PRO 5859 Statistical Process Monitoring

Linda Lee Ho

Department of Production Engineering University of São Paulo

2020

æ

イロト イ団ト イヨト イヨト

Outline

Attribute+Variable control chart

æ

Attribute+Variable control chart: Introduction

The aim: Improve the performance of the attribute chart in monitoring of the process mean and/or variability

Features:

- The monitoring always starts using an attribute chart
- If this chart does not signal, the process is declared in-control
- Otherwise, depending on the proposal, the process may be declared out-of-control or measurements of quality characteristics are taken on the sample units and the decision on the process depends on the value of some statistic (like sample mean/variance of these measures)

attribute+variable control charts: Introduction

GCC by attributes

- ► Mean:
 - ▶ np
 - np_X • \overline{X}_{rec} and \overline{X}^{att}
- Variance: np_{S²}

CC by attribute+variable

- Mean:
 - ► np-X
 - $np_x \overline{X}$
 - ATTRIVAR1 and ATTRIVAR2
- ► Variance: MIXS²

np-Xbar (MIXED) chart proposed by Aslam et al. (2015)

Attribute Chart:

- ► The items are classified as non-conforming if they do not meet the specification limits: Y=# of non-conforming items in a sample of n
- 2 sets of control limits: UCL_i and LCL_i , i=1, 2.
- If $Y \in [LCL_2; UCL_2]$ the process is in-control
- ▶ If $Y \notin [LCL_1; UCL_1]$ the process is out-of-control
- Otherwise, use the VARIABLE chart
- Variable chart:
 - Measure all *n* items and obtain \overline{X}
 - If X̄ ∈ [LCL₃; UCL₃] the process is in control, otherwise out-of-control

np-Xbar chart proposed by Aslam et al. (2015)

C	$n = 20 k_1 = 3.23 k_2 = 0.87 k_3 = 2.56 ARL.$	$n = 30 k_1 = 3.49 k_2 = 0.04 k_3 = 2.88 ARL_1$	n = 40 $k_1 = 3.68$ $k_2 = 0.70$ $k_3 = 2.64$ ABL	n = 50 $k_1 = 3.2$ $k_2 = 0.2$ $k_3 = 2.3$ ABL
0	200.00	200.00	200.00	200.0
0.1	87.11	70.65	61.72	51.6
0.2	31.94	21.15	15.53	11.5
0.3	12.64	7.58	5.09	3.7
0.4	5.74	3.39	2.31	1.8
0.5	3.06	1.91	1.43	1.2
0.6	1.93	1.34	1.12	1.0
0.7	1.42	1.11	1.03	1.0
0.8	1 183	1.02	1.00	1.0
0.9	1 074	1.00	1.00	1.0
1	1.02	1.00	1.00	1.0

Table 1. ARLs of the proposed control charts when $r_0 = 200$ and p = 0.10.

Figure 1: Plans for n=20, 30 and 40 with $ARL_0 = 200$ and USL=1.28

(日)

np-Xbar chart proposed by Aslam et al. (2015)

		n = 40		n = 50					
	Proposed control chart	Attribute chart $k = 3.19$	Variable chart $k = 2.93$	Proposed control chart	Attribute chart $k = 3.01$	Variable char $k = 2.93$			
С	ARL ₁	ARL ₁	ARL ₁	ARL ₁	ARL ₁	ARL ₁			
0	300.00	680.40	300.00	300.00	310.56	300.00			
0.1	91.52	176.54	92.36	72.35	80.26	76.49			
0.2	20.53	54.00	21.07	14.99	25.18	15.59			
0.3	6.17	19.51	6.68	4.44	9.61	4.81			
0.4	2.61	8.33	2.91	1.97	4.45	2.18			
0.5	1.52	4.20	1.69	1.27	2.49	1.37			
0.6	1.16	2.48	1.24	1.06	1.65	1.10			
0.7	1.04	1.69	1.07	1.01	1.27	1.02			
0.8	1.00	1.31	1.01	1.00	1.10	1.00			
0.9	1.00	1.13	1.00	1.00	1.03	1.00			
1	1.00	1.04	1.00	1.00	1.00	1.00			

Table 7. Comparisons ARL₁ of the proposed control charts when $r_0 = 300$ and p = 0.10.

