
THE AMAZING $1
MICROCONTROLLER

A new series that explores 21 di erent microcontrollers — all less than $1 — to help familiarize

you with all the major ecosystems out there.

https://jaycarlson.net/
Gustavo
Highlight

Gustavo
Typewriter
Texto completo em: https://jaycarlson.net/microcontrollers/

As an embedded design consultant, the diverse collection of projects on my desk need an equally-diverse collection of microcontroller
architectures that have the performance, peripheral selection, and power numbers to be the backbone of successful projects. At the same time,
we all have our go-to chips — those parts that linger in our toolkit after being picked up in school, through forum posts, or from previous
projects.

In 2017, we saw several new MCUs hit the market, as well as general trends continuing in the industry: the migration to open-source, cross-
platform development environments and toolchains; new code-generator tools that integrate seamlessly (or not so seamlessly…) into IDEs;
and, most notably, the continued invasion of ARM Cortex-M0+ parts into the 8-bit space.

I wanted to take a quick pulse of the industry to see where everything is — and what I’ve been missing while backed into my corner of
DigiKey’s web site.

It’s time for a good ol’ microcontroller shoot-out.

Gustavo
Highlight

THE RULES

While some projects that come across my desk are complex enough to require a hundreds-of-MHz microcontroller with all the bells and
whistles, it’s amazing how many projects work great using nothing more than a $1 chip — so this is the only rule I established for this
microcontroller review. To get technical: I purchased several different MCUs — all less than a $1 — from a wide variety of brands and
distributors. I’m sure people will chime in and either claim that a part is more than a dollar, or that I should have used another part which can
be had for less than a dollar. I used a price-break of 100 units when determining pricing, and I looked at typical, general suppliers I personally
use when shopping for parts — I avoided eBay/AliExpress/Taobao unless they were the only source for the parts, which is common for devices
most popular in China and Taiwan.

I wanted to explore the $1 pricing zone speci�cally because it’s the least amount of money you can spend on an MCU that’s still general-
purpose enough to be widely useful in a diverse array of projects.

Any cheaper, and you end up with 6- or 8-pin parts with only a few dozen bytes of RAM, no ADC, nor any peripherals other than a single timer
and some GPIO.

Any more expensive, and the �eld completely opens up to an overwhelming number of parts — all with heavily-specialized peripherals and
connectivity options.

These MCUs were selected to represent their entire families — or sub-families, depending on the architecture — and in my analysis, I’ll offer
some information about the family as a whole.

If you want to scroll down and �nd out who the winner is, don’t bother — there’s really no sense in trying to declare the “king of $1 MCUs” as
everyone knows the best microcontroller is the one that best matches your application needs. I mean, everyone knows the best
microcontroller is the one you already know how to use. No, wait — the best microcontroller is de�nitely the one that is easiest to prototype
with. Or maybe that has the lowest impact on BOM pricing?

I can’t even decide on the criteria for the best microcontroller — let alone crown a winner.

1

Gustavo
Highlight

What I will do, however, is offer a ton of different recommendations for different users at the end. Read on!

THE CRITERIA

This microcontroller selection guide will have both qualitative and quantitative assessments. Overall, I’ll be looking at a few different
categories:

PARAMETRICS, PACKAGING, AND PERIPHERALS

Within a particular family, what is the range of core speed? Memory? Peripherals? Price? Package options?

Some microcontroller families are huge — with hundreds of different models that you can select from to �nd the perfect MCU for your
application. Some families are much smaller, which means you’re essentially going to pay for peripherals, memory, or features you don’t need.
But these have an economies-of-scale effect; if we only have to produce �ve different MCU models, we’ll be able to make a lot more of each of
them, driving down the price. How do different MCU families end up on that spectrum?

Package availability is another huge factor to consider. A professional electronics engineer working on a wearable consumer product might be
looking for a wafer-level CSP package that’s less than 2×2 mm in size. A hobbyist who is uncomfortable with surface-mount soldering may be
looking for a legacy DIP package that can be used with breadboards and solder protoboards. Different manufacturers choose packaging
options carefully, so before you dive into an architecture for a project, one of the �rst things to consider is making sure that it’s in a package
you actually want to deal with.

Gustavo
Highlight

Gustavo
Highlight

Gustavo
Highlight

Peripherals can vary widely from architecture to architecture. Some MCUs have extremely powerful peripherals with multiple interrupt
channels, DMA, internal clock generators, tons of power con�guration control, and various clocking options. Others are incredibly simple —
almost basic. Just as before, different people will be looking for different things (even for different applications). It would be a massive
undertaking to go over every single peripheral on these MCUs, but I’ll focus on the ones that all MCUs have in common, and point out �ne-
print “gotchas” that datasheets always seem to glance over.

DEVELOPMENT EXPERIENCE

Any microcontroller review or selection guide should include a discussion of the overall development environment and experience.

While this is where things get subjective and opinion-oriented, I’ll attempt to present “just the facts” and let you decide what you care about.
The main source of subjectivity comes from weighing these facts appropriately, which I will not attempt to do.

IDEs / SDKs / Compilers: What is the manufacturer-suggested IDE for developing code on the MCU? Are there other options? What compilers
does the microcontroller support? Is the software cross-platform? How much does it cost? These are the sorts of things I’ll be exploring while
evaluating the software for the MCU architecture.

Platform functionality and features will vary a lot by architecture, but I’ll look at basic project management, source-code editor quality,
initialization code-generation tools, run-time peripheral libraries, debugging experience, and documentation accessibility.

I’ll focus on manufacturer-provided or manufacturer-suggested IDEs and compilers (and these will be what I use to benchmark the MCU).
There are more than a dozen compilers / IDEs available for many of these architectures, so I can’t reasonably review all of them. Feel free to
express your contempt of my methodology in the comments section.

Programmers / debuggers / emulators / dev boards: What dev boards and debuggers are available for the ecosystem? How clunky is the
debugging experience? Every company has a slightly different philosophy for development boards and debuggers, so this will be interesting to
compare.

Gustavo
Highlight

PERFORMANCE

I’ve established three different code samples I’ll be using to benchmark the parts in this microcontroller review; I’ll be measuring quantitative
parameters like benchmark speed, clock-cycle ef�ciency, power ef�ciency, and code-size ef�ciency.

WHILE(1) BLINK

For this test, I’ll toggle a pin in a while() loop. I’ll use the fastest C code possible — while also reporting if the code generator tool or peripheral
libraries were able to produce ef�cient code. I’ll use bitwise complement or GPIO-speci�c “toggle” registers if the platform supports it,
otherwise, I’ll resort to a read-modify-write operation. I’ll report on which instructions were executed, and the number of cycles they took.

What this tests: This gives some good intuition for how the platform works — because it is so low-level, we’ll be able to easily look at the
assembly code and individual instruction timing. Since many of these parts operate above �ash read speed, this will allow us to see what’s
going on with the �ash read accelerator (if one exists), and as a general diagnostic / debugging tool for getting the platform up and running at
the proper speed. This routine will obviously also test bit manipulation performance (though this is rarely important in general-purpose
projects).

64-SAMPLE BIQUAD FILTER

This is an example of a real-world application where you often need good, real-time performance, so I thought it would be a perfect test to
evaluate the raw processing power of each microcontroller. For this test, I’ll process 16-bit signed integer data through a 400 Hz second-order
high-pass �lter (Transposed Direct Form II implementation, for those playing along at home), assuming a sample rate of 8 kHz. We won’t
actually sample the data from an ADC — instead, we’ll process 64-element arrays of dummy input data, and record the time it takes to
complete this process (by wiggling a GPIO pin run into my 500 MHz Saleae Logic Pro 16 logic analyzer).

In addition to the samples-per-second measure of raw processing power, I’ll also measure power consumption, which will give us a
“nanojoule-per-sample” measure; this will help you �gure out how ef�cient a processor is. While I’ve traditionally used µCurrent units for this,

https://www.saleae.com/
https://www.eevblog.com/projects/ucurrent/
Gustavo
Highlight

Gustavo
Highlight

Gustavo
Highlight

I ended up using a Silicon Labs EFM8 Sleepy Bee STK — I ripped the target processor off the board, turning it into a $30 time-domain
logarithmic power meter. If you’re interested in more information, check out my EFM8 review, which has the details of these excellent tools.

What this tests: Memory and 16-bit math performance per microamp, essentially. The 8-bit MCUs in our round up are going to struggle with
this pretty hardcore — it’ll be interesting to see just how much better the 16 and 32-bit MCUs do. Like it or hate it, this will also evaluate a
compiler’s optimization abilities since different compilers implement math routines quite differently.

DMX-512 RGB LIGHT

DMX-512 is a commonly-used lighting protocol for stage, club, and commercial lighting systems. Electrically, it uses RS-485; the protocol uses
a long BREAK message at the beginning, followed by a “0” and then 511 bytes of data, transmitted at 250 kbaud. In this test, I’ll implement a
DMX-512 receiver that directly drives a common-anode RGB LED. I will do this with whatever peripheral library or code-generator tool the
manufacturer provides (if any at all).

While you should really look for a precisely-timed break message, since this is only for prototyping, I’ll detect the start-of-frame by looking for
an RX framing error (or a “break” signal, as some UARTs support LIN).

I’ll minimize power consumption by lowering the frequency of the CPU as much as possible, using interrupt-based UART receiver routines,
and halting or sleeping the CPU. I’ll report the average power consumption (with the LED removed from the circuit, of course). To get a rough
idea of the completeness and quality of the code-generator tools or peripheral libraries, I’ll report the total number of statements I had to write,
as well as the �ash usage.

What this tests: This is a sort of holistic test that lets me get into the ecosystem and play around with the platform. This stuff is the bread and
butter of embedded programming: interrupt-based UART reception with a little bit of �air (framing error detection), multi-channel PWM
con�guration, and nearly-always-halted state-machine-style CPU programming. Once you have your hardware set up and you know what
you’re doing (say, after you’ve implemented this on a dozen MCUs before…), with a good code-gen tool or peripheral library, you should be able
to program this with just a few lines of code in an hour or less — hopefully without having to hit the datasheet much at all.

Test notes: I’m using FreeStyler to generate DMX messages through an FTDI USB-to-serial converter (the program uses the Enttec Open
DMX plugin to do this). As my FTDI cable is 5V, I put a 1k resistor with a 3.3V zener diode to to ground, which clamps the signal to 3.3V. The

https://www.silabs.com/products/development-tools/mcu/8-bit/slstk2010a-efm8-sleepy-bee-starter-kit
https://jaycarlson.net/pf/silicon-labs-efm8/
http://freestylerdmx.be/
https://www.enttec.com/us/products/controls/dmx-usb/open-dmx-usb/
Gustavo
Highlight

Gustavo
Highlight

Gustavo
Highlight

Gustavo
Highlight

zener clamp isn’t there to protect the MCU — all of these chips tested have diode catches to protect from over-voltage — but rather, so that the
MCU doesn’t inadvertently draw power from the Rx pin, which would ruin my current measurement results.

EVALUATION CODE

All code I used to evaluate these parts in this microcontroller selection guide is available on my microcontroller-test-code GitHub repo. Check
it out, fork it, submit patches, and keep me honest — if your results differ from mine, let’s get this post updated.

THE CONTENDERS

This page will compare the devices, development tools, and IDEs all together. However, to prevent this article from getting overwhelmingly
long, I’ve created review pages for each device that cover way more details about the architecture — along with more complete testing notes,
different benchmarking variations, and in-depth assessment. If an architecture strikes your interest, you should de�nitely check out the full
review below.

https://github.com/jaydcarlson/microcontroller-test-code
Gustavo
Highlight

Gustavo
Highlight

ATMEL TINYAVR

Part: ATtiny1616

The new-for-2017 tinyAVR line

includes seven parts with XMEGA-

style peripherals, a two-cycle 8×8

multiplier, the new UPDI one-wire

debug interface, and a 20 MHz

oscillator that should shoot some

energy into this line of entry-level

AVR controllers that was looking

quite long in the tooth next to other

8-bit parts.

ATMEL MEGAAVR

Part: ATmega168PB

The AVR earned its hobbyist-friendly

badge as the first MCU programmed

in C with open-source tools. The “B”

version of the classic ATmega168

takes a price cut due to a die-shrink,

but little else has changed, including

the anemic 8 MHz internal oscillator

— and, like the tinyAVR, must sip on

5V to hit its full 20 MHz speed.

ATMEL SAM D10

Part: ATSAMD10D14A

Atmel is positioning their least-

expensive ARM Cortex-M0 o ering

— the new SAM D10 — to kill o all

but the smallest TinyAVR MCUs with

its performance numbers,

peripherals, and price. Stand-out

analog peripherals capstone a

peripheral set and memory

configuration that endows this part

with good value.

https://jaycarlson.net/pf/atmel-microchip-tinyavr-1-series/
https://jaycarlson.net/pf/atmel-microchip-megaavr/
https://jaycarlson.net/pf/atmel-microchip-sam-d10/
Gustavo
Highlight

CYPRESS PSOC 4000S

Part: CY8C4024LQI

Reconfigurable digital logic — the

PSoC’s claim to fame — is absent

from this entry-level 24 MHz Arm

part that also sports average analog

features, and no support for

Cypress’s handy “it just works”

capacitive-touch hardware. Other

than its unique development

environment, this part treads water

in a sea of low-cost ARM devices.

FREESCALE KE04

Part: MKE04Z8VTG4

Freescale introduced the Arm

Cortex-M0 KE04 to kill o 8-bit

MCUs — and with 2.7-5.5V support,

tons of timers and analog options,

it’s a step in that direction. Processor

Expert provides a unique

development experience for rapid-

prototyping, which may be enough

to lure some developers away from

newer parts.

FREESCALE KL03

Part: MKL03Z8VFG4

While the KE series attacks the 8-bit

sector with bells and whistles, the KL

series focuses on being some of the

lowest-power Arm parts on the

market, with good low leakage

performance in sleep mode. I’m

testing this 48 MHz Arm part inside

of NXP’s MCUXpresso, which

recently added support for the newer

Kinetis devices.

HOLTEK HT-66

Part: HT66F0185

A basic 8-bit microcontroller with a

slow, 4-cycle PIC16-style single-

accumulator core. An anemic

peripheral selection and limited

memory capacity makes this a better

one-trick pony than a main system

controller. Holtek has a wide range of

application-specific MCUs that

integrate this core with HV power

and other goodies.

INFINEON XMC1100

Part: XMC1100T016X0016

Infineon Arm chips are common

picks for control projects, and the

new XMC1100 is no di erent. With

16K of RAM, a 1 MSPS six-channel

ADC, flexible communications, up to

16 timer capture channels, and the

ability to form a 64-bit timer for

large-range timing gives this part a

bit of personality among entry-level

Cortex-M0 microcontrollers.

MICROCHIP PIC16

Part: PIC16LF18325

Vying with the 8051 as the most

famous microcontroller of all time,

the latest PIC16 Five-Digit Enhanced

parts feature improved peripheral

interconnectivity, more timers, and

better analog. Still driven by a

sluggish core that clambers along at

one-fourth its clock speed, the PIC16

has always been best-suited for

peripheral-heavy workloads.

https://jaycarlson.net/pf/cypress-psoc-4000s/
https://jaycarlson.net/pf/freescale-nxp-ke04/
https://jaycarlson.net/pf/freescale-nxp-kinetis-kl03/
https://jaycarlson.net/pf/holtek-ht-66/
https://jaycarlson.net/pf/infineon-xmc1100/
https://jaycarlson.net/pf/microchip-pic16-five-digit-enhanced/
Gustavo
Highlight

MICROCHIP PIC24

Part: PIC24F04KL100

An expensive 16-bit part that’s

designed (and priced) to mirror the

MSP430. While it has decent

performance and power

consumption, it’s hard not to look

toward other parts — especially the

PIC32MM — which o er better

pricing, and can beat the PIC24 at

everything other than deep-sleep

current consumption.

MICROCHIP PIC32MM

Part: PIC32MM0064

The 32-bit MIPS-powered PIC32MM

compares similarly with ARM

controllers on a per-cycle basis, but

doesn’t provide the same flexibility

with tooling that ARM does. It’s a

great part for 32-bit beginners,

though, as it brings along

PIC18/PIC24-style peripherals and

fuse-based configuration, easing

development.

NUVOTON N76

Part: N76E003AT20

The N76 is a 1T-style 8051 that

brings a few twists and useful

additions to the basic set of ’51

peripherals. This MCU has a slower

instruction timing versus the EFM8

or STC8, but it’s hard to complain

about a well-documented, fully-

featured MCU with North American

support that you can buy with East

Asia pricing.

https://jaycarlson.net/pf/microchip-pic24/
https://jaycarlson.net/pf/microchip-pic32mm/
https://jaycarlson.net/pf/nuvoton-n76/
Gustavo
Highlight

NUVOTON M051

Part: M052LDN

The M051 series is a high-value, 50

MHz Cortex-M0 with excellent

timers and comms peripherals, a

coherent, easy-to-use functional-

oriented peripheral library, a

relatively high pin-count, and

utilitarian dev tools. The Achilles’

heel is the somewhat-limited IDE

options, buggy software, and gross

power consumption figures.

NXP LPC811

Part: LPC811M001JDH16

The LPC81x is famous among

hobbyists for the LPC810 — an 8-pin

DIP-package MCU. For everyone

else, the LPC81x is an older,

forgettable 30 MHz ARM that’s short

on peripherals (it doesn’t even have

an ADC). An easy-to-use function-

oriented peripheral library, serial

loader, and plenty of code examples

on blog posts keep this part alive.

RENESAS RL-78

Part: R5F102A8ASP

With the RL-78, Renesas built a

clever hybrid MCU with an 8-bit-

wide data path and a 16-bit-wide

ALU, balancing cost and

performance. Excellent low-power

consumption, arrayed comms and

timer peripherals, plus a good code-

gen tool built into the free Eclipse

IDE makes this part a strong

competitor against the PIC24 and

MSP430.

https://jaycarlson.net/pf/nuvoton-m051/
https://jaycarlson.net/pf/nxp-lpc811/
https://jaycarlson.net/pf/renesas-rl-78/
Gustavo
Highlight

SANYO LC87

Part: LC87F1M16

There’s not much to like in the LC-87.

Abysmal power consumption,

lackluster peripherals, unfriendly

pricing, and an obnoxiously

antiquated development ecosystem

should steer away almost any

rational person from this

architecture that, from the copyright

dates on the development tools,

looks to be headed to the grave.

SILICON LABS EFM8

Part: EFM8LB11

The EFM8 Laser Bee is a snappy 72

MHz 8051 MCU that’s both the

fastest 8-bit MCU in our round-up, as

well as one of the lowest-power.

