, F2,... . Mutants of program fragments arenumbered M1, M2, 12

Table 1: List of Functions Introduced by Mutant OperatorsFunction name Number of Purpose Introducedarguments bybreak out to level n 1 To terminate the execution of eachone of the n loops immediately en-closing this function. SBRncontinue out to level n 1 To terminate the execution of all im-mediately enclosing (n�1) loops andresume the next iteration of the loopthat nests this function n levels. SCRntrap on domain functions 2 To terminate the execution if thedomain of the argument satis�es agiven condition. See section 9.2 andTable 6 on page 60 for details. VABStrap on case 2 If the �rst argument is equal to thesecond, then the mutant is killed,otherwise it returns the value of the�rst argument. SSWMtrap on statement 0 To terminate mutant execution STRPfalse after nth loop iteration 1 To force the loop body to execute atmost n times SMTCtrap after nth loop iteration 1 Returns true for each of the �rstn iterations. Terminates programexecution at the beginning of the(n+ 1)th iteration. SMTT8 CONCEPTS AND DEFINITIONS8.1 Functions Introduced by Mutant OperatorsSeveral mutant operators introduce a function into the source program. A list of all such functionsappears in Table 1. We assume that the source program contains no functions with the same nameas the function introduced by the mutant operator.13

8.2 Range of ApplicabilityIn this report, the well accepted de�nition of a C program is assumed. According to this de�nition,a C program consists of a collection of functions and variables. These may be grouped into di�erent�les.We de�ne the range of applicability of a mutant operator, hereafter referred to as RAP, to be asubset of all functions in the program under test. Such a RAP is de�ned, under directions from thetester, by the tool. The grouping of functions into di�erent �les does not a�ect the RAP.A mutant operator is considered to be applicable only to all the program entities in its domainwithin the RAP. For example, the mutant operator SSDL that delete statements from a program,will apply to all statements inside functions that are in the RAP. It is possible for di�erent mutantoperators to have di�erent RAPs. However, this fact does not a�ect the de�nition of a mutantoperator in any way.8.3 LinearizationIn C, the de�nition of statement is recursive. For the purpose of understanding various mutantoperators in the statement mutations category, we introduce the concept of linearization and reducedlinearized sequence.Let S denote a syntactic construct that can be parsed as a C statement. Note that statementis a syntactic category in C. For an iterative or selection statement denoted by S, cS denotes thecondition controlling the execution of S . If S is a for statement, then eS denotes the expressionthat is executed immediately after one execution of the loop body and just before the next iterationof the loop body, if any, is about to begin. Again, if S is a for, then iS denotes the initializationexpression that is executed exactly once for each execution of S. If the controlling condition ismissing, then cS defaults to true.Using the above notation, if S is an if statement, we shall refer to the execution of S in anexecution sequence as cS. If S denotes a for statement, then in an execution sequence we shallrefer to the execution of S by one reference to iS, one or more references to cS, and zero or morereferences to eS. If S is a compound statement, then referring to S in an execution sequence merelyrefers to any storage allocation activity. 14

Example 1Consider the following for statement:for (m=0, n=0; isdigit(s[i]); i++)n =10* n +(s[i]) - '0');Denoting the above for statement by S, we get,iS:m=0, n=0cS: isdigit(s[i]), andeS: i++.If S denotes the following for statement,for (; ;)f... gthen we have,iS: ; (the null expression-statement),cS: true, andeS: ; (the null expression-statement).Let Tf and TS , respectively, denote the parse trees of function f and statement S. A node of TSis said to be identi�able if it is labeled by any one of the following syntactic categories:� statement� labeled statement 15

� expression statement� compound statement� selection statement� iteration statement� jump statementA linearization of S is obtained by traversing TS in preorder and listing, in sequence, only theidenti�able nodes of TS . Fig. 5 provides examples of linearized statements.For any X, let Xij ; 1 � j � i denote the sequence Xj Xj+1 : : : Xi�1 Xi. Let SL = Sl1; : l � 0denote the linearization of S. If Si Si+1 is a pair of adjacent elements in SL such that Si+1 is thedirect descendent of Si in TS and there is no other direct descendent of Si, then SiSi+1 is consideredto be a collapsible pair with Si being the head of the pair. A reduced linearized sequence of S,abbreviated as RLS, is obtained by recursively replacing all collapsible elements of SL by theirheads. The RLS of a function is obtained by considering the entire body of the function as S and�nding the RLS of S. The RLS, obtained by the above method, will yield a statement sequence inwhich the indices of the statements are not increasing in steps of 1. We shall always simplify theRLS by renumbering its elements, so that for any two adjacent elements Si Sj , we have j = i+ 1.We shall refer to the RLS of a function f and a statement S by RLS(f) and RLS(S), respectively.Fig. 5 lists reduced linearization sequences of sample statements.RLS(f) is of the form S1 S2 : : :SnR; n � 0, where R is either a return statement or an implicitreturn implied by the closing brace in the de�nition of f . The Si; 1 � i � n and R are referred toas the elements of RLS. The number of elements in RLS is its length and is denoted by l(RLS).We shall use an RLS to de�ne mutant operators and describe execution sequences.8.4 Execution SequenceThough most mutant operators are designed to simulate simple faults, the expectation of mutationbased testing is that such operators will eventually reveal one or more errors in the program. In thissection we provide some basic de�nitions that are useful in understanding such operators and theirdynamic e�ects on the program under test. 16

Figure 5: Linearization examples. (+ denotes one or more derivation steps.)17

Figure 5: Linearization examples(contd.)(+ denotes one or more derivation steps.).18

When f executes, the elements of RLS(f) will be executed in an order determined by the testcase and any path conditions in RLS(f). Let E(f; t) = sm1 ; m � 1 be the execution sequence ofRLS(f) = Sn1 R for test case t, where sj ; 1 � j � m � 1 is any one of Si; 1 � i � n and Si is not areturn statement. We assume that f terminates on t. Thus, sm = R0, where R0 is R or any otherreturn statement in RLS(f).Any proper pre�x sk1 ; 0 < k < m of E(f; t), where sk = R0, is a prematurely terminating executionsequence (subsequently referred to as PTES for brevity) and is denoted by Ep(f; t). smk+1, is knownas the su�x of E(f; t) and is denoted by Es(f; t). El(f; t) denotes the last statement of the executionsequence of f . If f is terminating, El(f; t)=return.Let E1 = Sji and E2 = Qlk be two execution sequences. We say that E1 and E2 are identical ifand only if i = k; j = l, and Sq = Qq; i � q � j. As a simple example, if f and f 0 consist of oneassignment each, namely, a = b+ c and a = b � c, respectively, then there is no t for which E(f; t)and E(f 0; t) are identical. It must be noted that the output generated by two execution sequencesmay be the same even though the sequences are not identical. In the above example, for any testcase t that has c = 0, Pf (t) = Pf 0 (t).Example 2Consider the function trim de�ned below./* This function is from p 65 of [Kern88]. */int trim(char s [])S1 f int n; F 2S2 for (n = strlen(s)-1; n >= 0; n- -)S3 if (s [n] != ' ' && s [n] != '\t' && s [n] != ' \n')S4 break;S5 s [n+1] = '\0';S6 return n;g 19

We haveRLS(f) = S1 S2 S3 S4 S5 S6. Let the test case t be such that the input parameter s evaluatesto ab (space follows b), then the execution sequence E(f; t) is: S1 iS2 cS2 cS3 cS2 cS3 S4 S5 S6. S1 S2is one pre�x of E(f; t) and S4 S5 S6 is one su�x of E(f; t). Note that there are several other pre�xesand su�xes of E(f; t). S1 iS2 cS2 S6 is a proper pre�x of E(f; t).Analogous to the execution sequence for RLS(f), we de�ne the execution sequence of RLS(S)denoted by E(S; t) with Ep(S; t), Es(S; t), and El(S; t) corresponding to the usual interpretation.The composition of two execution sequences E1 = pk1 and E2 = ql1 is pk1 ql1 and is written asE1 � E2. The conditional composition of E1 and E2 with respect to condition c, is written asE1 jc E2. It is de�ned as: E1 jc E2 = � E1 if c is false,E1 �E2 otherwise.In the above de�nition, condition c is assumed to be evaluated after the entire E1 has been executed.Note that � has the same e�ect as jtrue. � associates from left to right and jc associates from rightto left. Thus, we have: E1 �E2 �E3 = (E1 �E2) �E3E1 jc1 E2 jc2 E3 = E1 jc1 (E2 jc2 E3)E(f; �) (E(S; �)) denotes the execution sequence of function f (statement S) on the current valuesof all the variables used by f (S). We shall use this notation while de�ning execution sequences ofC functions and statements.Let S, S1, and S2 denote a C statement other than break, continue, goto, and switch, unlessspeci�ed otherwise.. The following rules can be used to determine execution sequences for any Cfunction.R 1 E(f g,t) is the null sequence.R 2 E(f g; t) � E(S; t) = E(S; t) = E(S; t) � E(f g)R 3 E(f g; t) jc E(S; t) =jc E(S; t) = � null sequence if c is false,E(S; t) otherwise.20