Figure 2: Comparing with np and \overline{X} charts

np-Xbar chart proposed by Aslam et al. (2015)

Figure 3: Example of chart proposed by Aslam et al. (2015) = 🔍

- Use a two stages sampling scheme
- ► The sample of size n is split into two sub-samples: n_{npx} e n_X = n - n_{npx}
- Phase 1: np_x chart is built plotting the results of the classification (using a gauge go-nogo) of items of the first sub-sample
- Phase 2: If np_x chart signals, then values of the quality characteristic are taken from the units of second sub-sample and X is calculated
- ► If X also signals, then the process is declared out-of-control. An adjustment on the process is required, otherwise, the process goes on

- Parameters of the combined $np_x \overline{X}$ chart:
 - np_x chart: warning limits of the device (LWL;UWL), control limit (UCL_{np_x})
 - \overline{X} chart: Control limits: $LCL_{\overline{X}}$ and $UCL_{\overline{X}}$
- Objective Function:

LWL°; UWL°; UCL
$$_{np_{x}}^{o}$$
; UCL $_{\overline{X}}^{o}$ = argmin(ARL $_{1}$ = $rac{1}{1-eta}$)
suject to ARL $_{0}$ = $rac{1}{lpha}$ = au

ATTENTION: Expression considering only increases in the process mean from μ_o to μ_1 ; LWL set at $-\infty$, UWL is searched

$$\alpha = P(Y > UCL_{np_x}|n_{np_x}, p_0) \times P(\overline{X} > UCL_{\overline{X}}|\mu_0, n_{\overline{X}})$$

 $\alpha = \alpha_{np_x} \times \alpha_{\overline{X}}$

 $p_0 = P(X > \mu_0 + k_w \sigma | \mu_0)$, the probability of an item be disapproved.

 $\beta = 1 - P(Y > UCL_{np_{X}}|n_{np_{X}}, p_{1}) \times P(\overline{X} > UCL_{\overline{X}}|\mu_{1} = \mu_{0} + \delta\sigma, n_{\overline{X}})$

where $p_1 = P(X > \mu_0 + k_w \sigma | \mu_1 = \mu_0 + \delta \sigma)$,

▶ Some plans - with ARL_0 =370 and shift δ =0.25

Table I.	ATS of some comp	etitors for \overline{X} cont	rol chart: ARL ₀ =370) and $\delta = 0.25$			
	\overline{X}		np _x		Com	bined $np_x - \overline{X}$	
n _x	ATS _x	n _{npx}	ATS _{np_x}	<i>n</i> ₁	n ₂	ASS	$ATS_{np_x-\overline{x}}$
3	105.7	5	93.95	2	2	2.12	101.76
				3	2	3.06	93.36
4	88.4	6	84.86	2	3	2.32	87.51
				4	2	4.05	83.92
				3	3	3.27	80.79
				4	3	4.16	73.94
5	75.75	8	70.27	4	3	4.16	73.94
				3	4	3.54	70.88
				5	3	5.10	68.69
				4	4	4.30	65.74
				5	4	5.21	61.68
6	66.06	9	64.91	4	4	4.30	65.74
				3	5	3.90	62.90
				6	3	6.09	63.76
				5	4	5.21	61.68
				4	5	4.54	58.93
				6	4	6.19	57.50
				5	5	5.45	55.70
				6	5	6.33	52.16

 Some plans - comparing AIC, unit cost equal for attribute and variable inspection

Table V.	Table V. AIC of some competitors for \overline{X} control chart: $ARL_0 = 370$ and $\delta = 0.25$											
	X		np _x		Combined $np_x - \overline{X}$							
n _x	$AIC_{\overline{\chi}}$	n _{npx}	AIC _{npx}	<i>n</i> ₁	n ₂	ASS	$AIC_{np_x-\overline{X}}$					
3	15	5	25	2	2	2.12	10.60					
				3	2	3.06	18.40					
4	20	6	30	2	3	2.32	11.62					
				4	2	4.05	20.27					
				3	3	3.27	16.35					
				4	3	4.16	20.81					
5	25	8	40	4	3	4.16	20.81					
				3	4	3.54	17.70					
				5	3	5.10	25.54					
				4	4	4.30	21.54					
				5	4	5.21	26.08					
6	30	9	45	4	4	4.30	21.54					
				3	5	3.90	16.92					
				6	3	6.09	30.45					
				5	4	5.21	26.08					
				4	5	4.54	27.70					
				6	4	6.19	30.98					
				5	5	5.45	27.25					