Low-cost tools, a free cross-platform

Eclipse-based IDE, and a slew of

easy-to-program peripherals should

get both professionals and hobbyists

interested in exploring this platform.

ST STM8

Part: STM8S103F3P6

The STM8 feels like an ARM in

disguise: a 32-bit-wide program

memory bus with e cient compute

performance, peripheral power

gating, and a nested vector interrupt

controller makes this thing look more

like its STM32 big brothers. If only its

STVD development environment felt

as modern as its peripheral set does.

https://jaycarlson.net/pf/sanyo-on-semiconductor-lc87/
https://jaycarlson.net/pf/silicon-labs-efm8/
https://jaycarlson.net/pf/st-stm8/
Gustavo
Highlight

ST STM32F0

Part: STM32F030F4P6

While the F0 has an average

peripheral set and worse-than-

average power consumption, its low-

cost ST-Link debugger, free IDE,

good code-gen tools, and huge

parametric latitude (up to the 180

MHz, 2 MB STM32F4) make this a

useful family to learn — plus

everyone seems to have an STM32

Discovery board laying around.

STCMICRO STC8

Part: STC8A8K64S4A12

A brand-new, single-cycle 8051 jam-

packed full of flash, RAM, and oodles

of peripherals — and a large, 64-pin

package to make use of all these

guts. Unfortunately, this part isn’t

quite ready for prime-time: the

datasheet hasn’t been translated

into English yet, the errata is

massive, and there’s limited

availability of the part.

TI MSP430

Part: MSP430FR2111

Texas Instruments dials down the

power consumption in the latest

iteration of the MSP430. FRAM

memory, flexible power states, and

tons of internal clocking options

make this part a battery’s dream

come true. You’ll pay for this power,

though: the MSP430 can be twice as

expensive as many 8-bit parts.

https://jaycarlson.net/pf/st-stm32f0/
https://jaycarlson.net/pf/stcmicro-stc8/
https://jaycarlson.net/pf/texas-instruments-msp430fr/
Gustavo
Highlight

Gustavo
Highlight

SPECS COMPARISON

CORE

Microcontrollers continue to divide into two camps — those with vendor-speci�c core architectures, and those who use a third-party core
design. Out of the 21 microcontrollers reviewed here, eight of them use a 32-bit ARM core, which is becoming ubiquitous in the industry —
even at this price point. Three of the microcontrollers use an 8-bit 8051-compatible ISA. The remaining ten use the vendor’s proprietary core
design: six are 8-bit parts, three are 16-bit parts, and the PIC32MM is the sole 32-bit part that doesn’t use an ARM core.

AVR

The AVR core is a famous RISC design known for its clock-cycle ef�ciency — especially at the time it was introduced in 1997. I reviewed two
microcontrollers with an AVR core — the tinyAVR 1-Series and the megaAVR.

The speci�c AVR instruction set and timing for both parts I reviewed is known as “AVRe” — this instruction set includes a two-cycle multiply
and many single-cycle operations. Note that tinyAVR parts prior to the tinyAVR 1-Series are essentially completely different MCUs with a less-
capable AVR core that has no multiplier.

https://jaycarlson.net/pf/microchip-pic32mm/
https://jaycarlson.net/pf/atmel-microchip-tinyavr-1-series/
https://jaycarlson.net/pf/atmel-microchip-megaavr/
https://jaycarlson.net/pf/atmel-microchip-tinyavr-1-series/
Gustavo
Highlight

Gustavo
Highlight

The AVR core has a 16-bit instruction fetch width; most instructions are 16 bits wide; some are 32. Still, this is a RISC architecture, so the
instruction set is anything but orthogonal; while there are 32 registers you can operate with, there are very few instructions for working
directly with RAM; and of those 32 registers, I’d say that only 16 of them are true “general purpose” registers, as R0-R15 can’t be used with all
register operations (load-immediate probably being the most important).

All things said, though, AVR offered a huge performance improvement over the 12-cycle or 6-cycle 8051 processors when AVR was �rst
introduced — and the AVR is always faster than even modern 8051 derivatives when it comes to working with large arrays of data that must be
stored in extended (16-bit) RAM on the 8051.

It was also designed for C compilers, too — with 32 registers available at all times, compilers can ef�ciently juggle around many operands
concurrently; the 8051, by comparison, has four banks of eight registers that are only easily switched between within interrupt contexts
(which is actually quite useful).

And interrupts are one of the weak points of the AVR core: there’s only one interrupt priority, and depending on the ISR, many registers will
have to be pushed to the stack and restored upon exit. In my testing, this often added 10 PUSH instructions or more — each taking 2 cycles.

Another issue with AVR is the generally slow clock speed — even the high-end XMEGA AVR parts can only run at up to 32 MHz, with both the
parts reviewed here topping out at 20 MHz. Compare that to the EFM8, of which is many varieties run at 48 MHz or higher (like the 72 MHz
Laser Bee I reviewed). Even a 50%-better clock cycle ef�ciency doesn’t help much when the competition runs almost four times faster than the
AVR.

MICROCHIP PIC16

There’s something fundamentally goofy about almost all aspects of the PIC16 that make it seem, at �rst glance, completely bizarre that it is as
popular as it is.

PIC16 uses an odd-ball 14-bit-wide program memory, yet it’s an 8-bit machine. This dramatically simpli�es the core architecture: a 14-bit word
can hold just enough data to specify every CPU instruction — with enough free space left in the word to address up to 128 registers or 2K of
program memory (for the two jump/call routines).

2

https://jaycarlson.net/pf/silicon-labs-efm8/
https://jaycarlson.net/pf/microchip-pic16-five-digit-enhanced/

Microchip calls the PIC16 a RISC machine since every PIC instruction (there’s just 49 of them) is precisely one word long There’s considerable
debate as to the precise de�nition of a “RISC architecture” is, but while the PIC16 has a single-word instruction length for all instructions, the
PIC16 varies greatly from most RISC parts in that it is an accumulator-based machine, and has no working registers. I’ll leave it up to you to
decide.. The PIC16 is often described as a 4T architecture — taking 4 clock cycles to execute a single machine instruction. This
isn’t entirely true, as the PIC16 takes an additional 4 cycles to fetch that instruction. Consequently, it’s actually an 8T machine, though it
implements a pipeline scheme that allows each instruction to execute in 4 cycles — except jumps, which take 8.

Since real MCUs have more than 128 bytes of registers and 2K of program memory, this PIC has a bank selection register (BSR), which is
written to whenever you need to swap banks (which happens a lot).

The PIC16 is a single-register machine, and that register is named W. Everything you do will essentially be moving something into W, doing
something with it, and then moving it back to somewhere. Consequently, programming it in assembly is easy, and downright fun.

Because this part can store 8192 14-bit program words, Microchip will tell you this part has 14 KB of �ash (close to 16 KB, right?), but users will
tell you that it has 8K of program memory — 8192 words of memory — since storing an 8192-element byte array will occupy all 14 KB of its �ash
memory. Keep this in mind when comparing memory.

I have a longer write-up of PIC16 in the main PIC16 article.

MICROCHIP PIC24

While the PIC10, 12, 16, and 18 are all 8-bit cores with 12-16 bit program memory, the PIC24 moves up to 16-bit data operated through 24-bit
instructions (are you starting to catch onto the numbering system?)

While all the PICs before it were 4T machines, the PIC24 is 2T — that is, two clock cycles per instruction cycle.

The PIC24 has new indirect addressing modes that allow incrementing/decrementing and register-offset addressing, has a few more other
instructions, and has three — instead of two — hardware breakpoints; but otherwise, the core is very much in the spirit of the PIC16.

2

https://jaycarlson.net/pf/microchip-pic16-five-digit-enhanced/
https://jaycarlson.net/pf/microchip-pic24/
https://jaycarlson.net/pf/microchip-pic16-five-digit-enhanced/

The PIC24 carries the excellent power consumption �gures that the PIC16 has, but many of the parts lack the clocking and oscillator options
the MSP430 has (and apples-to-apples, the MSP430 is lower-power).

The dsPIC versions of these parts — which add DSP-friendly instructions — are popular for motor drivers, but it’s not clear that the PIC24 has
more widely been the runaway success Microchip had hoped.

MICROCHIP PIC32

While everyone was migrating their 8-bit proprietary cores to Arm, Microchip was gleefully popping out PIC parts. But in 2007, they �nally
decided to add a new microcontroller — the PIC32 — which uses a third-party, industry-standard 32-bit core. Instead of following everyone to
the Arm ecosystem, they took a different turn: PIC32 parts use the MIPS architecture — speci�cally the M4K core.

MIPS built this core for single-chip MCU applications. M4K has 32 registers, a 5-stage pipeline, vectored interrupts and exceptions, bit-
manipulation, and 16-bit instruction encoding support.

It is not the same as an Arm processor, but at the C application level, they are similar enough that any Arm developer should have no problems
(other than the usual manufacturer-to-manufacturer peripheral differences).

You can program and debug the PIC32 using the same PGC/PGD/MCLR set-up you use on all other PIC parts — but there’s also support for
JTAG, though the most popular JTAG debugger — the Segger J-Link — has limited support for the PIC32MX parts, and no support for the
PIC32MM.

ARM CORTEX-M0

The Arm Cortex-M0 Formerly ARM, but as of August 1, 2017, “Arm” is the capitalization style they now use.is a 32-bit RISC architecture that
serves as the entry-level Arm architecture available to silicon vendors for microcontroller applications. Arm cores are designed by Arm

3

https://jaycarlson.net/pf/microchip-pic24/
https://jaycarlson.net/pf/microchip-pic16-five-digit-enhanced/
https://jaycarlson.net/pf/texas-instruments-msp430fr/
https://jaycarlson.net/pf/microchip-pic32mm/
http://linuxgizmos.com/arm-becomes-arm-or-is-it-arm/
https://www.arm.com/

Holdings and licensed to semiconductor manufacturers for integration into their products.

Arm started out as a personal computer microprocessor when Advanced RISC Machines formed a joint venture between Acorn, Apple, and
VLSI Technology to manufacture 32-bit processors for the Acorn computer. While Arm cores have grown in popularity as microprocessors for
battery-powered systems (they are almost certainly powering your smartphone), Arm moved into the microcontroller sphere as well — the
ARM7TDMI-S was probably the �rst Arm core that was used in microcontrollers — i.e., processors with completely self-contained RAM, �ash,
and peripherals. The Atmel AT91 and ST STR7 were probably the �rst microcontroller parts designed with an Arm core.

It’s important to understand the history of Arm because it explains a serious feature of Arm microcontrollers that differs substantially from
the 8051 (the other multi-vendor architecture that dominates the �eld): Unlike the 8051, Arm is just a core, not a complete microcontroller.

The ARM7TDMI-S didn’t come with any GPIO designs, or provisions for UARTs or ADCs or timers — it was designed as a microprocessor. Thus,
as vendors started stuf�ng this core into their extremely high-end MCUs, they had to add in their vendor-speci�c peripherals to the AHB
(AMBA Advanced Microcontroller Bus Architecture — these multi-level acronyms are getting tediousHigh-performance Bus).

Consequently, Freescale used a lot of HC08 and ColdFire peripherals; while Atmel designed new peripherals from scratch. ST borrowed a bit
from the ST7 (the precursor to the STM8) but used new designs for timers and communications peripherals.

Since many microcontroller projects spend 90% or more of the code base manipulating peripherals, this is a serious consideration when
switching from one Arm MCU vendor to another: there’s absolutely zero peripheral compatibility between vendors, and even within a single
vendor, their Arm parts can have wildly different peripherals.

Unlike other Arm parts, the M0 series only supports a subset of the 16-bit Thumb instruction set, which allows it to be about 1/3 the size of a
Cortex-M3 core. Still, there’s a full 32-bit ALU, with a 32-bit hardware multiplier supporting a 32-bit result. Arm provides the option of either a
single-cycle multiply, or a 32-cycle multiply instruction, but in my browsing, it seems as though most vendors use the single-cycle multiply
option.

In addition to the normal CPU registers, Arm cores have 13 general-purpose working registers, which is roughly the sweet spot. The core has a
nested vector interrupt controller, with up to 32 interrupt vectors and 4 interrupt priorities — plenty when compared to the 8-bit competition,
but a far cry from the 240 interrupts at 256 interrupt priorities that the larger Arm parts support. The core also has full support for runtime
exceptions, which isn’t a feature found on 8-bit architectures.

The M0+ is an improved version of the M0 that supports faster two-cycle branches (due to the pipeline going from three-stage to two-stage),
and lower power consumption. There are a slew of silicon options that vendors can choose from: single-cycle GPIO, support for a simple

4

https://www.arm.com/
https://jaycarlson.net/pf/st-stm8/
http://researchbank.rmit.edu.au/eserv/rmit:2517/n2001000381.pdf

instruction trace buffer called Micro Trace Buffer (MTB), vector table relocation, and a rudimentary memory protection unit (MPU).

One of the biggest problems with ARM microcontrollers is their low code density for anything other than 16- and 32-bit math — even those
that use the 16-bit Thumb instruction set. This means normal microcontroller type routines — shoving bytes out a communication port,
wiggling bits around, performing software ADC conversions, and updating timers — can take a lot of code space on these parts. Exacerbating
this problem is the peripherals, which tend to be more complex — I mean “�exible” — than 8-bit parts, often necessitating run-time peripheral
libraries and tons of register manipulation.

Another problem with ARM processors is the severe 12-cycle interrupt latency. When coupled with the large number of registers that are
saved and restored in the prologue and epilogue of the ISR handlers, these cycles start to add up. ISR latency is one area where a 16 MHz 8-bit
part can easily beat a 72 MHz 32-bit Arm microcontroller.

8051

The 8051 was originally an Intel microcontroller introduced in 1980 as one of the �rst widely-deployed 8-bit parts. The 8-bit modi�ed Harvard
core has a fully-orthogonal variable-length CISC instruction set, hardware multiplier and hardware divider, bit-addressable RAM and speci�c
bit-manipulation instructions, four switchable banks of eight registers each, two-priority interrupt controller with automatic register bank-
switching, 64 KB of both program and extended RAM addressability, with 128 bytes of “scratch pad” RAM accessible with fast instructions.

The 8051 was actually a speci�c part — not a family — but its name is now synonymous with the core architecture, peripherals, and even
package pin-out the 8051 is a member of a family of�cially called the “MCS-51” — along with the 8031, 8032, 8051, and 8052 — plus all the
subsequent versions that were introduced later.

The original had 4K of ROM Expensive windows ceramic packages allowed EPROM programming for developers, but production units were
mask-ROM or OTP — or, in the case of the 8031, only external ROM was supported., 128 bytes of RAM, four full 8-bit GPIO ports (32 I/O total), a
UART, two or three timers, and a two-priority interrupt system.

The 8051 has a fully orthogonal CISC instruction set, which means you can do nearly any operation with immediate, direct, or indirect
operands, and you can do these operations in RAM, registers, or the A accumulator.

5

6

https://jaycarlson.net/2017/06/27/blinking-an-led-with-an-original-intel-8051/

Many vendors built direct, drop-in compatible clones of the 8051, and by the time Intel discontinued its MCS-51 products in 2007, barely
anyone noticed — these third-party parts evolved from mimicking Intel functionality to outright beating them with tons of additional timers,
peripherals, and special-purpose functionality.

Because of its small core and fast interrupt architecture, the 8051 architecture is extremely popular for managing peripherals used in real-time
high-bandwidth systems, such as USB web cameras and audio DSPs, and is commonly deployed as a house-keeping processor in FPGAs used
in audio/video processing and DSP work.

Old-timers associate the 8051 with “old and slow” because the original was a 12T microcontroller — each machine cycle took 12 clock cycles to
complete. Since there was no pipelining, every instruction byte took a machine cycle to fetch, plus one or more additional machine cycles to
execute — altogether, it could take more than 50 clock cycles to execute a given instruction. Ouch.

No need to worry about that anymore, though: all the modern 8051-style MCUs available are 1T processors, and many of them have a pipelined
core, meaning many instructions take the same number of clock cycles to execute as the instruction’s length. Consequently, in many 8051
implementations, operations in A (the accumulator) are the fastest, followed by the register bank, and then RAM.

I ended up with three different 8051-compatible microcontrollers end the lineup: the Nuvoton N76, the Silicon Labs EFM8 Laser Bee, and the
STCmicro STC8.

From a pure core design standpoint, the STC8 is probably the most interesting — while I can’t �nd documentation to con�rm this, it appears
that STCmicro uses a 24-bit (or more) parallel instruction-fetch size. This means that a huge number — more than 80% — of instructions can be
executed in a single cycle, which is a substantial step up from all other 8051s on the market these days.

However, the EFM8, from Silicon Labs’ C8051 lineage, can hit much higher clock speeds — topping out at 72 MHz — making it the fastest part I
reviewed, by core speed.

I’ll be looking more at this in the performance section of the review.

STM8

https://jaycarlson.net/pf/nuvoton-n76/
https://jaycarlson.net/pf/silicon-labs-efm8/
https://jaycarlson.net/pf/stcmicro-stc8/
https://jaycarlson.net/pf/stcmicro-stc8/
https://jaycarlson.net/pf/silicon-labs-efm8/

The STM8 core has six CPU registers: a single accumulator, two index registers, a 24-bit program counter, a 16-bit stack pointer, and a
condition register. The STM8 has a Harvard architecture, but uses a uni�ed address space. There’s a 32-bit-wide program memory bus which
can fetch most instructions in a single cycle — and pipelined fetch/decode/execute operations permit many instructions to execute in a single
cycle.

The claim to fame of the core is its comprehensive list of 20 addressing modes, including indexed indirect addressing and stack-pointer-
relative modes. There’s three “reaches” for addressing — short (one-byte), long (two-byte), and extended (three-byte) — trading off memory area
with performance.

This is the only architecture in this round-up that has this level of granularity — all the other chips are either RISC-style processors that have
lots of general-purpose registers they do their work in, or 8051-style CISC parts that manipulate RAM directly — but pay a severe penalty when
hitting 16-bit address space. The STM8 manages these trade-offs in an ef�cient manner.

PERIPHERALS

Use the tabs below to compare precise specs across families.

