FLEXURA E ISOSTASIA DA LITOSFERA

Isostasia

Princípio de Arquimedes

Any floating object displaces its own weight of fluid. — Archimedes of Syracuse

Princípio de Arquimedes

Any floating object displaces its own weight of fluid. — Archimedes of Syracuse

Princípio de Arquimedes

Any floating object displaces its own weight of fluid. — Archimedes of Syracuse

Astenosfera

Isostasia da litosfera

Isostasia da litosfera

Isostasia e flexura da litosfera

Isostasia Local

Isostasia Flexural

Isostasia e flexura da litosfera

Isostasia Local

Isostasia Flexural

Isostasia e flexura da litosfera

Isostasia Local

Isostasia Flexural

Espessura elástica efetiva

 T_e : Espessura elástica efetiva da litosfera

 $T_e = 0$

$$T_e$$
 finite

$$T_e \to \infty$$

Espessura elástica efetiva

 T_e : Espessura elástica efetiva da litosfera

 $T_e = 0$

$$T_e$$
 finite

 $T_e \to \infty$

Espessura elástica efetiva

 T_e : Espessura elástica efetiva da litosfera

 $T_e = 0$

 T_e finite

 $T_e \to \infty$

Global T_e map

Watts (2007)

Global T_e map

Watts (2007)

Cadeia Havaí-Imperador

Equação de flexura

$$w = \frac{V_0 \alpha^3}{8D} e^{-x/\alpha} \left(\cos \frac{x}{\alpha} + \sin \frac{x}{\alpha} \right)$$

$$D = \frac{ET_e^3}{12(1-\nu^2)}$$

$$\alpha = \left[\frac{4D}{(\rho_m - \rho_w)g}\right]^{1/4}$$

Parâmetros do modelo

Fixos

Variáveis

 $E = 10^{11}$ Pa $\nu = 0.25$ $\rho_m = 3300 \text{ kg/m}^3$ $\rho_w = 1030 \text{ kg/m}^3$ $g = 9.8 \text{ m/s}^2$

 $V_0 = -10^{11}$ até -10^{13} N/m $T_e = 10^3$ até 10^5 m

Exercício

 Dado um perfil flexural da litosfera, criar um programa que determina o *Te* e o*VO* que melhor ajustam os dados observados.