Features of ATTRIVAR chart:

- Development of a chart with a similar performance of \overline{X} chart
- Low operational cost
- 2 stages of inspection: by attributes and variables
- The most of times the decision is taken considering only the results of the attribute inspection
- A restriction for the proportion of times of variable inspection is included

Figure 7: Inspection Procedure

э

・ロト ・回ト ・ヨト ・ヨト

Figure 8: Example - ATTRIVAR1

< ロ > < 同 > < 回 > < 回 >

Figure 9: Example - ATTRIVAR2

▶ ∢ ⊒ ▶

► Parameters of the chart:

- Device: Discriminant limits LDL, UDL
- Attribute chart: Control limit CL_y; Warning limit w
- Variable chart: Control limits UCL_X and LCL_X
- Restrictions:
 - $ARL_0 = \tau$
 - ▶ % of time that measurements of X is taken when the process is in-control $\%\overline{X}_{Max} \le \pi$
- ► Objective Function: (LDL^o, UDL^o, CL^o_y, w^o, UCL^o_X, LCL^o_X) = arg min (ARL₁)
- Parameters searched by genetic algorithm due to the complexity

Table 1

ATTRIVAR charts proposed by Ho & Aparisi (2016)

ARL comparison for two ATTRIVAR-2 charts optimized for different mean shifts.										
Shift (δ)	0	0.2	0.5	0.7	1.0	1.5	2.0	2.5	3.0	
Chart A, $\delta^* = 0.5$ Chart B, $\delta^* = 2$	370 370	206.7 278.3	43.5 84.7	17.6 32.9	6.4 9.5	2.7 2.6	2.1 1.5	1.9 1.1	1.6 1.0	

Figure 10: Some plans - ATTRIVAR2

э

《口》《聞》《臣》《臣》

-					
Sample size, n	%X _{max}	Shift, 8*	X chart	ATTRIVAR-1	ATTRIVAR-2
3	25	0.25	184.06	189.84 (3.1%)	209.53 (13.8%)
3	25	0.5	60.64	61.29 (1.1%)	72.39 (19.4%)
3	25	1	9.76	10.19 (4.4%)	11.49 (17.7%)
3	25	1.25	4.95	5.16 (4.2%)	6.06 (22.4%)
3	25	1.5	2.91	3 (3.1%)	3.78 (29.9%)
3	25	2	1.47	1.51 (2.7%)	1.98 (34.7%)
3	15	0.25	184.06	189.84 (3.1%)	209.53 (13.8%)
3	15	0.5	60.64	61.29 (1.1%)	72.39 (19.4%)
3	15	1	9.76	10.19 (4.4%)	11.49 (17.7%)
3	15	1.25	4.95	5.2 (5.1%)	6.06 (22.4%)
3	15	1.5	2.91	3.03 (4.1%)	3.78 (29.9%)
3	15	2	1.47	1.61 (9.5%)	1.98 (34.7%)
3	5	0.25	184.06	192.85 (4.8%)	219.49 (19.2%)
3	5	0.5	60.64	64.78 (6.8%)	78.1 (28.8%)
3	5	1	9.76	11.65 (19.4%)	12.38 (26.8%)
3	5	1.25	4.95	5.83 (17.8%)	6.49 (31.1%)
3	5	1.5	2.91	3.36 (15.5%)	3.87 (33%)
3	5	2	1.47	1.73 (17.7%)	2.07 (40.8%)

Table 2

ARL comparison of ATTRIVAR control chart versus standard X chart.