20 MHZATMEL TINYAVR

20 MHZATMEL MEGAAVR

SPEED FLASH RAM TIMERS PWM COMMS ADC

https://jaycarlson.net/pf/st-stm8/

48 MHZATMEL SAM D10

24 MHZCYPRESS PSOC 4000S

48 MHZFREESCALE KE04

48 MHZFREESCALE KL03

20 MHZHOLTEK HT66

32 MHZINFINEON XMC1100

32 MHZMICROCHIP PIC16

32 MHZMICROCHIP PIC24

25 MHZMICROCHIP PIC32MM

16 MHZNUVOTON N76

50 MHZNUVOTON M051

30 MHZNXP LPC811

24 MHZRENESAS RL78

12 MHZSANYO LC87

72 MHZSILICON LABS EFM8

The chart above illustrates the differences in core clock speed among each MCU. As will be seen in the evaluation section, core
clock speed is not a good predictor of performance when comparing between different MCU families (especially between 8-, 16-,
and 32-bit parts). However, most MCUs limit the maximum peripheral clock rate to that of the CPU, which may be a driving factor
if your application requires fast peripheral clocks (say, for fast GPIO bit-banging or for high-speed capture/compare timer
operations). The In�neon XMC1100 is a neat exception to this rule — its peripheral clock can run at up to 64 MHz.

There are other important asterisks to this data: the Atmel tinyAVR and megaAVR parts have severely limited operating ranges
when running below 5V, which will affect most modern designs. The tinyAVR can only run at 10 MHz below 3.6V, and at 5 MHz
below 2.2V. The megaAVR has the same speed grades, but even worse, has nothing faster than an 8 MHz internal oscillator. When
talking about sub-$1 MCUs, adding a crystal or even low-cost ceramic resonator adds a sizable portion of the cost of the MCU to
the BOM.

The Silicon Labs EFM8 Laser Bee, with its 72 MHz core clock speed, beats out even the ARM microcontrollers in this round-up.
The Sanyo LC87 brings in a 12 MHz reading — but bear in mind this is a 3T architecture, which limits the actual instruction clock
speed to 4 MHz. The Holtek HT66 and Microchip PIC16 are both 4T architectures, but the PIC16 has a relatively snappy 32 MHz
core speed (thanks to its on-board PLL), which allows it to compete better with 8 MHz parts.

16 MHZST STM8

48 MHZST STM32F0

30 MHZSTC STC8

16 MHZTI MSP430FR

1.0 XATMEL TINYAVR

2.1 XATMEL MEGAAVR

4.5 XATMEL SAM D10

9.2 XCYPRESS PSOC 4000S

16.4 XFREESCALE KE04

14.7 XFREESCALE KL03

1.0 XHOLTEK HT66

23.6 XINFINEON XMC1100

8.0 XMICROCHIP PIC16

19.4 XMICROCHIP PIC24

66.0 XMICROCHIP PIC32MM

3.2 XNUVOTON N76

10.2 XNUVOTON M051

27.0 XNXP LPC811

10.5 XRENESAS RL78

4.2 XSANYO LC87

PARAMETRIC REACH

One of the major themes of this microcontroller selection guide is to show how easy it can be to get going with different parts, and
comfortably jump around among ecosystems — picking the best part for the job.

But for casual hobbyists who may live far away from major distributors, and professionals who have to meet tight timelines, sometimes there’s
no time to play around with new architectures.

If you want to commit to a single architecture, it’s important to know which one gives you the most headroom to move up. I created a �ctious
“times better” score by comparing the the part tested with the best part available in the same ecosystem — this usually means fairly
comparable peripheral programming, along with identical development tools. I multiplied the core speed, package size, �ash, and RAM
capacities together, ratioed the two parts, and then took the quartic root. Essentially, if every parameter is double, it is considered “2.0 x” as
powerful.

Surprisingly, the PIC32 came out on top: there are four PIC32 families — the PIC32MX was the �rst; it’s the mainstream core that runs up to 120
MHz, with up to 512 KB of �ash and 128 KB of RAM.

But it’s the newer PIC32MZ that reaches even higher: up to 252 MHz, with 2 MB of �ash, and — with the DA version of the part — includes 32
MB of onboard DDR2 memory. With the MZ-DA, you can build complex graphical apps without needing an application processor running

3.9 XSILICON LABS EFM8

2.6 XST STM8

27.0 XST STM32F0

1.0 XSTC STC8

15.3 XTI MSP430FR

https://jaycarlson.net/pf/microchip-pic32mm/

Linux (and the PCB / BSP complexity that arrives with that). It’s essentially the PIC32 version of the Arm Cortex-M7.

Next up, the STM32 line. The STM32F0 has a famous big brother — the STM32F4 — that’s one of the most capable Arm Cortex parts ever built.
Several versions run up to 180 MHz, with 2 MB of �ash and up to 364 KB of RAM (in the case of the STM32F469).

But the brand-new STM32F7 — part of the new Cortex-M7 line of parts — goes even further, with 216 MHz maximum operating frequency, 2 MB
of �ash, and 512 KB of RAM.

The LPC811 — one of the lower-performing parts in my round-up — has several big sisters, including the LPC546xx series, a giant Cortex-M4
with 220 MHz max frequency, 512 KB of �ash, 200 KB of RAM, in up to 208-pin packages.

The tinyAVR in this review has very little headroom — these devices top out at 16 KB of �ash, 2 KB of RAM, 20 MHz, and 24-pin QFN packages;
however, 32 KB tinyAVR parts are soon to be released.

The megaAVR has a bit of reach in pinning and memory. The ATmega3290 keeps the 20 MHz clock speed but bumps up the pin-count to 100
pins. There are many megaAVR parts with 64 KB of �ash and 4 K of RAM, as this part has. Some megaAVR parts have as much as 16 KB of
RAM or 256 KB of �ash. Oddly, Atmel can’t seem to combine these specs — there is no 100-pin, 256 KB �ash, 16 KB RAM megaAVR that is in
current production.

The SAM D10 extends up to the SAM D21, which maintains its 48 MHz clock speed, but increases �ash up to 256 KB, with up to 32 K of RAM,
and sizable 64-pin package options.

There’s a lot of headroom left in the SAM Arm microcontroller ecosystem, but if you leave the D1x/D2x line of parts, you’ll lose familiarity with
some of the peripherals (especially the communications interfaces). Having said that, the Arm Cortex-M7-based ATSAMS70 will get you up to
300 MHz of performance, 2 MB of �ash, and 384 KB of RAM, in up to 144-pin packages. The older A revision parts are deeply discounted,
including this 64-pin 1 MB �ash part for $5.14 on DigiKey.

With the PSoC 4000S, you’re at rock-bottom in the PSoC ecosystem, so the only direction is up — the PSoC 5 devices run at 80 MHz, with up to
256 KB of �ash and 64 KB of RAM in 100-pin packages. These parts come with all the PSOC goodness that Cypress users love — recon�gurable
digital logic, lots of analog features, and excellent capacitive-touch sensing.

The just-around-the-corner PSoC 6 promises to bring even more performance to the ecosystem, with the PSoC 63 running a 150 MHz Arm
Cortex-M4F, 1 MB of �ash, 288 KB of RAM, integrated BTLE connectivity, and 100+ pin packages.

https://jaycarlson.net/pf/st-stm32f0/
https://jaycarlson.net/pf/nxp-lpc811/
https://jaycarlson.net/pf/atmel-microchip-tinyavr-1-series/
https://jaycarlson.net/pf/atmel-microchip-megaavr/
https://jaycarlson.net/pf/atmel-microchip-sam-d10/
https://jaycarlson.net/pf/cypress-psoc-4000s/

The Freescale KE04 and KL03 are both entry-level devices in the E and L families within the Kinetis system. The E family has good reach up to
the 168 MHz KE1x, with up to 512 KB of �ash, 64 KB of RAM, and up to 100-pin packaging. Unfortunately, this is a fairly different process than
the KE04 reviewed here — there’s no Processor Expert support, and the communications peripherals are quite different than those in the
lower-end part. It retains its 5V operating range, which segments it into the E family.

The KL03 extends up to the KL28 — a 72 MHz Cortex-M0+ with 512 KB of �ash, 128 KB of RAM, and up to 121-pin BGA packages available.
Unlike the E series, the KL series has much more uniform peripherals across its range of devices.

The Holtek HT-66 has no real latitude above the HT66F0185 — but as mentioned on the review page, there are tons of application-speci�c
products Holtek makes that use this core.

The In�neon XMC1000 family extends up to the XMC1400, with 200 KB of �ash, 16 K of RAM, a slightly-faster 48 MHz core clock, and a 64-pin
package. Moving out of the XMC1000 ecosystem, the XMC4000 keeps the XMC1000 peripherals and swaps out the core for a Cortex-M4F,
running up to 144 MHz, with 2 MB of �ash, 352 KB of RAM, and up to 196-pin packaging options.

The PIC16 tops out in the 64-pin PIC16F19197 device, with 56 KB of �ash (well, 32 K words, because PIC), 4 K of RAM. I’ll include PIC18 devices,
though, as they’re targetted with the same compiler, programmed with the same debugger, and share peripherals and architectural decisions.

PIC18 devices can reach up to the PIC18F97J60 — a 100-pin beast with 128 KB of �ash (64 K words), and almost 4K of RAM. While most of these
8-bit parts have similar peripherals across the board, I must note the Ethernet MAC and PHY present in the PIC18F97J60. While many higher-
end microcontrollers have an Ethernet MAC, this low-end PIC18 part is one of the only microcontrollers — at any price — to also integrate a
PHY The only other mainstream MCU that has an integrated Ethernet PHY is the $14 Tiva-C TM4C129x, a giant 128-pin 120 MHz Arm Cortex-
M4 from Texas Instruments. There are a few other (albeit odd) choices out there: Freescale’s legacy ColdFire microcontrollers include the
MCF5223X, which has an integrated Ethernet PHY. Fabless designer ASIX manufacturers the AX11015, a 100 MHz 8051 with an integrated
Ethernet PHY.

The PIC24FJ1024GA610 supports up to a 1024 KB of �ash, 32 KB of RAM, and a 32 MHz run speed — though there are dsPIC devices, like the
dsPIC33EP512GM604, with up to 140 MHz operating frequency, 512 KB of �ash, and 48 KB of RAM.

The Nuvoton N76 can look up to the 40 MHz W79E658A, with 128 KB of �ash, 100-pin packaging, and 1.25K of RAM.

The Nuvoton M051 has a few Cortex-M4 big sisters: the M505 has 2 MB of embedded SPI �ash (sounds slow to me), and 128 KB of RAM, runs at
100 MHz, and comes in a 48-pin package. Nuvoton hasn’t released the M487 yet, but it promises a 192 MHz CPU with 512 KB of �ash, 160 KB of
RAM, and at least 80-pin package options (though Nuvoton hasn’t unveiled all details yet).

7

https://jaycarlson.net/pf/freescale-nxp-ke04/
https://jaycarlson.net/pf/freescale-nxp-kinetis-kl03/
https://jaycarlson.net/pf/holtek-ht-66/
https://jaycarlson.net/pf/infineon-xmc1100/
https://jaycarlson.net/pf/microchip-pic16-five-digit-enhanced/
https://jaycarlson.net/pf/nuvoton-n76/
https://jaycarlson.net/pf/nuvoton-m051/

Renesas RL-78 extends up to the R5F101SLAFB, with 128-pin package, 512 KB of �ash, 32 KB of RAM, and a slightly-faster 32 MHz clock speed.

Sanyo’s LC87 extend up to 100-pin 256 KB parts with 12 KB of RAM, and an 18 MHz clock with the LC87F7NP6AUE.

The Silicon Labs EFM8LB1 is the top-of-the-line part in the EFM8 family — these top out at 64 KB of �ash, 4.25 KB of RAM, and a relatively-
small 32-pin package.

Having said that, you can stay in the Silicon Labs 8051 family with the C8051F120 — a 100 MHz 8051 with 128 KB of �ash, 8.25 KB of RAM, and a
100-pin microcontroller. It’s an older part, but it’s still supported in Simplicity Studio (though not in Simplicity Con�gurator).

The STC8 I tested is the top-of-the-line part in their catalog.

The MSP430 extends up to the MSP430F6779, with 512 KB of �ash, 32 KB of RAM, and 128-pin packaging.

DEVELOPMENT
ECOSYSTEM

https://jaycarlson.net/pf/renesas-rl-78/
https://jaycarlson.net/pf/silicon-labs-efm8/
https://jaycarlson.net/pf/stcmicro-stc8/
https://jaycarlson.net/pf/texas-instruments-msp430fr/

The development ecosystem of a microcontroller has a profound impact on productivity and ease of use of the part, and these IDEs, peripheral
libraries, dev boards, and debuggers varied wildly among the microcontrollers reviewed here.

DEVELOPMENT ENVIRONMENTS

Eclipse-based development environments, such as Code Composer Studio from Texas Instruments, provide a complete text editor, toolchain, and

debugging system in one application — plus many vendors choose to extend Eclipse with vendor-specific features, such as the ULP Advisor that Texas

Instruments bundles to help developers get active- and sleep-mode current down to the minimum.

ECLIPSE

Eclipse is a Java-based IDE originally developed at IBM to develop in Java. But since 2001, it has been an open-source project built by the
Eclipse Foundation.

Eclipse CDT provides C/C++ tooling, and has taken off like wild�re in the embedded world — starting in the 32-bit ARM ecosystems, but
migrating down to 16- and 8-bit parts as well. In fact, almost all the major microcontrollers here are programmed in an IDE based on Eclipse:

NXP Kinetis KE04 uses Kinetis Design Studio

NXP Kinetis KL03 uses MCUXpresso (or Kinetis Design Studio)

In�neon XMC1100 uses DAVE

https://www.eclipse.org/cdt/
https://jaycarlson.net/pf/freescale-nxp-ke04/
https://www.nxp.com/products/wireless-connectivity/zigbee/kinetis-design-studio-integrated-development-environment-ide:KDS_IDE
https://jaycarlson.net/pf/freescale-nxp-kinetis-kl03/
https://www.nxp.com/support/developer-resources/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide-v10.0.2:MCUXpresso-IDE
https://www.nxp.com/products/wireless-connectivity/zigbee/kinetis-design-studio-integrated-development-environment-ide:KDS_IDE
https://jaycarlson.net/pf/infineon-xmc1100/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-registered-cortex-registered-m/dave-version-4-free-development-platform-for-code-generation/channel.html?channel=db3a30433580b37101359f8ee6963814

Other than DAVE, CooCox, and e studio (which all only run on Windows), all of these toolchains have cross-platform support for Windows,
macOS, and Linux.

Nuvoton M051 uses CooCox CoIDE

NXP LPC811 uses MCUXpresso

Renesas RL-78 uses e studio2

Silicon Labs EFM8 uses Simplicity Studio

ST STM32F0 uses System Workbench for STM32

Texas Instruments MSP430 uses Code Composer Studio

2

https://jaycarlson.net/pf/nuvoton-m051/
http://www.coocox.org/
https://jaycarlson.net/pf/nxp-lpc811/
https://www.nxp.com/support/developer-resources/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide-v10.0.2:MCUXpresso-IDE
https://jaycarlson.net/pf/renesas-rl-78/
https://www.renesas.com/en-us/products/software-tools/tools/ide/e2studio.html?campaign=mc_b_e2s_rs_00002
https://jaycarlson.net/pf/silicon-labs-efm8/
https://www.silabs.com/products/development-tools/software/simplicity-studio
https://jaycarlson.net/pf/st-stm32f0/
http://www.st.com/en/development-tools/sw4stm32.html
https://jaycarlson.net/pf/texas-instruments-msp430fr/
http://www.ti.com/tool/CCSTUDIO

Recent versions of Eclipse, like the 4.6.3 Neon release that System Workbench for STM32 uses, provide good dark theme support, as well as the

incredibly snappy pop-up function browser that shows you the full source code of any function you hover over.

Main features of Eclipse CDT include multi-project workspaces, debugging with tons of introspection windows, support for different
toolchains, plus a syntax-highlighting text editor with content assist text completion, macro de�nition browsing and highlighting, code
snippets, and tons of refactoring capabilities.

The code editor in Eclipse is de�nitely a stand-out among IDEs tested — especially if you’re coming from other IDEs. Everything is completely
customizable, very snappy, and full of features. The pop-up “Source Hover” is one of my favorite features: hover over a function, and the source
of the function (including any docs) will pop-up immediately. If you’re still not sure about something, move your mouse down into the pop-up
window and it turns into a scrollable editor window, allowing you to see the entire contents of the function (and copy-and-paste from it). One
feature request: I would love to see Ctrl-Click working from within this pop-up, and it would also be amazing to see editing capability, too.

VENDOR CUSTOMIZATIONS

The GNU MCU Eclipse plug-ins have made it trivial to set up an Eclipse-based work�ow when working on many ARM processors; under the
hood, some of these IDEs are basically just pre-packaged open-source components with a nice splash screen. This is de�nitely the case for
Kinetis Design Studio, MCUXpresso, and System Workbench for STM32 (which didn’t even bother changing the Eclipse logo). There’s nothing
wrong with that — it’s far less jarring to move between stock Eclipse IDEs, and if you’re short on hard drive space, you could probably install
and con�gure plug-ins to essentially combine many of these IDEs together.

On the other hand, some vendors had to go through great lengths to get an Eclipse-based environment working with their parts. Silicon Labs
had to write a debug interface from scratch that could communicate with their tools (and work with Keil C51 binaries), custom property panes
for managing the build system — along with packaging a patched WINE system that can run Keil C51 seamlessly on macOS and Linux (and
from my testing, they pulled it off).

https://gnu-mcu-eclipse.github.io/

CoIDE has a super-simple target configuration property pane, and Keil µVision-style buttons for building and rebuilding projects.

In fact, one IDE — CoIDE — is so far removed from Eclipse, I hesitated to even mention it in this list. CooCox essentially stripped Eclipse down
to its base, and built up CoIDE saving little more than the Eclipse shell.

What results is an IDE that is extremely easy to use — great for students and hobbyists who many �nd the Eclipse project properties pane to
be… well, a pain. This comes at the expense of �exibility, however — tons of the debugging options and windows are missing, and you can only
open one project at a time. Sometimes the IDE does thing you may not want. For example, every folder you create in a project is automatically
added to the list of project source �les as well as include �les. I imagine this will quickly cause �lename con�icts in large projects (which
CoIDE doesn’t seem built for).

When building out the DMX-512 demo for the RL-78, e studio’s Stack Analysis tool helped me see where my stack-heavy calls were.

Vendors like Freescale decided to stop heavily customizing Eclipse with their own proprietary debugging system (which they did in
CodeWarrior), and switch to these open-source plug-ins. I have mixed feelings about this change, as CodeWarrior seemed much faster at
starting and stopping debug sessions than the GDB-based system everyone uses these days.

On performance overall, recent versions of Eclipse (Mars or better) seem to be much snappier than the disastrous Juno release, so if it felt
slow and bloated last time you tried it, you may want to give it another shot.