R 4 If S is an assignment-expression, then E(S; t) = S.R 5 For any statement S, E(S; t) = RLS(S), if RLS(S) contains no statements otherthan zero or more assignment-expressions. If RLS(S) contains any statement other than theassignment-expression, the above equality is not guaranteed due to the possible presence ofconditional and iterative statements.R 6 If S = S1 ; S2; then E(S; t) = E(S1; t) � E(S2; �).R 7 If S = while (c) S01, then E(S; t) =jc (E(S01; �) �E(S; �))If RLS(S) = Sn1 ; n > 1, and Si = continue; 1 � i � n, thenE(S; t) =jc E(Si1; �) � (j(El(Si1 ;�)6=continue) E(Sni+1; �)) �E(S; �)If RLS(S) = Sn1 ; n > 1, and Si = break; 1 � i � n, thenE(S; t) =jc E(Si1; �) � (j(El(Si1 ;�)6=break) (E(Sni+1) �E(S; �)))R 8 If S = do S1while(c); thenE(S; t) = E(S1; t) jc E(S; �)If RLS(S) contains a continue, or a break, then its execution sequence can be derived usingthe method indicated for the while statement.R 9 If S = if (c) S1, then E(S; t) =jc E(S1; �):R 10 If S = if (c) S1 else : S2, thenE(S; t) = � E(S1; t) if c is true,E(S2; t) otherwise.21

Example 3Consider S3, the if statement, in F 2. We have RLS(S3) = S3 S4. Assuming the test case of theExample on page 19 and n = 3, we get E(S3; �) = cS3. If n = 2, then E(S3; �) = cS3 S4.Similarly, for S2, the for statement, we get E(S2; �) = iS2 cS2 cS3 cS2 cS3 S4. For the entirefunction body, we get E(f; t) = S1 E(S2; �) �E(S5; �) �E(S6; �).8.5 E�ect of An Execution SequenceAs before, let P denote the program under test, f , a function in P , that is to be mutated, and t atest case. Assuming that P terminates, let Pf (t) denote the output generated by executing P on t.The subscript f with P is to emphasize the fact that it is the function f that is being mutated.We say that E(f; �) has a distinguishable e�ect on the output of P , if Pf (t) 6= Pf 0(t), where f 0 isa mutant of f . We consider E(f; �) to be a distinguishing execution sequence (hereafter abbreviatedas DES) of Pf (t) with respect to f 0.Given f and its mutant f 0, for a test case t to kill f 0, it is necessary, but not su�cient, thatE(f; t) be di�erent from E(f 0; t). The su�ciency condition is that Pf (t) 6= Pf 0(t) implying thatE(f; t) is a DES for Pf (t) with respect to f 0.While describing the mutant operators, we shall often use DES to indicate when a test case issu�cient to distinguish between a program and its mutant. Examining the execution sequences ofa function, or a statement, can be useful in constructing a test case that kills a mutant.Example 4To illustrate the notion of the e�ect of an execution sequence, consider the function trim de�ned inF 2. Suppose that the output of interest is the string denoted by s. If the test case t is such that sconsists of the three characters a; b, and space, in that order, then E(trim; t) generates the stringab as the output. As this is the intended output, we consider it to be correct.Now suppose that we modify f by mutating S4 in F 2 to continue. Denoting the modi�edfunction by trim0, we get:E(trim0; t) = S1 iS2 cS2 cS3 eS2 cS3 eS2 cS3 S4 eS2 cS3 S4 eS2 S5 S6 (1)22

The output generated due to E(trim0; t) is di�erent from that generated due to E(trim; t). Thus,E(trim; t) is a DES for Ptrim(t), with respect to the function trim0.DES's are essential to kill mutants. To obtain a DES for a given function, a suitable test caseneeds to be constructed such that E(f; t) is a DES for Pf t with respect to f 0.8.6 Global and Local Identi�er SetsFor de�ning variable mutations in section 11, we need the concept of global and local sets, de�nedin this section, and global and local reference sets, de�ned in the next section.Let f denote a C function to be mutated. An identi�er denoting a variable, that can be usedinside f , but is not declared in f , is considered global to f . Let Gf denote the set of all such globalidenti�ers for f . Note that any external identi�er is in Gf unless it is also declared in f . Whilecomputing Gf , it is assumed that all �les speci�ed in one or more # include control lines have beenincluded by the C pre-processor. Thus, any global declaration within the �les listed in a # include,also contributes to Gf .Let Lf denote the set of all identi�ers that are declared either as parameters of f or at the headof its body. Identi�ers denoting functions do not belong to Gf or Lf .In C, it is possible for a function f to have nested compound statements such that an innercompound statement S has declarations at its head. In such a situation, the global and local setsfor S can be computed using the scope rules in C.We de�ne GSf , GPf , GTf , and GAf as subsets of Gf which consist of, respectively, identi�ersdeclared as scalars, pointers to an entity, structures, and arrays. Note that these four subsets arepairwise disjoint. Similarly, we de�ne LSf , LPf , LTf , and LAf as the pairwise disjoint subsets ofLf .8.7 Global and Local Reference SetsUse of an identi�er within an expression is considered a reference. In general, a reference can bemultilevel implying that it can be composed of one or more sub-references. Thus, for example, if psis a pointer to a structure with components a and b, then in (�ps):a, ps is a reference and �ps and(�ps):a are two sub-references. Further, �ps:a is a 3-level reference. At level 1, we have ps, at level 223

we have (�ps), and �nally at level 3 we have (�ps):a. Note that in C, (�ps):a has the same meaningas ps�>a.The global and local reference sets consist of references at level 2 or higher. Any referencesat level 1 are in the global and local sets de�ned earlier. We shall use GRf and LRf to denote,respectively, the global and local reference sets for function f .Referencing a component of an array or a structure may yield a scalar quantity. Similarly,dereferencing a pointer may also yield a scalar quantity. All such references are known as scalarreferences. Let GRSf and LRSf denote sets of all such global and local scalar references, respectively.If a reference is constructed from an element declared in the global scope of f , then it is a globalreference, otherwise it is a local reference.We now de�ne GS0f and LS0f by augmenting GSf and LSf as follows:GS0f = GRSf [GSfLS0f = LRSf [LSfGS0f and LS0f are termed as scalar global and local reference sets for function f , respectively.Similarly, we de�ne array, pointer, and structure reference sets denoted by, respectively, GRAf ,GRPf , GRTf , LRAf , LRPf , and LRTf . Using these, we can construct the augmented global andlocal sets GA0f , GP 0f , GT 0f , LA0f , LP 0f , and LT 0f .For example, if an array is a member of a structure, then a reference to this member is an arrayreference and hence belongs to the array reference set. Similarly, if a structure is an element of anarray, then a reference to an element of this array is a structure reference and hence belongs to thestructure reference set.On an initial examination, our de�nition of global and local reference sets might appear to beambiguous specially with respect to a pointer to an entity5. However, if fp is a pointer to someentity, then fp is in set GRPf or LRPf depending on its place of declaration. On the other hand,if fp is an entity of pointer(s), then it is in any one of the sets GRXf or LRXf where X could beany one of the letters A, P, or T.5An entity in the present context can be a scalar, an array, a structure, or a pointer. Function references are notmutated. 24

To illustrate our de�nitions, consider the following external declarations for function f :int i, j; char c, d; double r, s;int *p, *q [3];struct point fint x;int y;g;struct rect fstruct point p1;struct point p2; F 3g;struct rect screen;struct key fchar * word;int count;g keytab [NKEYS];The global sets corresponding to the above declarations are:Gf = fi; j; c; d; r; s; p; q; screen; keytabgGSf = fi; j; c; d; r; sgGPf = fpgGTf = fscreengGAf = fq; keytabgNote that structure components x, fy, word, and count do not belong to any global set. Type names,such as rect and key above, are not in any global set. Further, type names do not participate inmutation due to reasons outlined in section 6. 25