Figure 11: ATTRIVAR versus \overline{X} , n=3 and $\%\overline{X}_{Max} = 25$; 15; 5

Sample size, n	%X _{max}	Shift, δ^*	X chart	ATTRIVAR-1	ATTRIVAR-2
10	25	0.25	73.21	79.55 (8.7%)	92.39 (26.2%)
10	25	0.5	12.82	14.18 (10.6%)	18.11 (41.3%)
10	25	1	1.77	1.99 (12.4%)	3.04 (71.8%)
10	25	1.25	1.21	1.36 (12.4%)	1.99 (64.5%)
10	25	1.5	1.04	1.06 (1.9%)	1.63 (56.7%)
10	25	2	1	1.02 (2%)	1.09 (9%)
10	15	0.25	73.21	77.82 (6.3%)	99.76 (36.3%)
10	15	0.5	12.82	14.31 (11.6%)	20.28 (58.2%)
10	15	1	1.77	2.01 (13.6%)	3.11 (75.7%)
10	15	1.25	1.21	1.36 (12.4%)	2.07 (71.1%)
10	15	1.5	1.04	1.08 (3.8%)	1.63 (56.7%)
10	15	2	1	1 (0%)	1.09 (9%)
10	5	0.25	73.21	89.55 (22.3%)	119.62 (63.4%)
10	5	0.5	12.82	19.27 (50.3%)	24.77 (93.2%)
10	5	1	1.77	2.66 (50.3%)	3.65 (106.2%)
10	5	1.25	1.21	1.76 (45.5%)	2.36 (95%)
10	5	1.5	1.04	1.3 (25%)	1.66 (59.6%)
10	5	2	1	1.04 (4%)	1.16 (16%)

Figure 12: ATTRIVAR versus \overline{X} , n=10 and $\%\overline{X}_{Max} = 25$; 15; 5

э

Table 5 ATTRIVAR versus the np_x -X control chart.

	Designs	of the $np_x \overline{X}$;	ATTRIVAR-1 and	ATTRIVAR-2 con	trol charts			
	np _x -X c	ontrol chart			ATTRIVAR-1: R	C ₁	ATTRIVAR-2: R	<i>C</i> ₂
Cases	n	<i>n</i> 2	ASS	% X c	% X max =5	% X max =15	% Xmax =5	$\%\overline{X}_{max} = 15$
$\delta^* = 0.25; n = 3$					%X ₁ =3.64	% X 1=7.74	%X ₂ =2.38	%X ₂ =2.38
	2	3	2.32	10.7	61.71	91.00	86.44	84.16
	3	2	3.06	0.3	123.43	182.00	172.88	168.33
$\delta^* = 1.0; n = 5$					% ₹ 1=3.93	$\% \overline{X}_{1} = 7.18$	$\% \overline{X}_{2} = 4.47$	% ₹ 2=13.98
	4	5	4.54	10.80	60.34	82.03	62.48	223.52
	5	4	5.21	5.30	97.07	131.96	100.51	198.71

Figure 13: ATTRIVAR versus $np_x - \overline{X}$

Table 4

ATTRIVAR versus mixed control chart, n = 20.

			Values of	f Shifts ð*		
			0.2	0.4	0.6	1.0
MIXED		% <u>₹</u> M	71.44	71.44	71.44	71.44
		ARL	53.31	8.05	2.34	1.03
ATTRIVAR1	$\%\overline{X}_{max}=25$	$\%\overline{X}_1$	10.57	19.43	10.44	11.08
		ARL	56.97	10.28	3.78	1.28
		RC _{M1}	20.37	31.96	20.20	21.04
	$\%\overline{X}_{max}=15$	$\%\overline{X}_1$	10.57	10.61	10.66	10.78
		ARL	56.97	11.89	4.42	1.35
		RC _{M1}	20.37	20.42	20.49	20.64
	$%\overline{X}_{max}=5$	$\%\overline{X}_1$	0.85	1.58	3.34	3.29
		ARL	145.91	30.06	6.34	1.90
		RC _{M1}	7.65	8.61	10.91	10.85
ATTRIVAR2	% ∏ =25	$\%\overline{X}_2$	19.43	19.43	19.43	24.43
		ARL	79.23	17.43	4.84	1.90
		RC _{M2}	30.69	30.69	30.69	36.90
	$\%\overline{X}_{max}=15$	$\%\overline{X}_2$	10.66	10.65	10.66	12.04
		ARL	89.16	17.45	5.46	2.00
		RC _{M2}	19.79	19.78	19.79	21.50
	$\%\overline{X}_{max}=5$	$\%\overline{X}_2$	3.67	3.66	4.28	3.61
		ARL	119.63	24.40	7.68	2.53
		RCM2	11.10	11.09	11.86	11.03