Oxygen (4.7.0) was just released in June, so the newest IDEs — System Workbench, MCUXpresso, and Code Composer Studio — and are still on
Neon (4.5). Other Eclipse-based IDEs are on older versions — with Kinetis Design Studio and DAVE being on the oldest release (Luna SR2 —
4.4.2).

2

https://www.nxp.com/pages/codewarrior-for-mcus-eclipse-ide-coldfire.-56800-e-dsc-kinetis.-nxp-56xx-rs08-s08-s12z-v10.7:CW-MCU10
https://jaxenter.com/eclipse-4-2-performance-slated-will-the-community-come-out-in-force-104905.html

Simplicity Studio has a beautiful and functional register view that allows you to interact with registers using names and drop-down lists — this saves a lot

of time when tracking down problems — no datasheet required.

DEBUGGING IN ECLIPSE

Eclipse — across nearly all vendors — provided the best out-of-the-box experience out of all the IDEs I tested. Projects support multiple debug
con�gurations that allow you to use different debuggers and target con�gurations. Out of the box, you get a source code view with interactive
breakpoints, a memory browser, a disassembly view, and a list of core CPU registers.

Debugging in Eclipse is relatively uni�ed across the platforms — the biggest differences are the supported debuggers, and the custom
debugging windows — especially the peripheral register view.

In my opinion, the peripheral register viewer is one of the most important debug windows — even more important than the disassembly view.
My favorite register viewers are the ones used in TI’s Code Composer Studio and SiLabs’ Simplicity Studio. These have a contiguous list of all
registers, organized in a tree view, with detailed descriptions of each register’s value, with combo-box selectors of all the values. Simplicity
Studio edges out Code Composer Studio by naming all the constants. This is sometimes unnecessary (like: SYSCLK_DIV_12 (System clock
divided by 12)), but de�nitely keeps your eyes out of the datasheet for the part.

Kinetis Design Studio uses EmbSysRegView — an open-source Eclipse plugin — which provides similar functionality. This uses SVD, a
standardized set of tools for generating header �les and descriptions of such.

System Workbench for STM32 has a similar view, but doesn’t automatically fetch the register values. This may not be a bad thing, as ARM
microcontrollers tend to have a lot more register addresses than 8-bit parts, but it still feels a bit clunkier.

MCUXpresso and In�neon DAVE have a somewhat-strange two-step process — you select the peripheral in one view, and it creates a memory
rendering. Registers are broken out logically into one or more bits, but the drop-down lists don’t have named enumerations that describe what
each bit-pattern does.

DAVE has exactly the same plugin as MCUXpresso, but it seems buggy — it doesn’t always work. Hopefully this gets �xed in a future version,
because is severely limits the usability of the debug system.

CoIDE and e studio both have the worst register views — they simply display a list of the peripheral register whole values, without breaking
them up logically or annotating them with text.

2

http://embsysregview.sourceforge.net/
http://www.keil.com/pack/doc/CMSIS/SVD/html/index.html

e2 studio has real-time watches of variables; in addition to displaying variable values as a list, they can be plotted over time, or displayed in gimmicky GUI

widgets that look ugly.

OTHER FEATURES

Some vendors have gone above and beyond with useful (and not-so-useful) additional views and features. e studio, despite the pesky
peripheral register viewer, has a useful real-time view of variables that update while debugging. I suspect the IDE is periodically breaking the
MCU, reading the contents of RAM, and updating the display — but they may have a mechanism for real-time tracing in the RL-78 core.

This IDE can also show �ash and RAM usage — though it’s not plotted as nicely as it is in DAVE, which shows a pie chart of all symbols.

Speci�c to ARM parts, all Eclipse IDEs I tested support semihosting, which allows you to print characters to a console window during
debugging. The characters are printed through the debugging interface, so there’s no need to con�gure a UART. MCUXpresso and CoIDE were
the easiest Eclipse-based IDEs to con�gure with semihosting.

MCUXpresso has nice project properties panes for selecting a C runtime library (it includes Redlib in addition to Newlib Nano) as well as
linker settings.

2

Which of these #ifdefs are enabled? Your guess is as good as mine; Atmel Studio is Visual Studio without Microsoft’s excellent IntelliSense engine,

making it worse than even Keil µVision in terms of text-editing productivity — and far inferior to the Eclipse- and NetBeans-based IDEs from competitors.

I added 6 publicly-visible global variables in this file among others in the project, and none of them appear in the auto-complete list.

ATMEL STUDIO

While many vendors have transitioned to Eclipse-based IDEs, Atmel went with a Visual Studio Isolated Shell-based platform starting with AVR
Studio 5. I do a ton of .NET and desktop-based C++ development, so I expected to feel right at home in Atmel Studio when I �rst launched it.
Unfortunately, Microsoft calls this product “Visual Studio Isolated Shell” for a reason — it’s simply the shell of Visual Studio, without any of the

This error started popping up recently in Atmel Studio — the only solution

seems to restart my computer. It’s obviously from an old chunk of code, since

it’s referring to the program as “AVR Studio.”

meat. The excellent IntelliSense engine that Microsoft spent years
perfecting has been replaced by a third-party “Visual Assist”
plugin that struggles to identify global variables, evaluate pre-
processor de�nitions, or perform refactoring of items de�ned
outside of the current �le. The Toolchain editor is a near-clone of
the Eclipse CDT one (no reason to reinvent the wheel), but it’s
missing checkboxes and inputs for commonly-used compiler and
linker options; one stunning omission is link-time optimization,
which even when manually-speci�ed as command parameters,
doesn’t seem to work — odd, since Atmel is using a recent version
of GCC.

My biggest issue with Atmel Studio is how incredibly buggy and
unstable it has been every time I’ve used it in the last two years.
I’m not referring to a speci�c installation on a speci�c computer:
rather, every single time I’ve installed the software, I’ve fought with AVR Dragon drivers, a bad DLL �le in the installer, programmer �rmware
issues, or, most recently, the software popping up the “Waiting for an operation to complete” message that prevents me from debugging any
Atmel product without restarting my computer. Look, I get it: embedded �rmware development is a highly-specialized task, so maintaining
software that works reliably for such a small user-base can be challenging. Yet, every other vendor tools tested worked nearly �awlessly.

MPLAB X is a NetBeans-based IDE that is comparable to Eclipse in terms of OS support, editor capabilities, and debugging — but it lacks some of the

advanced debug configurations and introspection features that make Eclipse so powerful.

MPLAB X

While many vendors were moving from their proprietary Windows-only IDEs to an open-source Eclipse-based work�ow, Microchip went a
different route when they moved MPLAB 8 to the NetBeans-based MPLAB X in 2012.

On paper, NetBeans is a lot like Eclipse — it’s a Java-based IDE that was originally built to target Java development — but has since expanded
to support C/C++ (along with web-centric languages: HTML, PHP, JavaScript, etc). Like Eclipse, NetBeans is open-source, and cross-
platform. Unlike Workspaces in Eclipse, NetBeans doesn’t strongly enforce this paradigm — but it does offer “Project Groups” which has
similar functionality. Both have good text-completion capabilities and source introspection; both have macro expansion.

I’ve used both for years, so I feel comfortable making this subjective claim: NetBeans feels simpler; Eclipse feels more powerful. A lot of this is
a result of the UX design choices — Eclipse loads the window with tons of buttons, drop-down menus, and docked panes full of features. The
entire IDE’s scale is much more dense than NetBeans.

Even though NetBeans has a lot of the same features, the UI is sparsely populated with the bare minimum of buttons you need to get your job
done. Even the menu bar is light on options. Instead, advanced, rarely-used features are buried away inside sub-sub menus, or — somewhat
more commonly — with keyboard combinations. As an example, I have no idea how to show the excellent Macro Expansion view in NetBeans,
other than pressing Ctrl-Alt and clicking on a macro. Just to double-check, I went hunting for it in the menu bar, as well as digging through
the context menus.

I think students and hobbyists might be drawn toward the simplicity of NetBeans, but I prefer Eclipse’s density, as it encourages users to go
exploring and discover new features.

One big omission with the NetBeans text editor is the pop-up Source Hover code explorer that Eclipse has. Hover over any function in Eclipse,
and the entire source code for that function pops up in a window you can scroll through. NetBeans will display code docs for functions, but if
you want to look at the content of them, you’ll have to Ctrl-Click your way into the de�nition.

MICROCHIP CUSTOMIZATIONS

I have to applaud Microchip for heavily customizing NetBeans into MPLAB X — an IDE that really feels like it was built for embedded
development. The Project Properties window is all Microchip — you can select which tool you want to use to program the device (or the
integrated simulator), as well as compiler options, include paths, and tool con�guration.

Integrating the tool setup into individual project properties is useful for developers who switch between devices (and voltages!) a lot; but it
may feel clunky to users who are always on the same device, using the same settings — every time they create a new project, they’ll have to go
through the same tool con�guration settings (debugger powers target, select correct voltage, blah blah blah).

One goof immediately visible is the redundant “Run Project” and “Make and Program Device” buttons. From what I can tell, these are identical
(the manual says you can use either). However, from the bizarre Eclipse integrations I’ve seen, I’m used to dealing with UI oddities like this
when dealing with embedded IDEs.

Microchip integrates a lovely dashboard view (visible in the bottom of the main photo), which indicates the device target, the compiler, and
the memory usage.

The MPLAB X Options window allows you to add multiple instances of the Microchip XC compilers. As these compilers are quite expensive
and don’t support new devices introduced after their release, it is common for shops to have several versions of XC compilers �oating around
— old, paid-for versions, and new code-size-limited versions they may grab to evaluate a new part before forking over dough.

I’m not a big fan of the hover-over-to-view-bit-values feature in the peripheral registers view.

MPLAB X’s NetBeans backend seems confused by bit-field

register definitions, which makes hover-over symbol

inspection basically worthless when you’re in a debug

session.

DEBUGGING

Debugging across all Microchip devices is much slower than in other IDEs. I’m not sure if this a limitation of the MCU, the PicKit 3, or the IDE
(or all of the above). The default behavior of MPLAB X is to reconnect from the tool whenever starting a debug session, but you can shave a few
seconds off the debug load time by instructing the IDE to maintain a constant connection to the tool by ticking the appropriate box in the
Options dialogue. This really ought to be the default option, as few developers know of its existence, debugging is slow enough as it is, and
there are very few usage cases where you’d want the IDE to disconnect from the debugger upon completing a debug session.

While there’s an option to display a Dissassembly view while debugging, this doesn’t come up by default, and even when you select it, it
doesn’t seem to be “sticky” — you have to re-open the view every time you start a debug session. This is �ne for Java or desktop C/C++
development, but for embedded microcontrollers, disassembly view is critical.

Another afterthought seems to be the peripheral register view, and peripheral
register handling in general. Pull up the SFRs view, and you’ll be greeted by an
extremely slow-loading window that’s painful to scroll through — especially on
larger devices like the PIC32.

This view displays the address of the register (who cares?), the hard-to-understand
short-form name, the hex value of the register, the decimal value of the register
(who cares?), the binary value (hilariously long when working on 16- and 32-bit
processors), and an ASCII interpretation of the register’s value (…why on Earth…?) —
but what’s not in this view is: a human-readable name of the register, description of
the register’s function, or a human-readable decoding of the register’s current
value.

There’s a hover-over break-down of the register into its individual bits, but these use the same short-form datasheet names, don’t provide
descriptions, and don’t contain enumeration values for multi-bit �elds (or any explanation at all).

Basically, you’re going to have to have your datasheet open so that you can hand-decode the values of these registers, as Microchip doesn’t
seem interested in integrating that style of documentation into their IDE.

These are the things that drive me nuts — it’s 2017; all of this data is already computerized. All they need to do is add a bit more functionality
to their view (which many Eclipse-based vendor tools have), and all the sudden, the SFR view becomes ten times more productive to use.

For higher-end PIC32 and PIC24 devices, there’s a semihosting-like feature Microchip calls appIO (though it only works with their pricy ICD
debuggers). There’s also runtime variable watch and instruction tracing, but that’s only supported by the really pricy RealICE debugger.

HT-IDE3000 looks like O ce 2003’s ugly cousin, but its ancient GUI toolkit snaps along on modern systems at lightning speed. Text completion is

basic but rocket-fast, and the IDE integrates well with the debugger and target MCU.

HOLTEK HT-IDE3000

Anyone who complains about IDE bloat and download registration walls should immediately check out Holtek HT-IDE3000 (yes, that’s what it’s
called). Visit their website, click the download link, and a small 90 MB ZIP �le starts downloading.

They do make you type in the serial number on your $40 eLink debugger before using it (likely to deter debugger cloning), but that’s the only
registration you’ll see.

Once you get the IDE up and running, the �rst thing you’ll notice is its Of�ce 2003 look. It ain’t pretty, but it’s functional. All the menu buttons
you see are completely customizable through a drag-and-drop editor, which I didn’t see in any other IDE tested.

The best part about having such an old-school IDE is that this thing screams: zero-lag text-editing, immediate hover-over pop-up tooltips with
function source code (like the Hover Source feature in Eclipse, but much more lightweight), and zippy project building. I did a double-take
when looking at RAM usage: HT-IDE3000 uses 9.9 MB of RAM. Yes, that decimal point is placed properly. Insane.

http://www.holtek.com/ice-software

This comes at the expense of code intelligence features. IDE3000 can go to variables, macros, and function de�nitions; auto-complete
variables and functions; and display pop-up source listings of functions when you hover over them. But there are no real macro expansion
capabilities or code outline views, and the text completion is pretty basic: it recognizes C types and functions but doesn’t seem to like
remembering SFRs or other types of things that get #de�ne’d. There’s no macro expansion, and the text completion isn’t intelligent — it’s only
a selectable list of all symbols visible in the given context.

This turns out to be good enough for the sorts of projects these small devices tackle. It’s not like you’re going to be juggling around more than a
few dozen variables, and I’d bet 90% of the code-bases that target these parts comprise a single C �le.

What you do get with Holtek is deep integration with the device you’re targetting. There’s built-in functionality for interacting with EEPROM
on the device, programming using USB bootloaders present in some of their chips, as well as a built-in OTP work�ow for generating the
appropriate �les Holtek needs to manufacture your parts (since most Holtek devices sold are OTP parts).

Debugging in HT-IDE3000 is lightweight and snappy, with most features you’d expect. I wish the register view had more information about the individual

bits (at least their full name and description as a hover-over tooltip), but it gets the job done — especially considering how simple the architecture is this

IDE targets.

As soon as you build a project, IDE3000 will jump into a debugging session in the background — even as you continue editing and building.
This unconventional experience lures you tap that “Build” button often, and gush at your progress. As most �rmware projects targetting this
microcontroller will hover in a while() loop until interacted with, while you’re editing, you can double-click on a line of code to set a
breakpoint, immediately check out what’s going on, make changes, and continue editing — without the manual process of uploading code,
switching to a debug perspective, waiting for the image to �ash, start running, and a breakpoint hit.

Code building and uploading are so fast, it almost feels like you’re in a simulator or a PC-based environment. The debugging views are basic
but fully-functional. The peripheral register view will break down each register into the bits that are set and cleared — but I would have
preferred hover-over descriptions of the registers and the bits they command.

While Holtek could modernize the UI, you’ll get no complaints about stability from me: I didn’t have a single crash, bug, hiccup, or driver
installation kerfuf�e the entire time I used IDE3000 — I tried it on both Windows 7 and Windows 10 Fall Creator’s Update, and the experience
was identical. Holtek accelerates an update schedule by squashing bugs and adding new features several times a year — in fact, they had two
updates over the course of my writing this review, which is more than any other IDE.

STVD supports decent text completion, and customizable editor colors and fonts.

ST VISUAL DEVELOP (STVD)

STVD is the of�cial IDE for the STM8. Its UI feels even older than IDE3000, but it’s a bit better when it comes to text-editing capabilities. Its
code completion is invoked with the familiar ctrl-spacebar shortcut, and instead of just displaying all symbols discovered, it seems to default
to symbols that make sense in the present context. It knows enough about C to walk into pointer-referenced structs, but unfortunately, has no
pop-up documentation or source-code browsing when you hover over a method.

Unfortunately, it feels slow. Code completion can take a second or longer to pop-up in larger projects, rearranging toolbars was sluggish, going
to the de�nition of a symbol took time to load the editor window, and menus were slow to appear.

https://jaycarlson.net/pf/st-stm8/

The peripheral registers view had descriptions of all the registers, but didn’t break down registers into individual bits (or explain what they were).

Debugging was also worse than average. Breakpoints can’t be set while the target is running — you must manually pause it, add your
breakpoint, and then continue execution. The peripheral registers view was also underwhelming: while it has descriptions of registers, it only
displays the whole value of the register — in hex format — without giving you a per-bit breakdown useful for catching bit math bugs in your
code. Yet again, you’ll be resigned to manually cross-checking register values with values from the datasheet — one of my biggest pet peeves.

PSoC Creator is built around Cypress’s code-gen tools, which provides a schematic capture interface for instantiating and connecting components; these

tools generate the configuration bitstream along with an API for the peripherals.

PSOC CREATOR

Cypress PSoC Creator is the of�cial — and only — development environment available for Cypress’s line of PSoC devices, and encompasses a
project management system, text editor, schematic capture tool, code generator, and debugger.

PSoC Creator’s interface lurks out of the last decade with its Of�ce 2003 costume, and its .NET codebase ensures porting it to Linux or macOS
will be an arduous task that Cypress, itself, resigns as unlikely.

PSoC Creator feels snappier and lighter-weight than Eclipse or NetBeans-based environments while maintaining 90% of the IDE features and
code introspection abilities. Loadable workspaces weave together one or more projects — any number of which can be open at the same time
— exactly as Eclipse does.

A Code Explorer pane leads you to variable and function de�nitions with a single click; while the text competition digs deep into functions,
macros, and variables to bubble up suggestions with the familiar Ctrl-Spacebar shortcut.

Cypress needs to refashion hover-over tooltips into what Eclipse or IDE3000 does; as it stands, the tooltips print the name of the function and
its parameters — there are no code docs, and no quick source view you can use to peek at a function’s implementation.

There’s one-click documentation access, plus a resource meter for monitoring both �ash and SRAM usage — but also peripheral usage, which
shows you exactly how integrated PSoC Creator is with the underlying PSoC hardware.

The 500 lb gorilla in the PSoC Creator ecosystem — the schematic capture con�gurator tool — is a major omnipresence in PSoC Creator — but
I’ll save that discussion for Code Generator section of this review page.

PSoC Creator has no global register inspector like other environments; you can only view peripheral registers associated with instantiated components.

Flash load times were unimpressive (though not the worst seen in my round-up). A basic, 1.4 KB program took 7.82 seconds to load and run to
main(). Filling �ash up to 16 KB took 10.84 seconds.