Now, suppose that the following declarations are within function f :int �; double fx; int *fp, int (*fpa) (20)struct rect fr; struct rect *fprct;int fa [10]; char *fname[nchar]Then, the local sets for f are:Lf = ffi; fx; fp; fpa; fr; fprct; fa; fnamegLAf = ffa; fnamegLPf = ffp; fpa; fprctgLSf = ffi; fxgLTf = ffrgTo illustrate reference sets, suppose that f contains the following references (the speci�c statementcontext in which these references are made is of no concern for the moment):i * j + �r + s - fx + fa [i]�p += 1�q [j] = *pscreen.p1 = screen.p2screen.p1.x = ikeytab [j] . count = *pp = q [i]fr = screen*fname[j] = keytab [i].wordfprct = &screen 26

The global and local reference sets corresponding to the above references are:GRAf = f gGRPf = fq [i]; keytab [i]:word; & screengGRSf = fkeytab [j]:count; �p; �q [j]; screen:p1:xgGRTf = fkeytab [i]; keytab [j]; screen:p1; screen:p2gLRAf = f gLRPf = ffname [j]gLRSf = f�fname[j]; fa [i] gLRTf = f gThe above sets can be used to augment the local sets.Analogous to the global and local sets of variables, we de�ne global and local sets of constants:GCf and LCf . GCf is the set of all constants global to f . LCf is the set of all constants local tof . Note that a constant can be used within a declaration or in an expression.We de�ne GCIf , GCRf , GCCf , and GCPf to be subsets of GCf consisting of only integer, real,character, and pointer constants. GCPf consists of only null. LCIf , LCRf , LCCf , and LCPf arede�ned similarly.9 STATEMENT MUTATIONSIn this section we shall describe each one of the mutant operators that mutate entire statements ortheir key syntactic elements. For each mutant operator, in this and subsequent sections, its de�nitionand the error modeled is provided. The domain of a mutant operator is described in terms of thesyntactic entity that is a�ected. While mentioning this syntactic entity we have used the grammardescribed in [Kern88]. An appendix at the end of the report provides an index for easy location ofa mutant operator. This appendix also lists the domain of all mutant operators.Note that the operator and variable mutations described in subsequent sections, also a�ectstatements. However, they are not intended to model errors in the explicit composition of the27

selection, iteration, and jump statements.9.1 Trap on Statement Execution: STRPThis operator is intended to reveal unreachable code in the program.Each statement is systematically replaced by trap on statement(). When trap on statement is ex-ecuted, mutant execution terminates. The mutant is treated as killed. For example, consider thefollowing program fragment:while (x != y)f if (x < y) F 4y -= x;elsex -= y;gWhen STRP is applied to the above statement, a total of four mutants are generated as shown inM3, M4, M5, and M6. Test cases that kill all these four mutants are su�cient to guarantee thatall the four statements in F 4 have been executed at least once.trap on statement(); M3while (x != y)f trap on statement(); M4gwhile (x != y) 28

f if (x < y) M5trap on statement();elsex -= y;gwhile (x != y)f if (x < y) M6y -= x;elsetrap on statement();gIf STRP is used with the RAP set to include the entire program, the tester will be forced todesign test cases that guarantee that all statements have been executed. Failure to design such atest set implies that there is some unreachable code in the program. Recall that in the populartesting literature, such testing is often referred to as obtaining statement coverage [Howd87]9.2 Trap on if Condition: STRISTRI is designed to provide branch analysis for any if-statements in P . When used in addition tothe STRP, SSWM, and SMTT operators, complete branch analysis can be performed.When applied on P , STRI generates two mutants for each if statement. For example, for thestatement: if (e)S, the two mutants generated are:v = eif (trap on true(v)) S M7v = e 29

if (trap on false(v)) S M8In the above examples, v is assumed to be a new scalar identi�er not declared in P . The type of vis the same as that of e.When trap on true (trap on false) is executed, the mutant is killed if the function argument valueis true (false). If the argument value is not true (false), then the function returns false (true) andthe mutant execution continues.STRI encourages the tester to generate test cases so that each branch speci�ed by a if statementin P , is exercised at least once.For an implementor of a mutation-based tool, it is useful to note that STRP provides partialbranch analysis for if statements. For example, consider a statement of the form: if (c) S1 else S2.The STRP operator will have this statement replaced by the following statements to generate twomutants:� if (c) trap on statement() else S2� if (c) S1 else trap on statement()Killing both these mutants implies that both the branches of the if - else statement have beentraversed. However, when used with a if statement without an else clause, STRP may fail toprovide coverage of both the branches.9.3 Statement Deletion: SSDLSSDL is designed to show that each statement in P has an e�ect on the output. SSDL encouragesthe tester to design a test set that causes all statements in the RAP to be executed and generatesoutputs that are di�erent from the program under test.When applied on P , SSDL systematically deletes each statement in RLS(f). For example, whenSSDL is applied on F 4, four mutants are generated as shown in M9, M10, M11, and M12.30

; M 9while (x != y)f M10gwhile (x != y)f if (x < y) M11;elsex -= y;gwhile (x != y)f if (x < y) M12y -= x;else;gTo maintain the syntactic validity of the mutant, SSDL ensures that the semicolons are retainedwhen a statement is deleted. In accordance with the syntax of C, the semicolon appears only atthe end of (i) expression-statement and (ii) do-while iteration-statement. Thus, while mutating anexpression-statement, SSDL deletes the optional expression from the statement, retaining the semi-colon. Similarly, while mutating a do-while iteration-statement, the semicolon that terminates thisstatement is retained. In other cases, such as the selection-statement, the semicolon automaticallygets retained as it is not a part of the syntactic entity being mutated6.6We considerednaming the statementdeletion operator statement replacement by null statement. As null statement31

9.4 return Statement Replacement: SRSRWhen a function f executes on test case t, it is possible that due to some error in the compositionof f , certain su�xes of E(f; t) do not a�ect the output of P . In other words, a su�x may not bea DES of Pf (t) with respect to f 0 obtained by replacing an element of RLS(f) by a return. TheSRSR operator models such errors.If E(f; t) = sm1 R, then there are m + 1 possible su�xes of E(f; t). These are shown below:s1 s2 : : : sm�1 sm Rs2 : : : sm�1 sm Rsm�1 sm R...RIn case f consists of loops, m could be made arbitrarily large by manipulating the test cases. TheSRSR operator creates mutants that generate a subset of all possible PMES's of E(f; t).Let R1; R2; : : : ; Rk be the k return statements in f . If there is no such statement, a parameterlessreturn is assumed to be placed at the end of the text of f . Thus, for our purpose, k � 1. TheSRSR operator will systematically replace each statement in RLS(f) by each one of the k returnstatements. The SRSR operator encourages the tester to generate at least one test case that ensuresthat Es(f; t) is a DES for the program under test.Example 5Consider the following function de�nition:/* This is an example from p 69 of [Kern88].*/int strindex(char s[], char t[])is not a syntactic category (a non-terminal or a terminal) in C grammar, we decided against it.32

f int i, j, k ;for (i = 0; s[i] != `\0'; i++)ffor (j=i; k=0; t[k] != `\0' && s[j]== t[k] ; j++ ;k++); F 5if (k>0 && t[k] == `\0')return i;greturn -1;gThe above function will generate a total of six mutants, two of which are M13 and M14.int strindex(char s[], char t[])f int i, j, k ;/* The outer for statement replaced by return i.return i; /* Mutated statement. */ M13return -1;g/* This mutant has been obtained by replacingthe inner for by return -1.int strindex(char s[], char t[])f int i, j, k ;for (i = 0; s[i] != `\ 0'; i++)freturn -1; /* Mutated statement. */ M1433

if (k>0 && t[k] == `\ 0')return i;greturn -1;gNote that both M13 and M14 generate the shortest possible PMES for f .9.5 goto Label Replacement: SGLRIn a function f , the destination of a goto may be incorrect. Altering this destination is expected togenerate an execution sequence di�erent from E(f; t).Suppose that goto L and goto M are two goto statements in f . We say that these are two distinctgoto's if L and M are di�erent labels. Let goto l1, goto l2, : : :, goto ln be n distinct gotostatements in f . The SGLR operator systematically mutates label li in goto li to (n � 1) labelsl1; l2; : : : ; li�1; li+1; : : : ; ln. If n = 1, no mutants are generated by SGLR.9.6 continue Replacement by break: SCRBA continue statement terminates the current iteration of the immediately surrounding loop andinitiates the next iteration. Instead of the continue, the programmer might have intended a breakthat forces the loop to terminate. This is one error that SCRB models. Incorrect placement ofcontinue is another error that SCRB expects to reveal.SCRB replaces the continue statement by break.If S denotes the innermost loop that contains the continue statement, then the SCRB operatorencourages the tester to construct a test case t to show that E(S; �) is a DES for PS(t) with respectto the mutated S.9.7 break Replacement by continue: SBRCUsing break instead of a continue or misplacing a break are the two errors modeled by SBRC.34