Figure 14: ATTRIVAR versus MIXED

《口》《聞》《臣》《臣》

About MIX S^2 chart: Introduction

- The aim: to develop a chart to monitor the variability with a better performance than np_{S²} chart
- MIX S² chart: Inspection in two stages
- Stage 1: Attribute chart is used
- Stage 2: If this chart signals, a second variable chart is built
- Decision Criterion: If both charts signal, the process is said out-of-control

Figure 15: Inspection Procedure

э

・ロト ・回ト ・ヨト ・ヨト

Figure 16: An example of MIX S^2 chart

э

∃ ► < ∃ ►</p>

Image: A matrix

- Parameters of the chart: # of approved items A₁; # of disapproved items B₁; Discriminating limits UDL and LDL
- Objective Function:

 $(A_1^o, B_1^o, \textit{UDL}^o, \textit{LDL}^o) = \textit{argminARL}_1(A_1, B_1, \textit{UDL}, \textit{LDL})$

subject to:

$$ARL_{0} = \frac{1}{\alpha} = 370$$
$$ARL_{1}^{MixS^{2}} < ARL_{1}^{S^{2}}$$
$$\alpha_{2} = \frac{\alpha}{\alpha_{1}}$$
$$ASC^{MixS^{2}} < ASC^{S^{2}}$$

ASC=average sampling cost; α_1 and α_2 , errors of type I of charts at stages 1 and 2; values of α , α_1 and α_2 in the interval [0; 1]

	F					()					
Plans	A_1	B_1	LDL	UDL	α_1	α_2	ARL ₁	ANI ₀	ANI ₁	Number	Cost(\$)
A	20	10	8.49	11.51	0.0028	0.9763	2.391	23.011	26.547	2	29.12
в	14	4	8.00	12.00	0.0063	0.4266	6.217	14.654	16.229	4	20.75
С	5	2	7.72	12.28	0.0072	0.3741	8.889	5.113	5.574	2	6.17
D	6	2	7.48	12.52	0.0028	0.9708	7.773	6.069	6.457	2	7.25
Е	13	9	8.59	11.41	0.0300	0.9025	3.891	15.449	19.133	3	21.70

Table 1 Some plans of MIX S^2 control chart with no more than (a+b-1) inspected units and shift $\delta = 1.5$