PSoC Creator jostled my brain when I strained to reduce power consumption in my DMX project. I couldn’t �nd a standard list of all peripheral
registers which would allow me to cross-reference bits from the datasheet — instead, you can select from the peripherals you’ve con�gured in
the schematic capture view, which initiates a limited view of that speci�c peripheral (and only displaying the registers associated with its
current function).

As this is an ARM microcontroller, you may intuit that a cross-platform GCC-based toolchain would be easy to set up — but because of the
proprietary con�guration bitstream required when �ashing these devices, you’ll need to use Cypress’s tools to �t your design to the processor
and merge this bitstream with your application binary code.

While Cypress stops short of supporting Linux or macOS outright, PSoC Creator can export projects to common cross-platform Eclipse or
Make�le-based environments — as well to industry stalwarts µVision and IAR.

But if you’re on Windows, I wouldn’t bother — this is as close to an Eclipse/NetBeans work�ow you’ll get with a proprietary IDE, and it’s
de�nitely good enough to compete with either.

KEIL UVISION

Keil’s fame ensues from their acclaimed 8051 compiler, C51, introduced in 1988 — but since 1997, their compilers have also shipped with their
in-house IDE, Keil µVision.
Now at version 5, µVision continues to be popular among professional dev shops for both Arm and 8051 development, even as more and more
manufacturers roll their own cross-platform toolchains.

Speaking of that, while every Arm part I reviewed has its own manufacturer-provided IDE (save for the M051), developers can use µVision as
an of�cially-supported development environment for all them.

On the other end of the spectrum, among the 8051, only Silicon Labs maintains their own IDE for the EFM8 — both the N76 and STC8 only
support µVision. Keil’s IDE has support for multi-project workspaces, though it doesn’t enforce their use.

Keil’s text editor is painful to use. The �rst two things you’ll notice are that there are no auto-indenting inside block statements, and out of the
box, there’s no keyboard shortcut for commenting or uncommenting code. Sure, you can bind “comment text selection” and “uncomment text
selection” to shortcut keys, but you have to select the text before invoking. This is ridiculous.

Even more painful: µVision has a Jekyll-and-Hyde act when switching between C51 (8051) and MDK (Arm) projects. When building Arm
projects, µVision has ok-but-not-great text-completion (in the form of a pop-up list of discovered symbols) — but when building 8051 projects,
that text completion inexplicably vanishes.

Keil µVision’s Arm debugging has a functional peripheral inspector that breaks each register into each logical field, with named descriptions of any

enumeration values.

Debugging is the same sad song. Keil has good support for semihosting in Arm projects without needing much user intervention. A decent
peripheral register explorer helps you diagnose peripheral issues with named-value �elds that have nice descriptions.

Debugging on the 8051 is a di erent story — the pop-up peripheral inspectors are clunky, and not every vendor adds the proper support to Keil.

But in 8051land, weird pop-up peripheral inspectors stand in for the peripheral pane. While these curtail my productivity, I must admit they
are more amusing than their Arm brethren (let’s be honest: who doesn’t love clicking checkboxes and watching LEDs light up?).

I scoured the menus, feature lists, help �les, and online examples trying to redeem µVision by �nding something it excelled at compared to the
other IDEs I evaluated. I suppose it’s much lighter-weight than Eclipse is — coming in at 105 MB of RAM usage during a debug session. It
makes too many concessions for me to even consider it alongside Eclipse, though.

In the end, consider µVision as nothing more than the free editor you get when you download C51 or MDK-ARM. And it’s not worth a penny
more.

CODE GENERATION TOOLS

Peripheral con�guration and bring-up is generally a drop in the bucket when compared to the time required to implement an entire
commercial embedded project — but if you’re working on tiny projects (either hobbyist stuff, or simple proof-of-concept engineering demos),
having a code-gen tool can noticeably speed up the development cycle.

Many of the development environments tested have code-gen tools either integrated directly into the IDE (Microchip Code Con�gurator,
Simplicity Con�gurator, In�neon DAVE, PSoC Creator, Processor Expert, or have stand-alone tools (STM32CubeMX, Atmel START, STC-ISP,
MCUXpresso Con�g Tools).

Some generate initialization code that calls into the vendor’s general-purpose peripheral libraries (like STM32CubeMX), while some generate
raw register initialization values from scratch (Silicon Labs’ Simplicity Con�gurator).

While Atmel START provides a nice-looking graphical interface especially useful for the flexible clocking schemes available on modern ARM

microcontrollers, its design validation is hit or miss: in this picture, there’s absolutely no warning that the main 32 kHz oscillator isn’t enabled. Most

seriously, the DFLL module indicates it’s outputting a frequency of 48 MHz, even though its multiplier is set to “0” in the configuration properties dialogue.

Changing this to arbitrary values does not update the “48 MHz” display. This is a tool you cannot trust.

ATMEL START

Microchip’s code-gen tool for its Atmel acquisition is a hold-over called Atmel START; it’s a web-based code con�gurator that supports nearly
their whole catalog of current devices. Under the hood, it generates peripheral libraries that are considered part of ASF4 (Atmel… err,
“Advanced”… Software Framework). This is a marked improvement over ASF3 on paper, but there are still signi�cant problems with it.

First, the good: using the part with 8-bit megaAVR and tinyAVR devices is a no-brainer. You can use the “initialization” drivers instead of the
“basic” drivers to generate init-only code, along with any stubbed out ISR functions you need. The generated code is beautifully documented,
extremely readable, and compact. It’s written the way you would probably write it by hand, and I can imagine this would serve as a nice
learning tool for someone coming from Arduino, looking to take baby steps toward programming MCUs at the register level.

Now the bad: Atmel START is extremely clunky to use. Projects must originate in the web browser, then get exported to a ZIP archive format,
where Atmel Studio extracts them to a solution, where you can then open them. If you want to change something, thankfully Atmel Studio
allows you to right-click on the project and recon�gure it — opening a browser window inside the app and automatically loading the project.

But this begs the question: why can’t Atmel Studio create these projects from the get-go, if it can edit and re-generate them? Another problem
with Atmel START is the lack of placeholder markers the tool can use to determine what to preserve and what to overwrite — this is only done
at a whole �le level. I assume this is why they don’t pre-de�ne user callback function stubs, as these would get overwritten on subsequent
regenerations of the code. This is a lazy design decision that makes integrating code with Atmel START challenging.

More bad news for START: Atmel’s SAM D-series parts I evaluated require lots of clock con�guration (like most Arm parts), but START provides
absolutely no error-checking or clocking suggestions for you. It will gladly generate code that uses the main DFLL, without actually enabling
the main DFLL, causing your program to hang in a while() loop waiting for the DFLL to start up, when it never will.

This is the crap that makes getting going on a new platform so challenging, and this is precisely why I like using code con�guration tools. So
if a tool can’t do that, I scarcely see much value to it that I can’t get from normal peripheral libraries.

Processor Expert provides a stunning array of configuration options and flexibility — but make sure you have a fast desktop PC, as this tool is a huge

resource hog. It also generated some of the slowest peripheral code in the round-up.

PROCESSOR EXPERT

Processor Expert is at the other end of the spectrum. PE generates initialization code, interrupts, user callbacks, linker �les, and an entire
peripheral library. It uses a component-oriented model with dependency resolution; for example, two high-level “PWM” component instances
will share a common “Timer Unit” low-level component (as they will end up on different output-compare channels of that timer unit).

High-level components implement conceptual functionality, not peripheral functions. For example, if you wanted a function to execute every
25 ms, you would add a “TimerInt” component, and set the interval to 25 ms. Processor Expert will �gure out which timer to use (FlexTimer,
LPTimer, PIT, etc), route the clock appropriately, and calculate the necessary period register values, enable interrupts, generate an interrupt
handler that takes care of any bits you need to set or clear. Of course, you can override any of its decisions at any point through its plethora of
property panes — and unlike START, it will check your work to make sure everything is kosher.

While it’s extremely �exible, the biggest problem with Processor Expert is its interface is unbelievably slow — whenever you change a
parameter, it can take several seconds (even on a fast computer) for that change to propagate. When you hit “Generate Code” prepare to wait
10-30 seconds at least — and project rebuilding takes forever, too.

DAVE provides a property-based GUI code generator that integrates well into the IDE. The tool calls into a lightweight peripheral library, XMClib.

INFINEON DAVE

In�neon DAVE is similar from the user’s perspective, but instead of generating nearly-unreadable, multi-level library code, DAVE generates
initialization code calls into XMClib to manage peripherals. And unlike Processor Expert, DAVE designers appear to have designed the
generated code (as well as XMClib in general) for better optimization than Processor Expert, where even a single bit-toggle function ends up
nearly completely unoptimized — taking 40 cycles to complete.

DAVE also integrates higher-level “apps” — like built-in lighting control systems (including a DMX-512 receiver), communication protocols,
graphics libraries, and motor controller libraries (we’re talking about pretty advanced stuff: FOC of ACIMs and PMSMs).

Silicon Labs’ Simplicity Studio includes the built-in Simplicity Configurator for generating lightweight initialization code and ISR stubs.

SILICON LABS SIMPLICITY CONFIGURATOR

Silicon Labs takes a much lighter-weight approach to code generation with Simplicity Con�gurator. All Simplicity Con�gurator does is create
peripheral initialization code, by generating functions that directly initialize register values.

Silicon Labs has a full EFM8 peripheral library, but Simplicity Con�gurator does not call into it nor include it automatically — it just initializes
peripherals, using raw register manipulation.

You can combine Simplicity Con�gurator projects with the EFM8 peripheral library, or use your own code for interacting with the peripherals
during runtime (Or just use the peripheral library without any code con�gurator).

I really like this approach, as it provides a ton of �exibility, and keeps the size of generated code under control.

It’s also one of the snappiest code-gen tools reviewed — Silicon Labs has so much con�dence in its tool’s speed that it programmed the tool to
auto-regenerate all the initialization code whenever you save the Con�gurator document, and in my testing, this didn’t introduce any
noticeable lag.

A neat perk unique to Simplicity Con�gurator is it can also generate stubs for ISRs — and the generated stubs include comments instructing
you which bits to clear before leaving the ISR. Beautiful.

I really enjoyed the timer documentation in the datasheet, and I was glad to see much of it made it into the code generator tool. Too many embedded

programmers don’t understand all the powerful functions of advanced timers, so this tool should help out a lot.

RENESAS CODE CONFIGURATOR

Renesas e2studio includes Code Con�gurator, their code-gen tool built into their IDE. This tool integrates a nicely-organized visual layout
that’s extremely readable and self-documenting.

This tool handles communication callbacks particularly effectively — the code generator creates an interrupt that handles the underlying ISR
details, but then directly invokes a statically-declared callback function that’s stubbed out conveniently for the user. This callback has direct
access to the buffer associated with the data, so there’s no expensive copying/buffering operation required in Processor Expert, Microchip
Code Con�gurator, or Atmel START.

Unfortunately, some of the other peripherals — especially the timers — focus heavily on initialization code, and don’t provide high-level APIs.
For example, with the PWM peripheral, you’ll still need to directly modify timer registers, which involves looking up the register names in the
datasheet, and learning about the values those registers can take.

I would have preferred Code Con�gurator to generate PWM setDutyCycle()-type functions — more advanced users could directly modify the
registers instead of relying on those functions, which would then be optimized out of the �nal code anyway.

NUVOTON NUTOOL PINCONFIG

Nuvoton provided a code con�gurator tool for their M0, but I mention it here only to dissuade you from thinking it has absolutely any value at
all, in case you see an advertisement for it. Rather, it is full of bugs, only uses an outdated, buggy peripheral library, and cannot restore
con�gurations properly. Whoever wrote it on their lunch break needs to spend another day or two getting it working before they release
version 2.0.

NXP MCUXPRESSO CONFIG TOOLS

Similarly, NXP really dropped the ball on the MCUXpresso Con�g Tools program, which it uses in lieu of Processor Expert. This stand-alone
program purports to do clock con�guration and pin-muxing, but in practice, the only code it generates is clock gating code. It claims to
generate MCUXpresso projects, but then it informs you it cannot generate projects for MCUXpresso.

You can export a weird archive format that you can import back into MCUXpresso, but if you want to make any changes, you have to go
through the whole process again — recreating your project. It’s terrible.

I ended up forcing it to generate code in a “generated” folder inside an existing MCUXpresso project. I set up the include paths to look in the
new, generated tree structure, and was able to get it going — but this is not a procedure for novices who may be unfamiliar with Eclipse C/C++
development.

STC-ISP is STC’s do-everything programmer, parametric search engine, and code-gen tool. It may look a little silly,

but it’s both easy to use and very functional.

STCMICRO STC-ISP

STC-ISP — STC’s do-everything programmer utility — has some built-in code-generation capabilities. On the 8051, the three things people
struggle with the most is UART, timer, and delay functions, as these all require clock calculations dependent on your particular set-up. STC-ISP
generates precisely three types of source code: UART initialization, timer initialization, and delay functions. Oh, and it will output both C and
ASM code, and it nicely comments the values so you remember why they’re in your source code in 6 months when you go to look at it again.

Microchip Code Configurator provides a stellar pin-muxing perspective that other manufactures haven’t quite duplicated.

MICROCHIP CODE CONFIGURATOR

Microchip Code Con�gurator (MCC) works with some (but not nearly all) 8-bit, 16-bit, and 32-bit PIC parts. This tool provides a nice pin
manager view that shows you assignment possibilities for all peripherals. Each peripheral has an Easy Setup or a Registers view that lets you
interact with the system at a lower level.

The tool generates a purpose-built, basic, compact runtime library that’s a great place to get started with, but I’d like to see the ability to
generate ISR stubs — especially for communication peripherals — instead of relying on out-of-ISR-context functions for handling data (which
requires buffering data and other overheads).

You can disable automatic reception to prevent MCC from generating these ISRs (allowing you to write your own), but I couldn’t �nd a way of
being able to de�ne my own ISR, but also have MCC generate code that automatically sets all the interrupt-enable bits that need to be present
for ISRs to execute. Again, this results in an unnecessary trip to the datasheet.

The tool managed to generate extremely compact code — the best in the round-up of code con�gurator tool (though this is also just a product
of the PIC16 architecture), and, like Atmel START’s 8-bit code, read like something a human would write.

PSoC Creator is built around Cypress’s code-gen tools, which provides a schematic capture interface for instantiating and connecting components; these

tools generate the configuration bitstream along with an API for the peripherals.

PSOC CREATOR

PSoC Creator is infamous for its deeply-integrated code con�gurator tool. Because PSoC devices have peripherals whose registers are
con�gured directly from a bitstream in �ash memory, the PSoC Creator’s tools are not optional.

This is an elaborate system that uses a schematic-capture interface to place individual blocks — PWM modules, SPI devices, ADC pins, and —
in higher-end PSoC devices — recon�gurable analog and digital blocks.

Each block has a nicely laid-out properties window that allows you to con�gure nearly everything about the peripheral.

This system seems like it would be popular among people with an electronics — not programming — background. As much of a die-hard PCB
layout guy as I am, I actually found the interface to be clunky and unproductive. You have to place everything on the schematic — even pins
and clock sources. If you want to de�ne an ISR, the “PSoC way” is to wire up an ISR component to an interrupt signal on the schematic.

I suppose you end up with nicely-documented PDF outputs explaining how the components �t together, but again, the system seems clunky
and heavy-handed. Do I really have to create and con�gure a clock component, simply to route it into a timer? Can’t the timer just have a clock
divider interface built-in?

It’s all a matter of personal preference.

STM32CubeMX is a lightweight, stand-alone code-gen tool that focuses on peripheral initialization, while pulling in the standard STM32 peripheral

library for runtime duties.

ST STM32CUBEMX

STM32CubeMX (the worst name in my round-up) is a lightweight, stand-alone Java app that’s oddly compelling to use. The tool supports
initializing almost all peripherals of almost all STM32 devices — an impressive feat on its own. I couldn’t �nd a peripheral mode or feature that
the tool didn’t support — but it’s important to understand the runtime code it generates uses the standard STM32 peripheral libraries, which
have bothered some people due to their size.

And, truth be told, these were some of the fattest hex �les I made — only topped by Atmel START’s D10 code, and Nuvoton’s non-LTO’d
peripheral library.

The other problem is how basic some of the peripheral drivers are. But because the tool is intelligent enough to ignore strategically-placed
user code, it’s easy to customize the generated code to suit your purposes.

As a plus, the tool can generate project formats that target all popular development ecosystems — and not just their of�cial System Workbench
for STM32.

COMPILERS

There was a large contingent of hobbyists in the 1990s and 2000s who were lured by low-quality proprietary compilers that didn’t work well,
crashed often, and quickly disappeared from the market without a trace. Those have all but vanished — these days, GCC builds code for several
different MCU families, while the industry stand-bys — Keil, IAR, Cosmic, etc — continue to be popular choices for 8-bit MCUs that lack C-
friendliness (and thus, GCC support).

The biggest change in the last 10 years is the democratization of tools — even proprietary, expensive compilers tend to have generous code-
size limitations (64 KB or more in some cases — plenty for a quick evaluation or hobbyist projects).

And some vendors — like Silicon Labs and ST — work with compiler vendors to offer full versions of these expensive tools free of charge to the
customer.

I conducted all my testing using nothing but freely-available versions of the vendor-recommended toolchains for their products. Throughout
the months of testing on 21 different parts, I didn’t run into a single compiler bug — but I did run into several peculiarities and optimization
snafus.

GCC

GCC is an open-source, cross-platform part of the GNU Project, and �rst released in 1987. Since then, developers have ported GCC to dozens of
architectures. In the microcontroller world, it can target the Arm, AVR, RL-78, and MSP-430 parts reviewed — as well as parts I wasn’t able to
get to, including Xtensa, RX, M16C, SH, NIOS2, and Microblaze.

GCC can support MIPS processors, and there are several projects (e.g.) from people trying to build code for the PIC32, but you’ll get no help from
Microchip and a growing chorus is questioning whether they’re in violation of GPL.

GCC excels at producing fast math code, supporting recent C standards, and — with link-time-optimization — producing compact code.

Arm, especially, has seen a mass migration to GCC — even Arm Holdings (who own MDK-ARM) take part in GCC’s upkeep, and distribute binary
releases of it on their site. I know several smaller shops that have stopped renewing their Keil MDK licenses, because GCC is as good — or
better — than MDK.

I haven’t conducted thorough benchmarking myself, but in my biquad �ltering test with the Nuvoton Cortex-M0 part, the GCC implementation
required 30 clock cycles, while the MDK version needed 42. Code size was also better for GCC than MDK — 2880 bytes versus 3004 bytes.