The break statement is replaced by continue. If S denotes the innermost loop containing the breakstatement, then SBRC encourages the tester to construct test data t to show that E(S; t) is a DESfor PS(t) with respect to S0, where S0 is a mutant of S.9.8 Break Out to nth Enclosing Level: SBRnExecution of a break inside a loop forces the loop to terminate. This causes the resumption ofexecution of the outer loop, if any. However, the condition that caused the execution of break,might be intended to terminate the execution of the immediately enclosing loop, or in general, thenth enclosing loop. This is the error modeled by SBRn.Let a break (or a continue) statement be inside a loop that is nested n levels deep.7 The SBRnoperator systematically replaces break (or continue) by the function break out to level-n(j), for2 � j � n. When a SBRn mutant executes, the execution of the mutated statement causes theloop, inside which the mutated statement is nested, and the j enclosing loops, to terminate.Let S0 denote the loop immediately enclosing a break or a continue statement and nestedn; n > 0, levels inside the loop S in function f . The SBRn operator encourages the tester toconstruct a test case t to show that Es(S; t) is a DES of f with respect to Pf (t) and the mutatedS. From the execution sequence construction rules listed in section 8.4. The exact expression forE(S; t) can be derived for f and its mutant.The SBRn operator has no e�ect on:� break or continue statements that are nested only one level deep.� A break intended to terminate the execution of a switch statement. Note that a break insidea loop nested in one of the cases of a switch, is subject to mutation by SBRn and SBRC.9.9 Continue Out to nth Enclosing Level: SCRnThis operator is similar to SBRn. It replaces a nested break or a continue by the functioncontinue out to level n(j), 2 � j � n.The SCRn operator has no e�ect on:7A statement with only one enclosing loop is considered to be nested one level deep.35

� break or continue statements that are nested only one level deep.� A continue intended to terminate the execution of a switch statement. Note that a continueinside a loop nested in one of the cases of a switch is subject to mutation by SCRn and SCRB.9.10 while Replacement by do-while: SWDDThough a rare occurrence, it is possible that a while is used instead of a do-while. The SWDDoperator models this error.The while statement is replaced by the do-while statement.Example 6Consider the following loop:/* This loop is from p 69 of [Kern88]. */while (��lim>0 && (c=getchar()) != EOF && c !=`\n')s[i++]=c; F 6When the SWDD operator is applied, it will be mutated to the loop shown in M15.do fs[i++]=c; M15g while (��lim>0 && (c=getchar()) != EOF && c !=`\n')9.11 do-while Replacement by while: SDWDThe do-while statement may have been used in a program when the while statement would havebeen the correct choice. The SDWD operator models this error.A do-while statement is replaced by a while statement.36

Example 7Consider the following do-while statement in P:/* This loop is from p 64 of [Kern88].*/do fs [i++] = n % 10 + `0'; F 7g while ((n /= 10) > 0);It will be mutated by the SDWD operator to:while ((n /= 10) > 0) fs [i++] = n % 10 + `0'; M16gNotice that the only test data that can kill the above mutant is one that sets n to 0 just before theloop begins to execute. This test case ensures that E(S; �), S being the original do-while statement,is a DES for PS(t) with respect to the mutated statement, i.e. the while statement.9.12 Multiple Trip Trap: SMTTFor every loop in P , we would like to ensure that the loop body� C1: has been executed more than once, and� C2: has an e�ect on the output of P .The STRP operator replaces the loop body with the trap on statement. A test case that kills sucha mutant implies that the loop body has been executed at least once. However, this does not ensurethe two conditions mentioned above. The SMTT and SMTC operators are designed to ensure C1and C2. 37

The SMTT operator introduces a guard in front of the loop body. The guard is a logical functionnamed trap after nth loop iteration(n). When the guard is evaluated the nth time through the loop,it kills the mutant. The value of n is decided by the tester.Example 8Consider the following for statement:/* This loop is taken from p 87 of [Kern88]. */for (i = left+1; i <= right; i++)if (v [i] < v [left]) F 8swap (v, ++ last, i);Assuming that n = 2, this will be mutated by the SMTT operator to the loop in M17.for (i = left+1; i � right; i++)if (trap after nth loop iteration)(2)fif (v [i] < v [left]) M17swap (v, ++ last, i);gFor each loop in the program under test, the SMTT operator encourages the tester to constructa test case so that the loop is iterated at least twice.9.13 Multiple Trip Continue: SMTCAn SMTT mutant may be killed by a test case that forces the mutated loop to be executed twotimes. However, it does not ensure condition C2 mentioned earlier. The SMTC operator is designedto ensure that C2 is satis�ed.SMTC introduces a guard in front of the loop body. The guard is a logical function namedfalse after nth loop iteration(n). During the �rst n iteration of the loop, false after nth loop iteration()38

evaluates to true, thus letting the loop body execute. During the (n + 1)th and subsequent itera-tions, if any, it evaluates to false. Thus, a loop mutated by SMTC will iterate as many times asthe loop condition demands. However, the loop body will not be executed during the second andany subsequent iterations.Example 9The loop in F 8 will be mutated by the SMTC operator to the loop in M18.for (i = left+1; i � right; i++)if (false after nth loop iteration())fif (v [i] < v [left]) M18swap (v, ++ last, i);gThe SMTC operator may generate mutants containing in�nite loops. This is specially true whenthe execution of the loop body a�ects one or more variables used in the loop condition.For a function f , and each loop S in the RAP(f), SMTC encourages the tester to construct atest case t which causes the loop to be executed more than once such that E(f; t) is a DES of Pf (t)with respect to the mutated loop. Note that SMTC is stronger than SMTT. This implies that atest case that kills an SMTC mutant for statement S, will also kill the SMTT mutant of S.9.14 Sequence Operator Mutation: SSOMUse of the comma operator results in the left to right evaluation of a sequence of expressions andforces the value of the rightmost expression to be the result. For example, in the statementf (a, (b=1, b+2), c);function f has three parameters. The second one has the value 3. The programmer may use thewrong sequence of expressions thereby forcing the incorrect value to be the result. The SSOMoperator is designed to model this error. 39

Let e1; e2; : : : ; en denote an expression consisting of a sequence of n sub-expressions8 separated bythe comma operator. The SSOM operator generates (n� 1) mutants of this expression by rotatingleft the sequence one sub-expression at a time.Example 10Consider the following statement:/* This loop is taken from p 63 of [Kern88]. */for (i = 0, j = strlen(s) - 1; i < j; i++, j - -) F 9c = s [i], s [i] = s [j], s [j] = c;When the SSOM operator is applied on the body of the above loop, two mutants are generated.These are:for (i = 0, j = strlen(s) - 1; i < j; i++, j - -)/* One left rotation generates this mutant. */ M19s [i] = s [j], s [j] = c, c = s [i];for (i =0, j = strlen(s) -1; i < j; i ++, j - -)/* Another left rotation generates this mutant. */ M20s [j] = c, c = s [i], s [i] = s [j];When SSOM is applied on the for statement in the above program, it generates two more mutants,one by mutating the expression (i= 0, j=strlen(s)-1) to (j = strlen (s) - 1 , i = 0), and the other bymutating the expression (i++, j��) to (j��, i++).8According to the syntax of C, each ei can be an assignment-expression.40