Figure 17: Examples of plans of MIX S^2 chart

3 x 3

ble 2 Optimal plans of MIX S ² control chart												
A_1	B_1	LDC	UDC	α_1	α_2	LC	ARL ₁	ANI ₀	ANI1	Number	$ARL_1 \text{ of } S^2 (n=5)$	Max ASC MIX S ²
6	3	7.93	12.07	0.00280	0.9810	0.0006	106.616	6.2388	6.3772	2	106.9340	\$6.434
6	3	7.93	12.07	0.00280	0.9810	0.0006	20.293	6.2388	6.7128	2	21.0908	\$7.014
6	2	7.48	12.52	0.00278	0.9708	0.0013	7.773	6.0692	6.4574	2	8.0275	\$7.253
6	2	7.48	12.52	0.00278	0.9708	0.0013	4.108	7.9959	7.5864	2	4.3649	\$8.091
7	1	6.46	13.54	0.00280	0.9651	0.0019	2.420	6.9972	6.4359	2	2.5153	\$9.000
	e 2 A ₁ 6 6 6 6 7	$ \begin{array}{cccc} e 2 & \text{Optin} \\ \hline A_1 & B_1 \\ \hline 6 & 3 \\ 6 & 3 \\ 6 & 2 \\ 6 & 2 \\ 7 & 1 \end{array} $	e2 Optimal plan A_1 B_1 LDC 6 3 7.93 6 2 7.48 6 2 7.48 7 1 6.46	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		e 2 Optimal plans of MDX S ² control chart 41 B1 LDC UDC α1 α2 LC 6 3 7.93 12.07 0.00280 0.9810 0.0006 6 3 7.93 12.07 0.00280 0.9810 0.0006 6 2 7.48 12.52 0.00278 0.9708 0.0013 6 2 7.48 12.52 0.00278 0.9708 0.0013 7 1 6.46 13.54 0.00280 0.9651 0.0019	e2 Optimal plans of MIX S ² control chart 41 B1 LDC UDC α1 α2 LC ARL1 6 3 7.93 12.07 0.00280 0.9810 0.0006 106.616 6 3 7.93 12.07 0.00280 0.9810 0.0006 20.293 6 2 7.48 12.52 0.00278 0.9708 0.0013 7.108 7 1 6.46 13.54 0.00280 0.9651 0.0019 2.420	e2 Optimal plans of MIX S ² control chart d1 B1 LDC UDC α1 α2 LC ARL1 ANI6 6 3 7.93 12.07 0.00280 0.9810 0.0006 106.616 6.2388 6 2 7.48 12.52 0.00278 0.9708 0.0013 7.773 6.6692 6 2 7.48 12.52 0.00278 0.9708 0.0013 7.173 6.0692 7 1 6.46 13.54 0.00280 0.9651 0.0019 2.420 6.9972	e2 Optimal plans of MIX S ² control chart 41 B1 LDC UDC α1 α2 LC ARL1 ANI6 ANI1 6 3 7.93 12.07 0.00280 0.9810 0.0006 106.616 6.2388 6.3772 6 3 7.93 12.07 0.00280 0.9810 0.0006 20.293 6.2388 6.7128 6 2 7.48 12.52 0.00278 0.9708 0.0013 7.773 6.0692 6.4574 6 2 7.48 12.52 0.00278 0.9708 0.0013 7.108 6.9979 7.5844 7 1 6.46 13.54 0.00280 0.9651 0.0019 2.420 6.9972 6.4359	e2 Optimal plans of MIX S ² control chart 41 B1 LDC UDC α1 α2 LC ARL1 ANI0 ANI1 Number 6 3 7.93 12.07 0.00280 0.9810 0.0006 106.616 6.2388 6.3772 2 6 3 7.93 12.07 0.00280 0.9810 0.0006 20.293 6.2388 6.17128 2 6 2 7.48 12.52 0.00278 0.9708 0.0013 7.173 6.0692 6.4574 2 7 1 6.46 13.54 0.00280 0.9651 0.0019 2.420 6.9972 6.4359 2	e 2 Optimal plans of MIX S ² control chart 41 B1 LDC UDC α1 α2 LC ARL1 ANI0 ANI1 Number ARL1 of S ² (n=5) 6 3 7.93 12.07 0.00280 0.9810 0.0006 106.616 6.2388 6.3772 2 106.9340 6 3 7.93 12.07 0.00280 0.9810 0.0006 20.293 6.2388 6.7128 2 21.0908 6 2 7.48 12.52 0.00278 0.9708 0.0013 7.773 6.0692 6.4574 2 8.0275 6 2 7.48 12.52 0.00278 0.9708 0.0013 7.173 6.0692 6.4574 2 4.3649 7 1 6.46 13.54 0.00280 0.9651 0.0019 2.420 6.9972 6.4359 2 2.5153

Figure 18: Best plans of MIX S^2 chart

∃ ► < ∃ ►</p>

Image: A matrix

c _a	C _m	A_1	B_1	MIX S ²	$S^2 (n=5)$
1	4	7	1	\$9.000	\$20.000
1	3.5	7	1	\$8.580	\$17.500
1	3	7	1	\$8.150	\$15.000
1	2.5	7	1	\$7.720	\$12.500
1	2	7	1	\$7.290	\$10.000
1	1.5	7	1	\$7.000	\$7.500
1	1.45	7	1	\$7.000	\$7.250
1	1.4	7	1	\$6.999	\$7.000
1	1.35	6	2	\$6.963	\$6.750
1	1.25	6	2	\$6.870	\$6.250

Table 3 Average inspection cost of MIX S^2 and S^2 (n=5) as functions of c_a and c_m

Figure 19: Comparing the plans MIX S² chart with its main competitor economical scenario: c₂=inspection cost by attribute: c₂=measurement² Partial list of papers: CC by attribute or mixture (attribute+variable) in the monitoring of the process mean and/or variability

Only attribute

- ► Haridy et al. (2014)
- Ho & Costa (2011)
- Ho & Quinino (2013)
- Ho & Costa (2015)
- Melo et al. (2017)
- Quinino et al. (2015)
- Stevens (1948)
- Steiner et al. (1994, 1996)
- Wu & Jiao (2008)
- Wu et al. (2009)