The Achilles’ heel for GCC on MCUs is actually not GCC itself — but rather the C library — Newlib or Newlib-Nano — that is often linked to the
program whenever you need printf() or similar C routines.

8

https://github.com/is1200-example-projects/mcb32tools
https://www.eevblog.com/forum/microcontrollers/is-microchip-violating-the-gpl/
https://www.embeddedrelated.com/showthread/comp.arch.embedded/91196-1.php
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm

Here, Keil MDK, IAR, and other vendors can produce much smaller code size, as they’re using their own C libraries that are highly-optimized
for the architecture (and may not be 100% compatible with C99).

This compares with Newlib, the full GCC C library that’s aimed at much larger devices running full operating systems — or Newlib-Nano,
which trims down, but is still much larger than proprietary MCU C libraries.

I want to highlight NXP’s MCUXpresso IDE, as they’re the only vendor to distribute a built-for-ARM C library, Redlib, with their IDE. Redlib is
part of their Code Red acquisition. All other vendors copy-and-paste the same newlib and newlib-nano options.

Raisonance conducted a benchmark a few years ago that con�rms everything I’ve written on the strengths and weaknesses of GCC. Full
disclosure: Raisonance has a stake in GCC, as they use it in their Ride7 proprietary IDE.

One minor annoyance with GCC is that its backend considers SFR accesses as an “optimization” — so with the optimizer off, it uses fairly slow
code for accessing peripherals. I’ve veri�ed this with both AVR and RL-78 targets.

On avr-gcc, compiling with -Og or higher will �x this issue, but this can introduce debugging headaches (though -Og minimizes them).

GCC’s RL-78 port, however, seems crippled by this issue — no optimization �ags I tried were ever able to generate correct SFR accesses;
everything always went through normal 16-bit space, issuing a strong performance penalty.

CC-RL

While the RL-78 has rudimentary support for GCC, as I mentioned above, I was never able to coax it into generating good register I/O. CC-RL,
the proprietary RL78 compiler from Renesas, has no issues with this.

But CC-RL doesn’t inline non-native math functions — instead, it calls into runtime libraries, which introduces extra overhead.

The free mode supports 64 K linking.

9

https://community.nxp.com/thread/389152
http://www.raisonance.com/arm_benchmark.html

KEIL C51

The 8051 harkens from a time where developers programmed microcomputers (and microcontrollers) in assembly, not C. Its fancy control-
friendly features like small sets of banked registers (which can interchange in an interrupt context) don’t play well with compilers.

Worst still, the 8051 suffers from a small, 8-bit stack that struggles to keep up with traditional stack-based C implementations.

Early C compilers for the 8051 often started as 68K or x86 compilers hacked with an emulated software stack stored in XRAM. This produced
code that dawdled through tasks at a snail’s pace.

PL/M-51 PL/M-51 wasn’t a C compiler — it actually compiled code written PL/M, a proprietary Intel high-level language. Man, the 80s were
weird.was an Intel compiler introduced in 1980 that got around this problem by passing variables in de�ned RAM locations.

Keil took this idea and ran with it. They introduced C51 in 1988 — and it �ourished in popularity.

One of the problems with Keil is its trigger-happy use of nonstandard reserved words. But this what you would expect: when you’re building a
C compiler for the 8051, you have to have the ability to declare variables in XRAM versus RAM — or be able to instruct the compiler to make a
function reentrant if necessary. You don’t have the luxury of a stack-friendly microcontroller which treats all RAM equal.

While that’s unavoidable, the way Keil implemented these special attributes is not. Keil obnoxiously sets aside: alien, bdata, bit, code, compact,
data, far, idata, interrupt, large, pdata, reentrant, sbit, sfr, sfr16, small, using, and xdata.

Because, as we all know, no developer ever declares variables named things like “data,” so that should work out �ne.

This is a serious problem when porting large stacks built for other compilers, like GCC. Yes, I know you can disable these extensions with the
NOEXTEND compiler directive… but obviously then you can’t use these directives.

I would have preferred GCC-style __attribute__ xdataor at least __xdata.

A bigger problem with C51 is that, like CC-RL, it calls into pre-built math libraries whenever it needs to perform a non-native operation (such
as a 16-bit multiply), instead of inlining the appropriate set of operations, as GCC does. No optimization setting will �x this behavior, and
because function calls are expensive on the 8051, this has dramatic performance implications.

10

11

12

MICROCHIP XC

Microchip produces microcontrollers of three basic designs: an 8-bit, a 16-bit, and a 32-bit. The XC8, XC16, and XC32 are the current compilers
in their collection that target each of these, respective.
These are quite different processors and, under the hood, these are quite different compilers.

The 8-bit processors, in particular, have gone through slow, incremental changes over the years: from 12-bit, to 14-bit, to 16-bit program word
sizes, with each bump adding more address space, new instructions, and a bit more stack space.

With each improvement, these PIC devices became easier to write compilers for. The PIC18 was the �rst core for which Microchip supported C
programming — though Hi-Tech had already developed a Keil C51-like compiler for the lower-end devices that lacked a proper stack.

Eventually, Microchip acquired Hi-Tech, and combined these two disparate products into XC8, which covers all 8-bit PIC devices.

None of the 8-bit PIC parts have a usable stack to store variables. To handle this shortcoming, XC8 can create a software stack on PIC18
devices, which have enough indirect addressing operators to support this.

Not so on PIC10/12/16 devices. Like Keil C51, XC8 will reuse certain RAM addresses to hold local auto variables and function parameters. This
works well, and is often more ef�cient than a stack-based approach simpler compilers can use on more advanced hardware. As mentioned
with Keil C51 above, the big problem is reentrancy — when a function attempts to call itself (i.e., recursion), or when an ISR calls the same
function it happened to interrupt. Here, these auto variables — which should be unique to the function’s execution — will be at the same
address, thus causing possible corruption.

XC8 beats out Keil C51 by tacitly duplicating any function that ISRs call into, eliminating the ISR reentrancy problem. Unfortunately, unlike
Keil, XC8 has no way of forcing the compiler to generate reentrant-capable code on these midrange devices.

They support optimization through the “Omniscient Code Generation” optimizer. According to the documentation, for well-written code, the
main advantage to OCG is bank-tracking. Because the PIC devices use banked memory pages (for both RAM and SFRs), most source code liters
bank-select statements everywhere.

Most of the other optimizations — removal of dead code, unused variables, unreachable code, unused return expressions, and redundant
assignments — seem only relevant to poorly-maintained code.

XC16 and XC32 use GCC. Microchip doesn’t advertise the source code, but it’s available from their Archives page.

http://www.microchip.com/development-tools/downloads-archive

Nuvoton provides an entire transcript of the reference manual attached to each symbol in their header file, which is a huge step

above other header-based documentation.

HEADER FILES

I didn’t realize how important good header �les were until I started working with some of these parts that simply have horrendous headers.

Since MCUs rely on setting, clearing, toggling, and inspecting bits in registers, it’s convenient for the compiler and header �les to provide
methods for setting and clearing individual bits (and preferably bit ranges) inside registers — even if the architecture doesn’t support atomic
bit instructions.

Bit-Addressable Register Access

All Microchip PIC parts, Atmel SAM D10, and the RL-78 all support bit-addressable register access. The SAM D10, in particular, is the only Arm
part I’ve ever seen this feature in — and it’s fantastically useful — even if their notation is a bit heavy-handed. I’d love to see them go through
and #de�ne �at symbols to point to those structs, so instead of:

TCC0->CTRLA.bit.ENABLE = true;

I could write

TCC0_CTRLA_ENABLE = true;

But at this point, I’m just nit-picking.

https://jaycarlson.net/pf/atmel-microchip-sam-d10/
https://jaycarlson.net/pf/renesas-rl-78/

While Renesas provides bit-addressable register de�nitions, there are absolutely zero docs in the header �les. Same goes for Microchip PIC —
there’s next to no documentation in the header �les for the PIC16, PIC24, and PIC32.

It’s 2017 — storage is basically free. Header �les should come chock-full of documentation, so you can keep your focus on your code — instead
of having to jump around inside PDFs.

Header Documentation

By far, the best-documented header �les were from the Nuvoton M051. Essentially they copy-and-pasted the entire reference manual into their
header �les. You get every register name and description, with every bit described in the same detail as in the of�cial documentation. This is
absolutely incredible, and really sets the standard in the industry.

Renesas, while not having RL-78 header documentation, does have a bizarre pop-up PDF viewer thing that displays the relevant reference
manual section when you hover-over a variable. I kind of like it, but it’s pretty heavy, and I think if I used the architecture more, I’d prefer the
Nuvoton approach.

Other than that, In�neon, ST, NXP, and Texas Instruments provided good documentation in their header �les — though I have to fault Eclipse
for not displaying this more prominently in tooltips. Often, I had to click-through to the device header �le to read the register description.
Atmel Studio handled doc display much better.

Silicon Labs also provided excellent documentation, and along with the other 8051s, had all bit-addressable registers de�ned clearly. But
because of the 8051 architecture, not all registers are bit-addressable — in fact, most aren’t.

https://jaycarlson.net/pf/microchip-pic16-five-digit-enhanced/
https://jaycarlson.net/pf/microchip-pic24/
https://jaycarlson.net/pf/microchip-pic32mm/
https://jaycarlson.net/pf/nuvoton-m051/
https://jaycarlson.net/pf/renesas-rl-78/
https://jaycarlson.net/pf/infineon-xmc1100/
https://jaycarlson.net/pf/st-stm32f0/
https://jaycarlson.net/pf/nxp-lpc811/
https://jaycarlson.net/pf/texas-instruments-msp430fr/
https://jaycarlson.net/pf/silicon-labs-efm8/

I wish Keil C51 could be coaxed into generating ORL and ANDL bitwise instructions from some sort of proprietary bit de�nition structure that
would allow *all* bits to be manipulated independently in the same way.

Even more puzzling is why there are no bit�eld register de�nitions for the tinyAVR or megaAVR, even though the architecture clearly supports
bit manipulation. Surely there could be a proprietary AVR-GCC attribute that allowed Atmel to build header �les that the compiler could use to
generate sbit and clrbit instructions, right?

Predefined O set Bitmasks

A (slightly inferior) alternative to bit-level register access is prede�ned offset macros. This is the route Silicon Labs, Texas Instruments,
In�neon, NXP, and Microchip go (though again, the �rst three provide much better documentation). Atmel also provides this — but only for
their tinyAVR.

The Worst Headers

The worst header �les were from the megaAVR, the PSoC 4000S, the Kinetis KE04, the HT-66, the Sanyo LC-87. These header �les have zero
documentation, no prede�ned bit offsets, and no bit-addressable register de�nitions. Their header �les are little more than register names
attached to addresses.

https://jaycarlson.net/pf/atmel-microchip-tinyavr-1-series/
https://jaycarlson.net/pf/atmel-microchip-megaavr/
https://jaycarlson.net/pf/cypress-psoc-4000s/
https://jaycarlson.net/pf/freescale-nxp-ke04/
https://jaycarlson.net/pf/sanyo-on-semiconductor-lc87/

From left, the STM32, PSoC 4000S, Microchip SAM D10, Silicon Labs EFM8, and NXP Kinetis KL03 development boards.

DEVELOPMENT TOOLS

Development tools have been shrinking and simplifying over the last few years; no longer should you plan on spending hundreds of dollars on
a giant beast that combines every peripheral imaginable into a horrible mess of poorly-documented schematics.

For general-purpose projects that these MCUs are geared toward, I still often breadboard a �rst iteration of the system (usually with break-out
boards for the MCU, plus modules for the peripherals). If I’m working with a big microcontroller that has a lot of support circuitry, I’ll typically
use an off-the-shelf dev board. For smaller parts, I’ll toss them on a breakout board.

Breakout-Friendly Dev Boards

In terms of overall form factor, I’ll allow my personal preferences to gush out: I love dev boards that integrate a debugger and a microcontroller,
with nothing more than break-out pins. I think a dev board should have a row of jumpers that allow you to completely disconnect the target
from the debugger.

Regardless of what marketing departments think, dev boards should be free of extraneous sensors, buttons, LEDs, or anything else that a user
can easily breadboard. I’m OK with capacitive-touch sliders, as long as there isn’t a lot of junk (passives) hanging off the lines.

Consequently, I really enjoyed the MSP430 (and all Texas Instruments) LaunchPad boards. The integrated power measurement functionality is
wonderful, and I love the no-frills jumper arrangement used to disconnect the target from the on-board debugger.

I didn’t get a chance to play with the Microchip Curiosity boards, but these look appealing as well.

Snap-Apart

The snap-apart dev boards were also fun to play with — the Nuvoton N76 and M051 boards, the STM32Discovery, and the In�neon XMC1100
board. Having said that, you think they’re going to be great until you try to put them back together again. I spent several minutes in front of my
bench grinder cleaning up all the snap-apart boards so they could accept standard 0.1” headers and jumpers.

Arduino UNO Form-Factor

One pet peeve of mine is the insistence on building Arduino Uno form-factor dev boards.

I’m totally cool with vendors building UNO-compatible boards that support Wiring programming. This is a great way to get beginners
interested in moving beyond Arduino. Nuvoton does a good job of this with the M0 series. Their NuMaker Uno board uses a 5V-compatible
Arm Cortex-M0 part, and they provide a board support package for the Arduino IDE.

But a lot of vendors build boards that are cosmetically similar to Arduino UNO dev boards, but have none of the software support necessary to
use them with Arduino libraries or the Wiring environment in general.

While many vendors are guilty of this, I have to chastise NXP speci�cally for this.

NXP used to build fantastic little dev boards – the LPCXpresso “stick” boards — that were the �rst in the industry to have snap-off (well, cut-
off) debuggers. They broke out all the pins of the MCU onto sensible 0.1” headers, making breadboard prototyping easy. These boards were
great.

Unfortunately, they’ve discontinued them and switched to their new LPCXpresso MAX boards. These new boards cram their processors —
which are very unlike the ATMega328p — into an Arduino Uno form-factor.

This is especially stupid for parts like the LPC81x series, which only have 11 GPIO pins (excluding SWD and crystal) and don’t even have an
ADC.

So what does NXP do to �t their square peg into a round hole? They throw in random I C GPIO and ADC peripherals to pad the LPC’s I/O count
(and endow it with an ADC it doesn’t inherently have) — and then provide zero software on their downloads page for actually interacting with
these peripherals.

And in targeting this form factor, NXP hilariously misses the point. Do they provide Wiring support for these boards to be used inside Arduino?
Nope. Do they provide libraries for all the Arduino shields that are supported by their MAX boards? Nope. Do they even have a list of which
shields are compatible, and which ones are incompatible with various boards? No way.

So, they’ve saved me 30 seconds by allowing me to plug a shield directly into this board (without having to use jumper wires), but haven’t done
any of the actual work for me.

At the same time, their debugger is no longer separable from their target, there’s a boat-load of random crap on the board that must be
removed for accurate power consumption �gures, and the pins no longer line up with standard 0.1” breadboards.

2

https://jaycarlson.net/pf/nuvoton-m051/
http://www.nuvoton.com/hq/support/tool-and-software/development-tool-hardware/numaker-uno/?__locale=en
https://github.com/OpenNuvoton/NuMaker_UNO
https://www.nxp.com/products/microcontrollers-and-processors/arm-based-processors-and-mcus/lpc-cortex-m-mcus/lpc-developer-resources-/lpcxpresso-boards/lpc812-lpcxpresso-board:OM13053
https://www.nxp.com/products/microcontrollers-and-processors/arm-based-processors-and-mcus/lpc-cortex-m-mcus/lpc-developer-resources-/lpcxpresso-boards/lpcxpresso812-max-board-for-lpc81x-family-mcus:OM13055
https://jaycarlson.net/pf/nxp-lpc811/

And even if it were properly executed, I think I reject the underlying goal of this strategy. The whole purpose of using an Arduino UNO form-
factor is to support Arduino shields — yet I have never seen an Arduino shield on the desk of a professional engineer or advanced hobbyist. At
least, not one plugged into one of these “Uno form-factor” dev boards.

Dev Board Surgery

For the low-power part of this project, I had to do some minor surgery to the STC8, Nuvoton, and the three Atmel Xplained Mini boards
covering the tinyAVR, megaAVR, and SAMD10. This mostly involved removing LEDs or separating a power trace. The schematics were clearly
documented, and I consider these changes to be completely routine — just the price of admission of trying to do low-power development.

While the Cypress PSoC 4000S dev board looks uncomplicated, I struggled to get accurate power consumption without several hacks that
weren’t clearly documented.

The In�neon board’s power subsystem was slightly confusing, as there’s no power going between the debugger and the rest of the board once
you snap the two apart. Once I �gured that out, I had no further issues, and I like that they took the time to put headers on the board in a way
that allows the two parts to be re-joined together.

I hate to say this because I was a huge fan when they �rst came out, but I’ve grown to fundamentally hate the Freescale (now NXP) FRDM dev
boards. To even get my project to work, I had to do major reworking on the Kinetis KL03 FRDM board, which contained random �ltering
capacitors on UART RX pins. These weren’t mentioned in the documentation and were only traceable by studying six pages of schematics that
came with the board.

Trying to get accurate low-power measurements was a further struggle on the FRDM board, which is full of button pull-ups, LEDs, I2C sensors,
and no good power separation capabilities. This dev board is a total disaster — I wouldn’t recommend it to my worst enemy. NXP needs to take
a step back, simplify the board to its essence, and try again.

I also had to do major hacking of the Renesas RL-78 promotional board, but this was because I was trying to be a cheap-skate and convert the
kit to a general-purpose RL-78 programmer (since I needed to target a completely different microcontroller) — I can’t fault Renesas for that, but
I do wish their boards had debugger jumpers that would have kept me away from the soldering iron.

On-Board Debugging & Other Features

All dev boards tested have built-in on-board debuggers, but they varied widely in capabilities.

In terms of functionality, the best dev board in the round-up is the Silicon Labs SLSTK boards have a full, USB 2.0 high-speed J-Link On-Board
debugger that has been augmented with a high-dynamic-range energy monitor, which is an amazing deal considering the cost of the dev
boards ($30). While I only reviewed the EFM8 series in this review, the EFM32 ARM processors they make have nearly identical development
boards.

The MSP430 LaunchPad also has an energy monitor, which is still a rare feature to �nd in this pricing.

While other manufacturers have J-Link OB debuggers, they’re usually USB 2.0 full speed, not high speed. This is the case with the Freescale
KL03 and In�neon XMC1100 boards.

Cypress and Microchip’s SAM D10 went with CMSIS-DAP debuggers on their boards, while the Nuvoton used their proprietary NuLink for both
their Arm and 8051 controllers.