The SSOM operator is likely to generate several mutants that are equivalent to P . The mutants,generated by mutating the expressions in the for statement in the above example, are equivalent.In general, if the sub-expressions do not depend on each other then the mutants generated will beequivalent to P .9.15 Move Brace Up or Down: SMVBThe closing brace (g) is used in C to indicate the end of a compound statement. It is possible for aprogrammer to incorrectly place the closing brace thereby including, or excluding, some statementswithin a compound statement. The SMVB operator models this error.A statement immediately following the loop body is pushed inside the body. This corresponds tomoving the closing brace down by one statement. The last statement inside the loop body is pushedout of the body. This corresponds to moving the closing brace up by one statement. A compoundstatement consisting of only one statement may not have explicit braces surrounding it. However,the beginning of a compound statement is considered to have an implied opening brace and thesemicolon at its end is considered to be an implied closing brace9.Example 11Consider the function in F 2. When mutated using the SMVB operator, it generates mutants M21and M22./* This is a mutant generated by SMVB. In this one,the for loop body extends to include the s [n+1] = '\0' statement. */int trim(char s [])f int n;for (n = strlen(s)-1; n >= 0; n- -) f M21if (s [n] != ' ' && s [n] != '\t' && s [n] != '\n')9To be precise, the semicolon at the end of the statement inside the loop body, is considered as a semicolon followedby a closing brace. 41

break;s [n+1] = '\0';greturn n;g/* This is another mutant generated by SMVB.In this one the for loop body becomes empty. */int trim(char s [])f int n;for (n = strlen(s)-1; n >= 0; n- -); M22if (s [n] != ' ' && s [n] != '\t' && s [n] != '\n')break;s [n+1] = '\0';return n;gIn certain cases, moving the brace may include, or exclude, a large piece of code. For example,suppose that a while loop with a substantial amount of code in its body, follows the closing brace.Moving the brace down will cause the entire while loop to be moved into the loop body that is beingmutated. A C programmer is not likely to make such an error. However, there is a high probabilityof such a mutant being is killed.9.16 Switch Statement Mutation: SSWMErrors in the formulation of the cases in a switch statement are modeled by SSWM.The expression e in the switch statement is replaced by the trap on case function. The inputto this function is a condition formulated as e = a, where a is one of the case labels in the switchbody. This generates a total of n mutants of a switch statement assuming that there are n case42

labels. In addition, one mutant is generated with the input condition for trap on case set to e = d,where d is computed as: d = e! = c1&&e! = c2&& : : : e! = cnThe next example exhibits some mutants generated by SSWM.Example 12Consider the following program fragment:/* This fragment is from a program on p59 of [Kern88].switch(c) fcase '0': case '1': case '2': case '3':case '4': case '5':case '6':case '7':case '8':case '9':ndigit[c - '0']++;break;case ' ':case '\n':case '\t': F 10nwhite++;break;default:nother++;break;gThe SSWM operator will generate a total of 14 mutants for F 10. Two of them appear in M23 andM24. 43

switch(trap on case(c,'0')) fcase '0': case '1': case '2': case '3':case '4': case '5':case '6':case '7':case '8':case '9':ndigit[c - '0']++;break;case ' ':case '\n':case '\t': M 23nwhite++;break;default:nother++;breakgc'=c; /* This is to ensure that side e�ects in c occur once. */d= c' != '0'&& c' != '1'&& c' != '3'&& c' != '4'&& c' != '5'&&c' != '6'&& c' != '7'&& c' != '8'&& c' != '9'&& c' != '\n'&& c' != '\t';switch(trap on case(c', d)) f.../* switch body is the same as that in M23. */ M24...gA test set that kills all mutants generated by SSWM ensures that all cases, including the defaultcase, have been covered. We refer to this coverage as case coverage. It is important to point outthat the STRP operator may not provide case coverage especially when there is fall through codein the switch body. This also implies that some of the mutants generated when STRP mutatesthe cases in a switch body, may be equivalent to those generated by SSWM.44

Example 13Consider the following program fragment:/* This is an example of fall thorough code. */switch (c) fcase '\n':if (n == 1) fn��;break; F 11gputc('\n');case '\r':putc('\r');break;gOne of the mutants generated by STRP when applied on F 11 will have the putc('\r') in the secondcase replaced by trap on statement(). A test case that forces the expression c to evaluate to `\n'and n evaluate to any value not equal to 1, is su�cient to kill such a mutant. On the contrary, anSSWM mutant will encourage the tester to construct a test case that forces the value of c to be'\r'.It may, however, be noted that both the STRP and the SSWM serve di�erent purposes whenapplied on the switch statement. Whereas SSWM mutants are designed to provide case coverage,mutants generated when STRP is applied to a switch statement, are designed to provide statementcoverage within the switch body. 45

Table 2: Classi�cation of Binary Operators in CType Category Operators Code{Non-assignment Arithmetic + { * / % ABitwise j & ~ BLogical k && LShift << >> SRelational < > <= >= == != RAssignment Arithmetic *= /= %= += {= ABitwise &= ^= j= BPlain = EShift <<= >>= S{ Any ambiguities in the use of these codes are resolved from the context.10 OPERATOR MUTATIONSC provides a variety of operators for use in di�erent contexts. For the purpose of de�ning mutantoperators10, the C operators are classi�ed as shown in Table 2. This table lists sets of C operatorsused later as the domain and range of di�erent mutant operators. The Code column in this tablelists the single letter codes that are used in the name of a mutant operator. The context of their useenables the di�erentiation amongst categories with identical codes. Fig. 7 shows all the contexts.In this section we describe the mutant operators that are designed to model errors in the use ofC operators. These mutant operators are classi�ed as shown in Fig. 6.The design of operator level mutations was guided by the following facts:� In C, operators belonging to one category can be used in a variety of contexts. For example,there is no entity such as an arithmetic expression within which only the arithmetic operatorscan be used. Thus, within an expression that computes arithmetic values, one could as welluse logical operators. For example, for two integers a and b, both a + b and a&&b are valid10In this section, we use the word operator to refer to the operators in C and also to mutant operators. Hence thepre�x C or mutant is used to avoid any ambiguity. 46

Figure 6: Mutant operators for C operators.47

expressions that compute integers11.� It is possible to group all the C operators in one set and de�ne one mutant operator withrespect to this set. There are two problems with this approach: (a) a large number of mutantswill be generated whenever such a mutant operator is enabled and (b) the user will not havethe exibility of selectively mutating the C operators. Hence, this approach was rejected. Wehave classi�ed the mutant operators so that the user has the maximum exibility in theirselection.10.1 Binary Operator Mutations: ObomThe incorrect choice of a binary C-operator within an expression is the error modeled by this mutantoperator.Obom is a mutant operator category. Figure 7 shows the classi�cation ofObom. As shown, Obomcan be subdivided into mutant operators that belong to the two subcategories: Comparable OperatorReplacement (Ocor) and Incomparable Operator Replacement (Oior). Within each subcategory, themutant operators correspond to either the non-assignment or to the assignment operators in C.Each mutant operator, belonging to the Obom category, systematically replaces a C operator in itsdomain by operators in its range. The domain and range for all the mutant operators in the Obomcategory are speci�ed in Tables 3 and 4. These tables also provide one example illustrating eachmutant operator. In certain contexts, only a subset of arithmetic operators is used. For example,it is illegal to add two pointers, though a pointer may be subtracted from another. All mutantoperators that mutate C-operators, are assumed to recognize such exceptional cases to retain thesyntactic validity of the mutant.10.2 Unary Operator Mutations: OuorMutations in this subcategory consist of mutant operators that model errors in the use of unaryoperators and conditions. Ouor is further subdivided into �ve subcategories described below.11Note that this is not true in some other languages such as Pascal.48

Figure 7: Binary operator mutation operator.Table 3: Domain and Range of Mutant Operators in OcorName Domain Range ExampleOAAA Arithmetic assignment Arithmetic assignment a+= b ! a -= bOAAN Arithmetic Arithmetic a +b ! a * bOBBA Bitwise assignment Bitwise assignment a &= b ! aj= bOBBN Bitwise Bitwise a & b ! aj bOLLN Logical Logical a && b ! a kbORRN Relational Relational a < b ! a <= bOSSA Shift assignment Shift assignment a <<= b ! a >>= bOSSN Shift Shift a << b ! a>> by Read X ! Y as `X gets mutated to Y'.49

Table 4: Domain and Range of Mutant Operators in OiorName Domain Range ExampleOABA Arithmetic assignment Bitwise assignment a += b ! a j= bOAEA Arithmetic assignment Plain assignment a += b ! a = bOABN Arithmetic Bitwise a + b ! a & bOALN Arithmetic Logical a + b ! a && bOARN Arithmetic Relational a + b ! a < bOASA Arithmetic assignment Shift assignment a += b ! a <<= bOASN Arithmetic Shift a + b ! a << bOBAA Bitwise assignment Arithmetic assignment a j= b ! a += bOBAN Bitwise Arithmetic a & b ! a + bOBEA Bitwise assignment Plain assignment a &= b ! a =bOBLN Bitwise Logical a & b ! a && bOBRN Bitwise Relational a & b ! a < bOBSA Bitwise assignment Shift assignment a &= b ! a <<= bOBSN Bitwise Shift a & b ! a << bOEAA Plain assignment Arithmetic assignment a = b ! a += bOEBA Plain assignment Bitwise assignment a =b ! a &= bOESA Plain assignment Shift assignment a = b ! a <<= bOLAN Logical Arithmetic a && b ! a + bOLBN Logical Bitwise a && b ! a & bOLRN Logical Relational a && b ! a < bOLSN Logical Shift a && b ! a << bORAN Relational Arithmetic a < b ! a + bORBN Relational Bitwise a < b ! a & bORLN Relational Logical a < b ! a && bORSN Relational Shift a < b ! a << bOSAA Shift assignment Arithmetic assignment a <<= b ! a += bOSAN Shift Arithmetic a<< b ! a + bOSBA Shift assignment Bitwise assignment a << b ! a j= bOSBN Shift Bitwise a << b ! a & bOSEA Shift assignment Plain assignment a <<= b ! a = bOSLN Shift Logical a << b ! a && bOSRN Shift Relational a << b ! a < by Read X ! Y as `X gets mutated to Y'.50