Mixtures: attribute+variable

- Aslam et al. (2015)
- Ho & Aparisi (2016)
- Sampaio et al. (2013)
- Ho & Quinino (2016)

Questions for Seminars: Attribute CC to monitor process mean and variability

- Some contributors of attribute CC to monitor process mean and variability
 - Steiner, S., Geyer, P., and Wesolowsky, G. (1994). Control charts based on grouped data.International Journal of Production Research, 32(1):75–91.
 - Steiner, S., Geyer, P., and Wesolowsky, G. (1996). Shewhart control charts to detect mean and standard deviation shifts based on grouped data. Quality and reliability engineering international, 12:345–353.
 - Stevens, W. L. (1948). Control by gauging. Journal of the Royal Statistical Society, 10(1):54–108.
 - Wu, Z. and Jiao, J. (2008). A control chart for monitoring process mean based on attribute inspection. International Journal of Production Research, 46:4331–4337.
 - Wu, Z., Khoo, M., Shu, L., and Jiang, W. (2009). An np control chart for monitoring the mean of a variable based on ³

Question for Seminars: Attribute CC to monitor process mean

- List the common points and differences of these papers
- How to plan attribute chart to have equal performance (in term of ARL, Sampling Cost) of a variable chart?

- Aslam, M., Azam, M., N, K. & Jun, C. (2015), 'A mixed control chart to monitor the process', **53**(15), 4684–4693.
- Haridy, S., Wu, Z., Lee, K. & A, R. (2014), 'An attribute chart for monitoring the process mean and variance', *International Journal* of Production Research 52(11), 3366–3380.
- Ho, L. & Costa, A. (2011), 'Monitoring a wandering mean with an np chart', *Production* **21**, 254–258.
- Ho, L. L. & Aparisi, F. (2016), 'Attrivar: Optimized control charts to monitor process mean with lower operational cost',

International Journal of Production Economics 182, 472–483.

- Ho, L. L. & Costa, A. F. B. (2015), 'Attribute charts for monitoring the mean vector of bivariate processes', *Quality and Reliability Engineering International* **31**(4), 683–693. DOI: 10.1002/qre.1628.
- Ho, L. L. & Quinino, R. C. (2013), 'An attribute control chart for monitoring the variability of a process', *International Journal of Production Economics* **45**, 263–267.

- Ho, L. L. & Quinino, R. d. C. (2016), 'Combining attribute and variable data to monitor process variability: MIX s² control chart', Int J Adv Manuf Technol 87. DOI 10.1007/s00170-016-8702-5.
- Melo, M. S., Ho, L. L. & Medeiros, P. G. (2017), 'Max D: An attribute control chart to monitor a bivariate process mean', *International Journal of Advanced Manufacturing Technology* DOI 10.1007/500170-016-9368-8, to appear.
- Quinino, R. C., Ho, L. L. H. & Trindade, A. L. G. (2015), 'Monitoring the process mean based on attribute inspection when a small sample is available', *Journal of the Operational Research Society* **66**(11), 1860–1867.
- Sampaio, E., Ho, L. & Medeiros, P. (2013), 'A combined $np_x\overline{X}$ -control chart to monitor the process mean in two-stage sampling', *Quality and Reliability Engineering International* **30**, 1003–1013.

Steiner, S., Geyer, P. & Wesolowsky, G. (1994), Control charts 📱 🔊

based on grouped data', *International Journal of Production Research* **32**(1), 75–91.

- Steiner, S., Geyer, P. & Wesolowsky, G. (1996), 'Shewhart control charts to detect mean and standard deviation shifts based on grouped data', *Quality and Reliability Engineering International* 12, 345–353.
- Stevens, W. L. (1948), 'Control by gauging', Journal of the Royal Statistical Society 10(1), 54–108.
- Wu, Z. & Jiao, J. (2008), 'A control chart for monitoring process mean based on attribute inspection', *International Journal of Production Research* 46, 4331–4337.
- Wu, Z., Khoo, M., Shu, L. & Jiang, W. (2009), 'An np control chart for monitoring the mean of a variable based on an attribute inspection', *International Journal of Production Economics* **121**, 141–147.

くロ と く 同 と く ヨ と 一