Both Freescale and ST enable reprogramming the debugger �rmware on their dev kits with SEGGER J-Link �rmware. I don’t think anyone in
the industry disagrees that J-Link is, by far, the best Arm debugger — and even operating at USB 2.0 full-speed specs (12 Mbps), �ash download
is snappy, and stepping through code is a breeze.

DEBUG ADAPTERS

While you can hack all current development boards to provide off-board debugging, at best this is clunky, and at worst it can be a violation of
the EULA for the dev board. Serious hobbyists and professionals usually have dedicated debug adapters laying around that can easily plug
into different targets they’re designing.

In the Microchip camp, your choices are the PicKit3 ($48), ICD4 ($249), and RealICE ($499) — all of these debug adapters will work with all
current Microchip PIC parts, but the PicKit3 is substantially slower than the ICD4, and only supports two breakpoints.

The Microchip (née Atmel) AVR and SAM parts are a different story: the $130 Atmel-ICE is your only option, assuming you want a debugger
that can target all current Atmel parts. If you’re only interested in debugging older parts, like the megaAVR and non-1-Series tinyAVR parts,

https://www.silabs.com/products/development-tools/mcu/8-bit
https://www.segger.com/products/debug-probes/j-link/models/j-link-ob/
http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=PG164130
http://www.microchipdirect.com/ProductSearch.aspx?Keywords=PG164130
http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DV164045
http://www.microchipdirect.com/product/search/all/DV164045
http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DV244005
http://www.microchipdirect.com/ProductSearch.aspx?Keywords=DV244005
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ATATMEL-ICE

you can get by with a $49 AVR Dragon.

The Silicon Labs EFM8 ecosystem has some of the fastest debug times, as well as some of the lowest-cost debugger hardware. Price
descending, your options include the SEGGER J-Link debugger ($60-1000), the USB Debug Adapter ($35), the ToolStick Base Adapter ($19),
semi-sanctioned eBay clone adapters ($10), or the bare debugger chip you can use in your own design ($1.78).

In the Arm ecosystem, just shut up and buy a J-Link. Seriously. It works in every Arm IDE, with every Arm part on the market. It has the
fastest debug speeds, supports any target voltage, and has unlimited software breakpoints. If you’re a student, you can get a J-Link EDU Mini
for $18 (cheaper than clones), or the full EDU version for $60. If you’re a professional, buy the $600 commercial version — it’s worth the handful
of billable hours you’ll have to charge to pay for it.

Debug adapters varied widely in speed — with the PIC16, PIC32MM, and SAM D10 taking the longest to program �ash memory — the latter two
took 20 seconds to program their entire �ash, which is entirely too long.

These parts also had the most inconsistent speeds — sometimes if I restarted my computer, they would be signi�cantly slower or faster. I
didn’t spend time fully characterizing their ineptitude, though, so your mileage may vary.

The fastest IDE �ash load times came from the In�neon XMC1100, running the J-Link �rmware, which could �ll its entire 8 KB of �ash and run
to main() in 2.47 seconds. That’s impressive, coming from an Eclipse-based IDE not known for its debugging kick-off abilities.

Actually, the Sanyo LC87 beat it out at 1.87 seconds, but this is using their special RD87 application, which requires jumping away from their
IDE to use (and has a ton of manual steps involved in loading the �ash �le), thus I’d take this result with a grain of salt.

Other than that, the EFM8, STM8, and STC8 all had sub-5-second debug speeds when loading average-sized programs, and none took more
than 6.2 seconds to �ll their �ash memory.

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=ATAVRDRAGON
https://www.segger.com/products/debug-probes/j-link/
https://www.silabs.com/products/development-tools/mcu/8-bit/8bit-mcu-accessories/8-bit-debug-adapter
https://www.digikey.com/product-detail/en/silicon-labs/DEBUGADPTR1-USB/336-1182-ND/807653
https://www.silabs.com/products/development-tools/mcu/8-bit/8bit-mcu-accessories/toolstick
https://www.digikey.com/product-detail/en/silicon-labs/TOOLSTICKBA/336-1345-ND/1207734
https://www.ebay.com/sch/i.html?_from=R40&_sacat=0&_nkw=USB+Debug+Adapter&_sop=15
http://community.silabs.com/t5/8-bit-MCU-Knowledge-Base/Pre-Programmed-Debug-Adapter-Devices/ta-p/110859
https://www.digikey.com/product-detail/en/silicon-labs/CF326-SX0261GM/CF326-SX0261GM-ND/7349647
https://shop-us.segger.com/J_Link_EDU_mini_p/8.08.91.htm
https://shop-us.segger.com/J_Link_EDU_p/8.08.90.htm
http://shop-us.segger.com/J_Link_PLUS_p/8.08.28.htm

PERFORMANCE

BIT TOGGLING

4 CYCLESATMEL TINYAVR

3 CYCLESATMEL MEGAAVR

3 CYCLESATMEL SAM D10

11 CYCLESCYPRESS PSOC 4000S

3 CYCLESFREESCALE KE04

4 CYCLESFREESCALE KL03

16 CYCLESHOLTEK HT66

9 CYCLESINFINEON XMC1100

20 CYCLESMICROCHIP PIC16

10 CYCLESMICROCHIP PIC24

3 CYCLESMICROCHIP PIC32MM

7 CYCLESNUVOTON N76

8 CYCLESNUVOTON M051

4 CYCLESNXP LPC811

5 CYCLESRENESAS RL78

18 CYCLESSANYO LC87

8 CYCLESSILICON LABS EFM8

4 CYCLESST STM8

9 CYCLESST STM32F0

4 CYCLESSTC STC8

7 CYCLESTI MSP430FR

Some Cortex-M0+, megaAVR, and PIC32MM were able to hit 3 cycles with the help of single-cycle GPIO toggling and two-cycle jump
instructions.

Cortex-M0 parts can theoretically hit 5 cycles (which the XMC1100 did when running from RAM), but many of the Arm microcontrollers tested
need much more — as much as 11 — due to �ash caching strategies or the lack of GPIO toggle registers.

Flash reading also plagued the EFM8 Laser Bee, which takes 8 cycles to unconditionally jump when operating at 72 MHz (though, oddly, its 8-
cycle toggling performance is better than the 10 cycles it should take, if one trusts the datasheet). The N76 turned in poor results caused by
poor bit math performance, while the STC8‘s 4-cycle toggle was right up there with the best.

The tinyAVR is a bit slower than the megaAVR due to its 16-bit peripheral address space, but there are special provisions for remapping
speci�c GPIO ports into the 64-byte address space, which will give it identical performance (at the expense of only being able to access a
single GPIO port from this mode).

At the bottom of the pack are the 4T and 3T architectures — the Holtek HT66, the Microchip PIC16, and the Sanyo LC87, These 8-bit
architectures must essentially load the working register with the toggle bit, XOR it into the port latches, and then jump back to the top. I’m not
sure why the working register has to be reloaded each time (does the result of the XOR operation end up back in the working register before
being written to the latch outputs?), and I’m planning on investigating some strange bank-select code that XC8 injects in the PIC16 loop.

Speaking of weird Microchip compiler issues, XC16 — even with the optimizations cranked all the way up — generates 5-machine-cycle bit-
wiggling code for the Microchip PIC24, instead of a “btg” followed by a jump (which should be three machine cycles — 6 clock cycles — total).

BIQUAD FILTERING

FILTERING SPEED CLOCK CYCLES POWER CONSUMPTION EFFICIENCY

https://jaycarlson.net/pf/silicon-labs-efm8/
https://jaycarlson.net/pf/nuvoton-n76/
https://jaycarlson.net/pf/stcmicro-stc8/
https://jaycarlson.net/pf/atmel-microchip-tinyavr-1-series/
https://jaycarlson.net/pf/atmel-microchip-megaavr/
https://jaycarlson.net/pf/holtek-ht-66/
https://jaycarlson.net/pf/microchip-pic16-five-digit-enhanced/
https://jaycarlson.net/pf/sanyo-on-semiconductor-lc87/
https://jaycarlson.net/pf/microchip-pic24/

159.80 KSPSATMEL TINYAVR

123.27 KSPSATMEL MEGAAVR

1822.32 KSPSATMEL SAM D10

885.69 KSPSCYPRESS PSOC 4000S

1715.36 KSPSFREESCALE KE04

1645.24 KSPSFREESCALE KL03

2.71 KSPSHOLTEK HT66

805.84 KSPSINFINEON XMC1100

21.83 KSPSMICROCHIP PIC16

838.46 KSPSMICROCHIP PIC24

829.88 KSPSMICROCHIP PIC32MM

38.79 KSPSNUVOTON N76

1732.07 KSPSNUVOTON M051

731.93 KSPSNXP LPC811

731.68 KSPSRENESAS RL78

I’m going to discuss the 8-bit and 16/32-bit results separately, as there are nearly three orders of magnitude of variation among all the parts —
with a clear demarcation between the 8-bit and 16/32-bit parts.

16/32-BIT PROCESSORS

Except for the MSP430 — which doesn’t have a hardware multiplier in the part I tested — all the 16- and 32-bit microcontrollers had similar
results in terms of clock-cycle ef�ciency.

The Arm parts were the fastest in the round-up. I think the Atmel D10‘s PLL was running a bit hotter than 48 MHz, which allowed it to edge out
over the other 48 MHz ARM parts.

Looking at clock ef�ciency, I suspect the variation we see between parts is primarily the result of �ash caching. Parts that have good �ash
caching can get near 27 clock cycles per �ltering loop.

23.55 KSPSSANYO LC87

202.40 KSPSSILICON LABS EFM8

79.49 KSPSST STM8

1647.79 KSPSST STM32F0

156.56 KSPSSTC STC8

129.95 KSPSTI MSP430FR

https://jaycarlson.net/pf/texas-instruments-msp430fr/
https://jaycarlson.net/pf/atmel-microchip-sam-d10/

The PSoC doesn’t need a �ash accelerator since it can only run at 24 MHz — thus, it can access �ash at full speed with no wait-states, and can
consequently hit 27 cycles.

The In�neon XMC1100, on the other hand, only seems to be able to read �ash with no wait-states when operating at 8 MHz or below. It has no
�ash accelerator either, which deeply penalizes its scores. However, when the part runs code from RAM instead of �ash, it hits 27 cycles (at
very low power �gures, too). I discuss this more in the XMC1100 article.

The MIPS-based 32-bit Microchip PIC32 holds its own — just three cycles shy of the Cortex-M0+ results. Like the PSoC 4000S, this part runs
slow enough to not need a �ash accelerator. Before committing to higher-speed PIC32MX devices, I’d have to investigate the �ash caching.

I was blown away by the performance of the 16-bit Renesas RL-78, which only has 8-bit data pathways. It was only 6 cycles away from the hot-
rod Cortex-M0+ parts, and pulled 7 cycles faster than the PIC24, which is a true 16-bit design. I only wish it had a faster core speed.

8-BIT PROCESSORS

Compared to the 16/32-bit results, the 8-bit processors can be described as either “mediocre” or “absolutely awful.”

The Microchip PIC16 and Holtek HT-66 — with similar single-register 4T architectures — arrive at the party dead-last in terms of clock cycle
count. These parts simply aren’t built to be doing much math at all; let along 16-bit multiplies and accumulates.

Because slow microcontrollers take a long time to process data, they’re often overwhelmed by static power consumption, and this test veri�es
this. The HT66, LC87, and PIC16 both required more than 500 nJ/sample to process the data — so much that I ended up clipping the data in the
graph to help better show the variation of the more-ef�cient parts (without resorting to logarithmic plots).

At the other end of the spectrum lies the tinyAVR and megaAVR processors, which both brought in excellent clock-cycle counts.

By the way, it’s important to note that neither of these AVR parts are running at full speed in this test. The tinyAVR has an internal 20 MHz
oscillator that has to be scaled down to 10 MHz so I can run the part at 3.3V without violating the ratings in the datasheet. The megaAVR only
has an 8 MHz internal oscillator, so that’s what I have to run it on.

https://jaycarlson.net/pf/cypress-psoc-4000s/
https://jaycarlson.net/pf/infineon-xmc1100/
https://jaycarlson.net/pf/infineon-xmc1100/
https://jaycarlson.net/pf/microchip-pic32mm/
https://jaycarlson.net/pf/cypress-psoc-4000s/
https://jaycarlson.net/pf/renesas-rl-78/
https://jaycarlson.net/pf/microchip-pic24/
https://jaycarlson.net/pf/microchip-pic16-five-digit-enhanced/
https://jaycarlson.net/pf/holtek-ht-66/
https://jaycarlson.net/pf/atmel-microchip-tinyavr-1-series/
https://jaycarlson.net/pf/atmel-microchip-megaavr/
https://jaycarlson.net/pf/atmel-microchip-tinyavr-1-series/
https://jaycarlson.net/pf/atmel-microchip-megaavr/

Both these parts are capable of 20 MHz operation, so it’s a little silly to have to down-clock them because Atmel doesn’t build these parts on a
modern process allowing 1.8-3.6V operation at full speed, like most other parts tested. Every other part tested has a full-speed, better-than-2%
oscillator; the megaAVR is stuck with an atrociously inaccurate 8 MHz job that severely limits the performance you can get out of this part. It’s
2017 — crystals on MCUs should only be necessary for RTCs and RF.

Anyway, back to the data: this should settle the PIC vs AVR debate about performance. Yes, the AVR typically has a lower clock speed, but
unless you can run a PIC16 at 176 MHz, an 8 MHz AVR is going to win the math performance tests handily.

The Sanyo LC87 and STM8 are both better than the HT66 and the PIC16, but both have slow core speeds that limit their performance.

BATTLE OF THE 8051S

One of the most interesting narrative that came out of this test was the wildly different performance numbers the 8051s produced.

First thing’s �rst: Keil C51 struggled to generate good code in the biquad experiment — the biggest problem being the 16-bit multiplication.
Rather than producing raw assembly that operates on whichever registers end up with these variables, Keil generates function calls into a
signed-16-bit multiply library routine. This has drastic performance implications when compared to the much-better AVR-GCC code.

With that said, the three different 8051s running identical binary images produced very different results — caused by both clock-cycle
ef�ciency and core speed. Let’s dig in a bit:

https://jaycarlson.net/pf/atmel-microchip-megaavr/
https://jaycarlson.net/pf/sanyo-on-semiconductor-lc87/
https://jaycarlson.net/pf/st-stm8/
https://jaycarlson.net/pf/holtek-ht-66/
https://jaycarlson.net/pf/microchip-pic16-five-digit-enhanced/

STC8

EFM8

STC15W

Nuvoton N76

I’ve plotted a cycle-count cumulative distribution above — I’ve included the STC15, an older part closely related to the STC8 (and mentioned
extensively in the STC8 review). The STC8 manages to execute 82% of its instruction set in a single cycle, and 96% of its instructions in three
or fewer cycles. The other parts — the EFM8, older STC15W, and N76 — have much fewer single-cycle instructions. The EFM8 starts to catch up
to the STC8, while the N76 remains much further behind.

Multiplies are two-cycle instructions on the STC8 and STC15 — twice as fast as the EFM8 and N76. The N76 and STC15 have poor performance
at bit arithmetic (4 and 3 cycles, respectively) compared to the single-cycle EFM8 and STC8, but this shouldn’t affect the results of this
experiment.

The big advantage the STC8 has, though, is memory operations. STCmicro gave this part a large, parallel-fetch interface that allows it to read
three or more bytes out of �ash in a single cycle. That allows it to perform long op-code instructions — like “load immediate value into RAM
location” — in a single cycle. This is a three-byte instruction which takes three cycles on the N76 and EFM8. While these architectures are
pipelined, they still have a single-byte fetch, which means the length of the instruction is the main factor dictating how many cycles it will
take to execute.

13

https://jaycarlson.net/pf/stcmicro-stc8/
https://jaycarlson.net/pf/silicon-labs-efm8/
https://jaycarlson.net/pf/nuvoton-n76/
https://jaycarlson.net/pf/silicon-labs-efm8/
https://jaycarlson.net/pf/nuvoton-n76/
https://jaycarlson.net/pf/stcmicro-stc8/
https://jaycarlson.net/pf/silicon-labs-efm8/
https://jaycarlson.net/pf/nuvoton-n76/
https://jaycarlson.net/pf/nuvoton-n76/
https://jaycarlson.net/pf/stcmicro-stc8/
https://jaycarlson.net/pf/nuvoton-n76/
https://jaycarlson.net/pf/silicon-labs-efm8/

When pitted against the 8-bit darling of the RISC movement — the AVR — things get interesting.

On the AVR, there simply is no instruction to do anything with RAM other than move it from/to registers — so to “load immediate value into
RAM location” you must �rst load an immediate value into a register (1 cycle), and then load the register into RAM (2 cycles). This is a three-
cycle operation in total.

This may look like there’s no performance difference between the AVR and the 8051, but there’s a major hiccup for the 8051: there are only 128
bytes of true RAM in the 8051 — not enough to hold the 64-word 16-bit data arrays in this experiment.

On the 8051, to access 16-bit extended memory (XRAM), you have to load the RAM address in the DPTR, load the direct value into the
accumulator, and then move the accumulator to @DPTR. On the slowest 8051 — the N76 — those operations take 3, 2, and 6 cycles, respectively
— 10 cycles total. On the EFM8, those operations take 3, 2, and 3 cycles — 8 cycles total.

Compare that to the two-instruction, three-cycle AVR routine, which can actually store the immediate value to any RAM address — all 65,535 of
them.

The STC8 comes closest to the AVR: it can perform these XRAM operations in 4 cycles total.

While this is still a penalty to pay when compared to AVR, consider that almost all RAM move instructions — and RAM arithmetic instructions
— are single-cycle on the STC8. Since STC8 RAM is no slower than access to the 8 available registers the 8051 has, you get essentially 128 extra
registers for free.

While the lousy Keil C51 code prevents you from comparing across AVR and 8051 parts in this experiment, note that the STC8 only needs 153
clock cycles — compared to the 272 and 413 of the EFM8 and N76.

Sure, the EFM8 wins the overall prize in the 8-bit segment in this test. But it chugs to the �nish line relying exclusively on its 72 MHz clock,
which is running 9 times faster than the megaAVR‘s 8 MHz oscillator, while only performing about twice as fast as it is.