10.2.1 Increment/Decrement: OidoThe ++ and - - operators are used frequently in C programs. The OPPO and OMMO mutantoperators model the errors that arise from the incorrect use of these C operators. The incorrect usesmodeled are: (a) ++ (or - -) used instead of - - (or ++) and (b) pre�x increment (decrement) usedinstead of post�x increment (decrement).The OPPO operator generates two mutants. An expression such as ++x is mutated to x++ and- -x. An expression such as x++, will be mutated to ++x and x- -. The OMMO operator behavessimilarly. It mutates - -x to x- - and ++x. It also mutates x- - to - -x and x++. Both the operatorswill not mutate an expression if its value is not used. For example, an expression such as i++in a for header will not be mutated, thereby avoiding the creation of an equivalent mutant. Anexpression such as *x++ will be mutated to *++x and *x- -.10.2.2 Logical Negation: OLNGOften, the sense of the condition used in iterative and selective statements is reversed. OLNGmodels this error.Consider the expression x op y, where op can be any one of the two logical operators: && and k.OLNG will generate three mutants of such an expression as follows: x op ! y, !x op y, and !(x op y).10.2.3 Logical context negation: OCNGIn selective and iterative statements, excluding the switch, often the sense of the controlling condi-tion is reversed. OCNG models this error.The controlling condition in the iterative and selection statements is negated. The following areillustrative examples:if (expression) statement ! if (! expression) statementif (expression) statement else statement ! if (! expression) statement else statementwhile (expression) statement ! while (! expression) statementdo statement while (expression) ! do statement while (! expression)51

for (expression; expression; expression) statement ! for (expression; ! expression, expression) state-mentexpression ? expression : conditional expression ! !expression ? expression : conditional expressionOCNG may generate mutants with in�nite loops when applied on an iteration statement. Fur-ther, it may also generate mutants generated by OLNG. Note that a condition such as (x<y) inan if statement will not be mutated by OLNG. However, the condition ((x<y&&p>q) will bemutated by both OLNG and OCNG to (!(x<y)&&(p>q)).10.2.4 Bitwise Negation: OBNGThe sense of the bitwise expressions may often be reversed. Thus, instead of using (or not using)the one's complement operator, the programmer may not use (or may use) the bitwise negationoperator. The OBNG operator models this error.Consider an expression of the form x op y, where op is one of the bitwise operators: j and &. TheOBNG operator mutates this expression to: x op ~ y, ~x op y, and ~(x op y). OBNG does notconsider the iterative and conditional operators as special cases. Thus, for example, a statementsuch as if (x && a j b) p = q will get mutated to the following statements by OBNG:if (x && a j~b) p = qif (x &&~a j b) p = qif (x &&~(a j b)) p = q10.2.5 Indirection Operator Precedence Mutation: OIPMExpressions constructed using a combination of ++, - -, and the indirection operator (*), can oftencontain precedence errors. For example, using *p++ when (*p)++ was meant, is one such error.OIPM operator models such errors.OIPM mutates a reference of the form �x op to (�x) op and op (�x), where op can be ++ and - -.Recall that in C, �x op implies � (x op). If op is of the form [y], then only (�x) op is generated.For example, a reference such as �x[p] will be mutated to (*x)[p].52

The above de�nition is for the case when only one indirection operator has been used to form thereference. In general, there could be several indirection operators used in formulating a reference.For example, if x is declared as int ***x, then ***x++ is a valid reference in C. A more generalde�nition of OIPM takes care of this case.Consider the following reference: � � : : :�| {z }n x opOIPM will systematically mutate the above reference to the following references:� � : : : �| {z }n�1 (�x) op� � : : : �| {z }n�1 op (�x)� � : : : �| {z }n�2 (� � x) op� � : : : �| {z }n�2 op (� � x)...� (� � : : : �| {z }n�1 x) op� op (� � : : : �| {z }n�1 x)(� � : : : �| {z }n x) opop (� � : : : �| {z }n x)Multiple indirection operators are used infrequently. Hence, in most cases, we expect OIPM togenerate two mutants for each reference involving the indirection operator.10.2.6 Cast operator replacement: OCORA cast operator, referred to as cast, is used to explicitly indicate the type of an operand. Errors insuch usage are modeled by OCOR. 53

Every occurrence of a cast operator is mutated byOCOR. Casts are mutated in accordance with therestrictions listed below. These restrictions are derived from the rules of C as speci�ed in [Kern88].While reading the cast mutations described below,$ may be read as `gets mutated to'. All entitiesto the left of $ get mutated to the entities on its right, and vice-versa. The notation X� can beread as `X and all mutations of X excluding duplicates'.char $ signed char unsigned charint� float�int $ signed int unsigned intshort int long intsigned long int signed long intfloat� char�float $ double long doubleint� char�double$ char� int�float�Example 14Consider the statement: return (unsigned int) (next/65536) % 32768Sample mutants generated when OCOR is applied to the above statement are shown below.short int long intfloat doubleNote that cast operators other than those described in this section, are not mutated. For example,the casts in the following statement are not mutated:qsort((void **) lineptr, 0, nlines-1, (int(*) (void*, void*))(numeric ? numcmp :strcmp))54

Figure 8: Classi�cation of variable mutations.The decision not to mutate certain casts was motivated by their infrequent use and the low prob-ability of an error that could be modeled by mutation. For example, a cast such as void ** is notused very often and when it is used the chances of it being mistaken for, say, an int, are low.11 VARIABLE MUTATIONSIncorrect use of identi�ers can often induce program errors that remain unnoticed for quite long.Variable mutations are designed to model such errors. Fig. 8 shows the subcategories of mutantoperators in the variable mutations category. The classi�cation ensures that syntactically correctmutants are generated. It also enables the tester to control the generation of mutants. Table 5 liststhe domains of all variable mutation operators. 55

Table 5: Domain of Mutant Operators in Variable Mutations CategoryOperator or Meaning DomainsubcategoryVarr Mutate array references Arrays in expressionsVprr Mutate pointer references Pointers in expressionsVsrr Subcategory of mutant operatorsto mutate scalars Scalar variables in anexpressionVtrr Mutate structure references Structures in expressionsVASM Mutate subscripts in arrayreferences Array subscriptsVSCR Mutate components of astructure Structure componentswithin expression11.1 Scalar Variable Reference Replacement: VsrrUse of a wrong scalar variable is the error that is modeled by Vsrr.Vsrr is a set of two mutant operators: VGSR and VLSR. VGSR mutates all scalar variablereferences by using GS0f as the range. VLSR mutates all scalar variable references by using LS0fas the range of the mutant operator. Types are ignored during scalar variable replacement. Forexample, if i is an integer and x a real, i will be replaced by x and vice versa.Entire scalar references are mutated. For example, if screen is as declared above, and screen:p1:xis a reference, then the entire reference, i.e. screen:p1:x will be mutated. p1 or x, will not be mutatedseparately by any one of these two operators. The individual components of a structure may bemutated by the VSCR operator. screen itself may12 be mutated by one of the Vtrr operators.Similarly, in a reference such as �p, for p as declared above, �p will be mutated. p alone maybe mutated by one of the Vprr operators. As another example, the entire reference q [i] will bemutated, q itself may be mutated by one of the Varr operators.11.2 Array Reference Replacement: VarrIncorrect use of an array variable is the error modeled by Varr.12We often say that an entity x may be mutated by an operator. This implies that there may be no other entity yto which x can be mutated. 56

Varr is a set of two mutant operators: VGAR and VLAR. These operators mutate an arrayreference in function f using, respectively, the sets GA0f and LA0f . Types13 are preserved whilemutating array references. Thus, if a and b are, respectively, arrays of integers and pointers tointegers, a will not be replaced by b and vice-versa.11.3 Structure Reference Replacement: VtrrIncorrect use of a variable of type structure, is the error modeled by Vtrr.Vtrr is a set of two mutant operators: VGTR and VLTR. These operators mutate a structurereference in function f using, respectively, the sets GT 0f and LT 0f . Types are preserved while mutatingstructures. For example, if s and t denote two structures of di�erent types14, then s will not bereplaced by t and vice-versa.11.4 Pointer Reference Replacement: VprrIncorrect use of a pointer variable is the error modeled by Vprr.Vprr is a set of two mutant operators: VGPR and VLPR. These operators mutate a pointer refer-ence in function f using, respectively, the sets GP 0f and LP 0f . Types are preserved while performingmutation. For example, if p and q are pointers to an integer and structure, respectively, then p willnot be replaced by q, or vice-versa.11.5 Structure Component Replacement: VSCROften one may use the wrong component of a structure. VSCR models such errors15.Let s be a variable of some structure type. Let s:c1:c2 : : : :cn be a reference to one of its componentsdeclared at level n within the structure. ci; 1 � i � n denotes an identi�er declared at level iwithin s. VSCR systematically mutates each identi�er at level i, by all the other type compatibleidenti�ers at the same level.As an example, consider the following structure:13We assume name equivalence of types as de�ned in C.14We assume name equivalence for types as in C.15Structure refers to data elements declared using the struct type speci�er.57

struct example fint x;int y;char c; F 12int d [10];gstruct example s, r;The reference s:x will be mutated to s:y and s:c byVSCR. Another reference s:d [j] will be mutatedto s:x, s:y, and s:c. Note that the reference to s itself will be mutated to r by one of the Vsrroperators.Next, suppose that we have a pointer to example declared as:struct example *p;A reference such as p�>x will be mutated to p�>y and p�>c.Now, consider the following recursive structure:struct tnode fchar *word;int count;struct tnode *left;struct tnode *right; F 13gstruct tnode *q;A reference such as q�>left will be mutated to q�>right. Note that left, or any �eld of a structure,will not be mutated by any of the Vsrr operators. This is because a �eld of a structure does not58

belong to any of the global or local sets, or reference sets, de�ned earlier. Also, a reference such asq�>count will not be mutated by VSCR because there is no other compatible �eld in F 13.11.6 Array reference subscript mutation: VASMWhile referencing an element of a multidimensional array, the order of the subscripts may be incor-rectly speci�ed. VASM models this error.Let a denote an n-dimensional array, n > 1. A reference such as:a [e1][e2] : : : [en]with ei; 1 � i � n denoting a subscript expression, will be mutated by rotating the subscript list.Thus, the above reference generates the following (n� 1) mutants when VASM is applied:a [en] [e1] : : : [en�2] [en�1]a [en�1] [en] : : : [en�3] [en�2]...a [e2] [e3] : : : [en] [e1]11.7 Domain Traps: VDTRStatements containing scalar references are a�ected. VDTR provides domain coverage for scalarvariables. The domain is partitioned into three subdomains: negative values, zero, and positivevalues.VDTR mutates each scalar reference x of type t in an expression, by f(x), where f could be oneof the several functions shown in Table 6. Note that all functions listed in Table 6 for a type t areapplied on x. When any of these functions is executed, the mutant is killed. Thus, if i, j, and k arepointers to integers, then the statement: �i = �j + �k ++will be mutated by VDTR to: 59

Table 6: Functions Used by the VDTR OperatorFunction y Descriptionintroducedtrap on negative x Mutant killed if argument is negative, else return argument value.trap on positive x Mutant killed if argument is positive, else return argument value.trap on zero x Mutant killed if argument is zero, else return argument value.y x can be integer, real, or double. It is integer if the argument type is int, short, signed,or char. It is real if the argument type is float. It is double if the argument is of typedouble or long. � i = trap on zero integer(�j) + �k+ +� i = trap on positive integer(�j) + �k + +� i = trap on negative integer(�j) + �k+ +� i = �j + trap on zero integer(�k + +)� i = �j + trap on positive integer(�k + +)� i = �j + trap on negative integer(�k + +)� i = trap on zero integer(�j + �k + +)� i = trap on positive integer(�j + �k + +)� i = trap on negative integer(�j + �k + +)In the above example, �k++ is a reference to a scalar, therefore the trap function has been appliedto the entire reference. Instead, if the reference was (*k)++, then the mutation would be f(�k)++,f being any of the relevant functions. 60

11.8 Twiddle Mutations: VTWDValues of variables or expressions can often be o� the desired value by �1. The twiddle muta-tions model such errors. Twiddle mutations are useful for checking boundary conditions for scalarvariables.Each scalar reference x is replaced by pred(x) and succ(x), where pred and succ return, respectively,the immediate predecessor and the immediate successor of the current value of the argument. Whenapplied on a real argument, a small value is added (by succ) to or subtracted (by pred) from theargument. This value can be user de�ned, such as �:01, or may default to an implementation de�nedvalue.Example 15Consider the assignment: p = a + bAssuming that p, a, and b are integers, VTWD will generate the two mutants shown below.p = a+ b+ 1p = a+ b� 1Pointer variables are not mutated. However, a scalar reference constructed using a pointer ismutated as de�ned above. For example, if p is a pointer to an integer, then �p will be mutated.Some mutants may cause overow or underow errors implying that they are killed.12 CONSTANT MUTATIONSIn this section we de�ne mutant operators related to the use of constants. These operators modelcoincidental correctness and, in this sense, are similar to scalar variable replacement operators.61

12.1 Required Constant Replacement: CRCRLet I and R denote, respectively, the sets f0, 1, -1, uig and f0.0, 1.0, -1.0, urg. ui and ur denoteuser speci�ed integer and real constants, respectively. Use of a variable where an element of I or Rwas the correct choice, is the error modeled by CRCR.Each scalar reference is replaced systematically by elements of I or R. If the scalar reference isintegral, I is used. For references that are of type oating16, R is used. Reference to an entity via apointer is replaced by null. Left operands of assignment operators, ++, and �� are not mutated.Example 16Consider the statement: k = j + �pwhere k and j are integers and p is a pointer to an integer. When applied on the above statement,CRCR will generate the mutants given below.k = 0 + *pk = 1 + *pk = 1 + *p M25k = ui + *pk = j +nullA CRCR mutant encourages a tester to design at least one test case that forces the variablereplaced to take on values other than from the set I or R. Thus, such a mutant attempts to overcomecoincidental correctness of P .12.2 Constant for Constant Replacement: CccrJust as a programmer mistakenly use one identi�er for another, a possibility exists that one mayuse one constant for another. Mutant operators in the Cccr category model such errors.16The terms integral and oating have the same meaning as in [Kern88].62

Cccr is a set of two mutant operators: CGCR and CLCR. CGCR and CLCR mutate constantsin f using, respectively, the sets GCf and LCf .Example 17Suppose that a constant 5 appears in an expression, and GCf = f0; 1:99;0 c0g, then 5 will be mutatedto 0, 1.99, and 0c0 thereby producing three mutants.Pointer constant, null, is not mutated. Left operands of assignment, ++, and �� operators arealso not mutated.12.3 Constant for Scalar Replacement: CcsrUse of a scalar variable, instead of a constant, is the error modeled by mutant operators in the Ccsrcategory.Ccsr is a set of two mutant operators: CGSR and CLSR.CGSR mutates all occurrences of scalarvariables or scalar references by constants from the set GCf . CLSR is similar to CGSR except thatit uses LCf for mutation. Left operands of assignment, ++, and �� operators are not mutated.13 COMPARISON OF MUTANT OPERATORS FOR CAND FORTRAN 77C has a total of 77 mutant operators as compared to only 22 for Fortran 77. The following di�erencesbetween the two languages have been largely responsible for the complexity of the mutant operatorset of C:1. C has more primitive types than Fortran 77. Further, types in C can be mixed in a variety ofcombinations. This has resulted in a large number of Obom operators.2. The statement structure of C is recursive. Fortran 77 has single line statements. Thoughthis has not resulted in more operators being de�ned for C it has, however, made the de�ni-tion of operators such as SSDL and SRSR signi�cantly di�erent from the de�nition of thecorresponding operators in Fortran 77. 63

3. Scalar references in C can be constructed non-trivially using functions, pointers, structures,and arrays. In Fortran 77, only functions and arrays can be used to construct scalar references.This has resulted in operators like the VSCR and several others in the Vsrr category. Notethat in Fortran 77, SVR is one operator whereas in C, it is a set of several operators.4. C has a comma operator not in Fortran 77. This has resulted in the SSOM operator.5. All iterations, or the current iteration, of a loop can be terminated in C using, respectively,the break and continue statements. Fortran 77 provides no such facility. This has resultedin additional mutant operators such as SBRC, SCRB, and SBRn.Table 7 lists all the Fortran 77 mutant operators and the corresponding semantically nearest Cmutant operator14 FUTURE WORKCurrently a system for mutating C programs is under development. When completed, this systemwill be a part of the software testing environment. To speed up the testing process, we have resortedto object level mutation and parallel computing. Object level mutation lets the compiler applymutation operators so that the object code of the mutants is obtained which can then be executedby the hardware. Parallel machines, such as the Alliant FX/80 and the Ncube/7, are being toused for executing a large number of mutants in parallel. The design of an advanced debugger isalso underway. This debugger is expected to help the tester in program debugging in co-operationwith the mutation based test tool. We expect that these approaches will help make mutation basedsoftware testing for C programs a practically viable technique.ACKNOWLEDGEMENTSWe would like to thank Elizabeth Northern for all the help she rendered for the preparation of thisreport. 64

Table 7: A Comparison of Fortran 77 and C Mutant OperatorsFortran 77 Description Semantically nearestoperator C operator/categoryAAR Array reference for array reference VsrrABS Absolute value insertion VDTRACR Array reference for constantreplacement VsrrAOR Arithmetic operator replacement OAANASR Array reference for scalar variablereplacement VsrrCAR Constant for array referencereplacement CcsrCNR Comparable array name replacement VsrrCRP Constant replacement CRCRCSR Constant for scalar replacement CcsrDER DO statement END replacement OTTDSA DATA statement alterations NoneGLR GOTO label replacement SGLRLCR Logical connector replacement OBBNROR Relational operator replacement ORRNRSR Return statement replacement SRSRSAN Statement Analysis STRPSAR Scalar variable for array referencereplacement VsrrSCR Scalar for constant replacement VsrrSDL Statment deletion SSDLSRC Source constant replacement CRCRSVR Scalar variable replacement VsrrUOI Unary operator insertion OLNG, VTWDReferences[DeMi79] A.T. Acree, R.A. DeMillo, T.A. Budd and F.G. Sayward, \Mutation Analysis," Techni-cal Report, GIT-ICS-79/08, Georgia Institute of Technology, Atlanta, GA 30332, 1979.[Basi84] V.R. Basili and B.T. Perricone, \Software errors and complexity," Comm. ACM, vol.27, no. 1, pp. 42-52, Jan. 1984.[Budd78] T. A. Budd, R.A. DeMillo, R.J. Lipton, and F.G. Sayward, \The design of a prototypemutation system for program testing," Proceedings NCC 1978, 1978, Alexandria, Va,65

1978.[Budd80] T. A. Budd, R.A. DeMillo, R.J. Lipton, and F.G. Sayward, \Theoretical and empiricalstudies on using program mutation to test the functional correctness of programs,"Proceedings of the 7th ACM Symposium on Principles of Programming Languages,LasVegas, 1980.[DeMi88] B.J. Choi, R. A. DeMillo, E.W. Krauser, A.P. Mathur, R.J. Martin, A.J. Ofutt, H.Pan, and E.H. Spa�ord, \The Mothra Toolset," Proceedings of Hawaii InternationalConference on System Sciences, Hawaii, January 3-6, 1989.[DeMi87] R.A. DeMillo, D.S. Guindi, K.N. King and W.M. McCracken, \An Extended Overviewof the Mothra Testing Environment," Proceedings Second Workshop On Software Test-ing, Veri�cation, and Analysis, 19-21 July, 1988, Ban�, Canada.[DeMM87] R.A. DeMillo, W. Michael McCracken, R.J. Martin, and John F. Passafume, \SoftwareTesting and Evaluation," The Benjamin/Cummings Publishing Company, Inc. Menlopark, CA, 1987.[Howd87] William E. Howden, \Functional Program Testing and Analysis,", McGraw Hill BookCompany, New York, 1987.[Kern88] Brian Kernighan and Dennis M. Ritchie, \The C Programming Language," PrenticeHall, New Jersey, Second Edition, 1988.
66

APPENDIX A : INDEX TO MUTANT OPERATORS/CATEGORIESList of Mutant Operator Categories for ANSI COperator Description PagexOarr Array reference replacement 56Obor Binary operator replacement 48Cccr Constant for constant replacement 62Ocor Comparable operator replacement 48Ccsr Constant for scalar replacement 63Oior Incomparable operator replacement 48Oido Increment/decrement 51Vprr Pointer reference replacement 57Vsrr Scalar variable replacement 56Vtrr Structure reference replacement 57x All page numbers in this Appendix refer to the page of �rst de�nitionof the mutant operator/category.

67

List of Mutant Operators for ANSI COperator Domain Description PageCGCR Constants Constant replacement using global constants 63CLSR Constants Constant for scalar replacement using localconstants 63CGSR Constants Constant for scalar replacement using globalconstants 63CRCR Constants Required constant replacement 62CLCR Constants Constant replacement using local constants 63OAAA z arithmetic assignment mutation 49OAAN z arithmetic operator mutation 49OABA y arithmetic assignment by bitwise assignment 50OABN y arithmetic operator by bitwise operator 50OAEA y arithmetic assignment by plain assignment 50OALN y arithmetic operator by logical operator 50OARN y arithmetic operator by relational operator 50OASA y arithmetic assignment by shift assignment 50OASN y Arithmetic operator by shift operator 50OBAA y Bitwise assignment by arithmetic assignment 50OBAN y Bitwise operator by arithmetic assignment 50OBBA z Bitwise assignment mutation 49OBBN z Bitwise operator mutation 49OBEA y Bitwise assignment by plain assignment 50OBLN y Bitwise operator by logical operator 50OBNG y Bitwise negation 52OBRN y Bitwise operator by relational operator 50OBSA y Bitwise assignment by shift assignment 50OBSN y Bitwise operator by shift operator 50OCOR Casts Cast operator by cast operator 53OEAA y Plain assignment by arithmetic assignment 50OEBA y Plain assignment by bitwise assignment 50OESA y Plain assignment by shift assignment 50y See Table 4.z See Table 3. 68

List of Mutant Operators for ANSI C (contd.)Operator Domain Description PageOIPM Expresions Indirection operator precedence mutation 52OLAN y Logical operator by arithmetic operator 50OLBN y Logocal operator by bitwise operator 50OLLN z Logical operator mutation 49OLNG y Logical negation 51OLRN y Logical operator by relational operator 50OLSN y Logical operator by shift operator 50ORAN y Relational operator by arithmetic operator 50ORBN y Relational operator by bitwise operator 50ORLN y Relational operator by Logical operator 50ORRN z Relational operator mutation 49ORSN y Relational operator by shift operator 50OSAA y Shift assignment by arithmetic assignment 50OSAN y Shift operator by arithmetic operator 50OSBA y Shift assignment by bitwise assignment 50OSBN y Shift operator by bitwise operator 50OSEA y Shift assignment by plain assignment 50OSLN y Shift operator by logical operator 50OSRN y Shift operator by relational operator 50OSSA z Shift operator mutation 49OSSN z Shift assignment mutation 49SBRC break break replacement by continue 34SBRn break Break out to nth level 35SCRB continue continue replacement by break 34SDWD do-while do-while replacement by while 36SGLR goto goto label replacement 34SMVB Statement Move brace up and down 41SRSR return return replacement 32SSDL Statement Statement deletion 30SSOM Statement Sequence Operator Mutation 39STRI if Statement Trap on if condition 29STRP Statement Trap on statement execution 28y See Table 4.z See Table 3. 69

List of Mutant Operators for ANSI C (contd.)Operator Domain Description PageSMTC Iterativestatements n-trip continue 38SSWM switch statement switch statement mutation 42SMTT Iterativestatement n-<trip trap 37SWDD while while replacement by do-while 36VASM Array subscript Array reference subscript mutation 59VDTR Scalar reference Absolute value mutation 59VGAR Array reference Mutate array references using global arrayreferences 57VGLA Array reference Mutate array references using both globaland local array referencesVGPR Pointer reference Mutate pointer references using globalpointer references 57VGSR Scalar reference Mutate scalar references using global scalarreferences 56VGTR Structurereference Mutate structure references using globalstructure references 57VLAR Array reference Mutate array references using local arrayreferences 57VLPR Pointer reference Mutate pointer references using local pointerreferences 57VLSR Scalar reference Mutate scalar references using local scalarreferences 56VLTR Structurereference Mutate structure references using only localstructure references 57VSCR Strcuturecomponent Structure component replacement 57VTWD Scalar expression Twiddle mutations 61y See Table 4.z See Table 3. 70

71

72

APPENDIX C : REVISION HISTORYVersion Revision Date Remarks1 0 November 27, 1988 Original draft1 1 February 9, 19891 2 October 3, 1994

73

77
View publication statsView publication stats

https://www.researchgate.net/publication/2590658