And the EFM8 uses so much power that the standard adage — run as fast as possible to minimize static power — goes out the window. The
slower megaAVR and tinyAVR both use less power than the EFM8 and STC8.

https://jaycarlson.net/pf/nuvoton-n76/
https://jaycarlson.net/pf/silicon-labs-efm8/
https://jaycarlson.net/pf/stcmicro-stc8/
https://jaycarlson.net/pf/stcmicro-stc8/
https://jaycarlson.net/pf/silicon-labs-efm8/
https://jaycarlson.net/pf/nuvoton-n76/
https://jaycarlson.net/pf/silicon-labs-efm8/
https://jaycarlson.net/pf/atmel-microchip-megaavr/
https://jaycarlson.net/pf/silicon-labs-efm8/
https://jaycarlson.net/pf/atmel-microchip-megaavr/
https://jaycarlson.net/pf/atmel-microchip-tinyavr-1-series/

DMX-512 RECEIVER

1430 MICROAMPSATMEL TINYAVR

1270 MICROAMPSATMEL MEGAAVR

3410 MICROAMPSATMEL SAM D10

1030 MICROAMPSCYPRESS PSOC 4000S

3340 MICROAMPSFREESCALE KE04

1340 MICROAMPSFREESCALE KL03

568 MICROAMPSHOLTEK HT66

1390 MICROAMPSINFINEON XMC1100

470 MICROAMPSMICROCHIP PIC16

667 MICROAMPSMICROCHIP PIC24

POWER ISR LATENCY ISR CYCLES ISR TOTAL FLASH FLASH (%)

There’s a lot going on in this project, so let’s break it down separately into performance (in this case, power consumption), development
process, peripheral library bloat, and other platform-speci�c eccentricities.

In terms of performance, the MSP430 is the clear favorite. The next-lowest-consuming part, the PIC16, used almost 70% more power.

493 MICROAMPSMICROCHIP PIC32MM

1750 MICROAMPSNUVOTON N76

1970 MICROAMPSNUVOTON M051

3440 MICROAMPSNXP LPC811

516 MICROAMPSRENESAS RL78

6420 MICROAMPSSANYO LC87

607 MICROAMPSSILICON LABS EFM8

1620 MICROAMPSST STM8

769 MICROAMPSST STM32F0

5470 MICROAMPSSTC STC8

279 MICROAMPSTI MSP430FR

Most Arm chips struggled with this test. The SAM D10 was the worst — Atmel START’s ASF4 peripheral libraries have an insanely high-level
UART abstraction mechanism that took almost 500 clock cycles to process a single byte. Processor Expert’s equally high-level interface fared
considerably better — executing in 281 clock cycles on the KE04. But both were abysmal compared to the rest of the �eld.

It was In�neon DAVE-generated XMCLib code that brought in the fastest Arm performance: it took only 72 cycles in the ISR to process data on
the XMC1100. The XMC1100 also got closest to the theoretical 15-cycle interrupt latency of the ARM Cortex-M0+. STM32Cube-generated STM32
peripheral libraries also performed well on the STM32F0 — needing only 83 clock cycles to process data.

The Nuvoton M051, with its lightweight, relatively easy-to-use peripheral library did moderately well, but the NXP Kinetis KL03 (running
Kinetis SDK) and the LPC811 (running LPCware) both brought in mediocre numbers (102 and 159 cycles, respectively).

As mentioned before, the HT66 has a markedly similar architecture to the PIC16, and yet again in this test, these two 4T parts have very
similar performance characteristics.

Halfway through my review, I noticed the PIC16 got really really slow. Sure, enough the infamous messages started popping up: “Using
Omniscient Code Generation that is available in PRO mode, you could have produced up to 60% smaller and 400% faster code” — my 60-day
evaluation license had expired. And they’re absolutely right — I had to double my device’s clock speed to hit the original performance numbers
I had. The numbers mentioned in this review were from optimized code, so if you’re a student or indie developer (or even a professional who
has better things to buy than a compiler), take the results with a big grain of salt.

The EFM8 proved to be the most �exible 8-bitter in the round-up. It beat out all 8-bit parts in the high-performance biquad math tests, and it
turned around and achieved the third-lowest power consumption �gures in the DMX test, too — needing only 607 µA, while running at a cool
1.531 MHz core speed. Again, a multi-byte FIFO helped immensely.

The tinyAVR and megaAVR both performed poorly — they consistently look like bigger, bee�er 16- or 32-bit parts in performance testing: they
bring in great math performance and run-mode active current, but they had some of the highest interrupt latencies among 8-bit parts that
don’t have FIFO UARTs While interrupt latency is a property of the core — not the peripherals — we often measure interrupt latency relative
to an actual event happening. Here, peripherals play a major role in determining latency. UARTs with FIFOs in this test had signi�cantly
higher interrupt latencies than UARTs without FIFOs., and they both struggle with stop-mode and low-speed run-mode current.

Another 8-bit part that stood out was the STC8, which recorded a 6-cycle interrupt latency — that’s 6 cycles from the stop bit being received, all
the way to your C interrupt handler executing. Interrupt latency is one major advantage these 8051 parts continue to press over the fancier

14

RISC-based AVR and Arm cores, which have long prologue and epilogue code. Unfortunately, the STC8 simply does not care about power
consumption — so it barrels along at 5.47 mA.

As for ease of development, things were split across the board — even between parts that had code-gen tools, only peripheral libraries, or
nothing at all.

With Cypress PSoC Creator, I had to write a custom ISR from scratch, as the generated code didn’t contain functions for handling this scenario.
I got burned by the function documentation a bit — but was able to get it working after quite a bit of reading.

In�neon DAVE essentially cheated in this competition by providing a pre-built, one-click DMX-512 Receiver Dave APP. Consequently, I simply
had to glue its callback to the LEDs by writing three set-duty-cycle calls. It was beautiful.

Excluding DAVE, the easiest to get going was actually the Renesas code generator, which provided function prototypes for me to implement
that it called from the interrupt. I have no idea why more vendors don’t provide statically-invoked callback functions from their generated
interrupt code. They either provide no callbacks at all (STM32CubeMX, Microchip MCC, Cypress PSoC Creator), or they provide a weird, super
heavy-handed dynamically-invoked callback register event system (like Atmel), or provide a user callback can’t directly handle the (private)
data, or manipulate the internal state of the driver — like in the case of Processor Expert on the KE04.

For this particular project I enjoyed Silicon Labs’ approach with Simplicity Con�gurator — it will automatically create the interrupt for you,
and will even make sure it gets enabled in start-up code. It will give you helpful comments above the interrupt, telling you which �ags to clear.
But, the generated interrupt functions are just stubs — they contain no actual code. This is de�nitely the most �exible and lightest-weight
route to take. And while some vendors (Microchip MCC, ST STM32CubeMX, NXP Processor Expert) provide “init-only” drivers, they don’t
automatically stub the ISR, nor do they automatically enable the interrupt.

The HT66’s peripherals were simple to con�gure by hand — and it required the fewest bytes of �ash.

The PSoC was the most ef�cient of the 32-bit parts — owing to the fact that the majority of code required for this project (peripheral
initialization) lives in a compact bitstream representation inside the PSoC.

The Nuvoton runtime libraries are huge (since they’re so simple to use), and I’m not positive that CoIDE was properly doing link-time-
optimization (I’ll need to investigate further).

DISCUSSION

Silcon Labs EFM8: Fantastic value and ease-of-use from the only 8-bit part with a totally-

free cross-platform vendor ecosystem

The EFM8 was the fastest 8-bit part in my round-up, and admittedly, my favorite 8-bit architecture to develop with overall. What these parts
lack in brains they make up for in brawns — 14-bit ADCs, 12-bit DACs, lots of timers, and a 72 MHz core clock speed that gives you timing
options not found in any other part in the round-up.

Plus, this is the only 8-bit part with a totally-free, cross-platform, vendor-provided ecosystem. Let that sink in.

Keil C51 is a silly compiler, but Silicon Labs does an excellent job hiding it under the hood — even when running its Eclipse-based Simplicity
Studio on Linux or macOS.

Simplicity Con�gurator is the lightest-weight code generator in our round-up, using only 534 bytes of �ash to house the entire DMX-512
receiver project. It was one of the easiest to use, and seemed to strike a good balance between abstraction, performance, and ease of use.

Debugging speeds are snappy with a J-Link debugger, but at $35, the of�cial Silicon Labs USB Debug Adapter is one of the cheapest �rst-party
debugger in the round-up, and clones of the hardware are even cheaper.

And call me old-fashioned, but I think the 8051 de�nitely has a place in 2017 — especially among hobbyists and students, where its bit-
addressable memory, easy-to-use peripherals, and fuse-free con�guration help get students comfortable with microcontrollers quickly.

https://jaycarlson.net/pf/silicon-labs-efm8/

Microchip megaAVR & tinyAVR 1-Series: Di erent strokes for di erent folks — still with the

best 8-bit toolchain available

The megaAVR came in surprisingly �at for me: especially when compared with its lower-cost, new sibling, the tinyAVR 1-Series.

There’s no comparison when it comes to price: tinyAVR has incredible value — packing in a nice assortment of timers, analog peripherals
(including a DAC), and a new 20 MHz internal oscillator — while costing 20-40% less than the megaAVR.

While the megaAVR has a perplexing debugging experience that requires two completely different interfaces and protocols to work with the
part, the new one-wire UPDI interface the tinyAVR sports worked �awlessly in my testing.

But that’s the crux of the problem for the tinyAVR — by shedding many of its megaAVR roots, Microchip ended up with a wonderful
microcontroller that will be challenging to use for a large base of Atmel fans: indie developers and hobbyists who use low-cost, open-source
programmers (which don’t support the UPDI interface).

While the tinyAVR wasn’t the fastest part in the round-up (even among 8-bitters), it was the most ef�cient – both in terms of active-mode
power and clock ef�ciency. Amazingly, the AVR only uses about twice as many instructions as 16- and 32-bit parts when performing 16-bit
math.

Unfortunately, the AVR system as a whole is not without its issues. The Windows-only Atmel Studio is still buggy (especially with older
megaAVR devices and AVR Dragon stuff in my tests), and there isn’t an under-$50 low-cost debugger available (other than hacking apart
Xplained Mini dev boards).

In many ways, there seems to be a tacit demarcation Atmel creates between its hobbyist/indie developers, and the professional shops that use
Atmel parts.

As a professional embedded developer, I most de�nitely have access to Windows computers, and I have no problem blowing a few billable
hours’ worth of pay on a $140 debugger.

But even as popular as Atmel is among hobbyists, Atmel has largely stayed out of this space directly. Instead, they’ve secured small-volume
AVR sales by relying on the open-source community to build their own tools for themselves: turning out a slew of hardware and software used
to program the megaAVR devices.

https://jaycarlson.net/pf/atmel-microchip-megaavr/
https://jaycarlson.net/pf/atmel-microchip-tinyavr-1-series/

While I applaud the efforts of these developers, these tools are inferior to Atmel’s. Their programming speeds are terrible, they don’t support
the new tinyAVR 1-Series devices, and they have absolutely no debug capability.

Having said that, both the megaAVR and tinyAVR have the best toolchain available for 8-bit MCU development. The part supports a full, end-
to-end Make�le-based GCC toolchain.

If you love printf() debugging, would never touch a proprietary toolchain, and hate IDEs, megaAVR and old tinyAVR parts are de�nitely for you.
The older ones are still available in DIP packages, and as you probably know, there are a ton of low-cost programmers available across the
world. The online community is massive, and as clunky as I �nd Atmel START to be, I have to applaud its support for Make�le-based project
generation.

Consequently, the megaAVR remains the most open-source 8-bit microcontroller on the market — by a long shot.

But I’d really like to see Microchip provide a PicKit-priced debugger with UPDI support — and allow off-board debugging the way their PIC
Curiosity Boards do.

I also hope these open-source projects can add UPDI support to their tools, so that hobbyists and indie developers can start integrating the
tinyAVR into their projects — it’s a much better part, and if you’re an AVR user with access to Atmel Studio, you really ought to buy an Xplained
Mini board and take it for a spin.

STM32F0: A low-cost, no-nonsense part with arguably the best Arm development

ecosystem tested

The STM32F0 was the lowest-power Arm microcontroller in the round-up, and also one of the easiest to use. STM32CubeMX doesn’t generate
the most compact code on Arm (that honor belongs to Cypress PSoC Creator and In�neon DAVE), but it has a snappy interface, and the
generated code is easy enough to manipulate for your own goals.

I love the nearly-stock Eclipse-based environment that System Workbench for STM32 provides, and the ST-Link and excellent
Discovery/Nucleo boards seals the deal for me.

Most pros have used ST parts in their work, but for all these reasons, any hobbyist looking at moving to Arm should probably pick up a dev
board from this ecosystem, too. ST has a huge market footprint, so there’s tons of resources online — aimed at both hobbyists and

https://jaycarlson.net/pf/st-stm32f0/

professionals.

SAM D10: Killer performance & peripherals, but with runtime library hiccups

The Microchip/Atmel SAM D10 (and the broader D11/D20/D21 ecosystem) has good value (considering their analog portfolio includes a DAC,
and they have good timing options), and the SAM D10 was the most ef�cient part tested when running at full speed.

Professionals will like the easy-to-use, well-documented header �les, and hobbyists will appreciate the 1.27mm-pitch SOIC package options
and GCC compilers that come with the Arm ecosystem. But before I grab this part for a project, Microchip really needs to �x the extremely
slow, bloated peripheral library, and update their code-gen tool to do proper error-checking of clock and peripheral con�gurations.

As it is, whenever I use Atmel START on the D10, I want to STOP almost immediately. And there are no current, stand-alone peripheral drivers
that Microchip has released for this part, so unless you want to do register programming from scratch, you’ll be relying on third-party, open-
source projects — like Alex Taradov’s code examples.

Infineon XMC1100: Interesting peripheral perks make this Cortex-M0 stand out

The most interesting Arm chip was, without a doubt, the In�neon XMC1100 — and I think professionals who may be wary of getting out of the
ST/NXP/Atmel Arm ecosystem need to take a second look at these XMC1000 (and XMC4000) parts.

The timer options are amazingly �exible, and you can squeeze fantastic performance out of the USIC module.

I’m going to go out on a limb and recommend that serious hobbyists who are building motor / lighting control projects look into these parts,
too. DAVE makes setting up these complex peripherals painless, and the 38-pin TSSOP chips will be substantially easier to solder than the
0.5mm QFNs and QFPs you usually end up with in these pin counts.

Like many of the parts reviewed here, the biggest problem for hobbyists and indie developers is the tiny online communities and lack of
GitHub repos with open-source projects that use these chips. My advice — be bold, and post in the forums. In�neon employees monitor and
usually respond within a day or so.

PIC16: Tons of peripherals with a slower, power-e cient core

https://jaycarlson.net/pf/atmel-microchip-sam-d10/
https://github.com/ataradov/mcu-starter-projects
https://jaycarlson.net/pf/infineon-xmc1100/

When you compare the PIC16 with other 8-bit parts out there, it’s obviously a part built for low-power applications, and not processing power.
And while the development ecosystem is workable, there are other parts more friendlier pathways — especially for smaller shops, hobbyists,
and students who need extremely low-cost tools (and free software).

To add fuel to the PIC-vs-AVR debate, my testing found that a 32 MHz PIC16 is roughly equivalent to an AVR part running at 1.4 MHz (in terms
of math performance), and 9 MHz (in terms of bit-shuf�ing performance).

Having said that, the DMX-512 receiver seems a perfect match for the PIC16, and that’s where it looks best in my testing: the PIC16 was the
lowest-power 8-bit part in my testing.

It’s also full of timers and digital logic-oriented peripherals that make it suitable for funky special-purpose projects that require some crafty
use of con�gurable logic and and the numerically-controlled oscillator — these peripherals help of�oad the (relatively slow) CPU, at the
expense of requiring more developer familiarity with the device and these peripherals.

The usual Microchip gotchas apply: clunky IDE, expensive compilers, and expensive debuggers.

The usual Microchip advantages apply: huge online community, seemingly in�nite product lifetime guarantees, and DIP, SOIC, QFP, and QFN
package availability.

PIC24: An expensive MSP430 wannabe that doesn’t hit the mark

The PIC24 is nearly forgettable. In the biquad test, it’s marginally faster than the Renesas RL-78 but uses almost three times as much power. In
the DMX-512 test, both the RL-78 and MSP430 beat it, too. It was also one of the least-endowed parts in the round-up (which really just means
it’s expensive — higher-end PIC24 parts have no shortage of peripherals).

The usual Microchip gotchas apply: clunky IDE, expensive compilers, and expensive debuggers.

The usual Microchip advantages apply: huge online community, seemingly in�nite product lifetime guarantees, and DIP, SOIC, QFP, and QFN
package availability.

PIC32: An excellent 32-bit part that balances performance and power consumption

https://jaycarlson.net/pf/microchip-pic16-five-digit-enhanced/
https://jaycarlson.net/pf/microchip-pic24/
https://jaycarlson.net/pf/renesas-rl-78/

The PIC32MM was my favorite Microchip part in the review. It brought in the lowest-power performance of every 32-bit part tested.
Unfortunately, it was also the least-ef�cient 32-bit part tested in terms of math performance (well, excluding the couldn’t-care-less-about-
power Nuvoton M051), and it’s pretty spartan on peripherals — it doesn’t even have a hardware I2C controller.

But PIC32MM parts have good �ash / RAM density, and have simpler clocking / peripheral gating con�gurations than some of the more-
�exible Arm parts, which makes them feel easier to program at a register level.

Plus, they have a lot of headroom: I think the high-end PIC32MZ DA devices have a home among small industrial dev shops that need Linux-
like HMI functionality but don’t have the resources to bring a product like that to market.

The usual Microchip gotchas apply: clunky IDE, expensive compilers, and expensive debuggers.

The usual Microchip advantages apply: huge online community, seemingly in�nite product lifetime guarantees, and DIP, SOIC, QFP, and QFN
package availability.

Renesas RL-78: An agile, low-power, easy-to-use 16-bit part you really ought to try

I had never picked up a Renesas part before, and when I went shopping for dev kits and stumbled on only a smattering of expensive,
traditional systems, I was a little anxious. But I found the $25 RL78L1A Promotion Board, gave it a shot, and really enjoyed it.

The RL-78 is a snappy architecture that competes with Arm parts in math performance, yet it’s also relatively inexpensive — especially
compared to the MSP430 and PIC24. It can’t quite hit the MSP430 sleep-mode power consumption �gures, but it gets close — and is, by far, the
most power-ef�cient 5V-capable part in the review.

The code generator tool produces readable yet ef�cient code, and the IDE, e2studio, is Eclipse-based — and is getting Linux and macOS support
in the next release.

I’d complain about the dev board, but the new YRPBRL78G13 RL78/G13 development kit should remedy basically all my complains with it — I
can’t wait for U.S. distributors to start carrying these. They could use a more active community and more people publishing code online, but I
hope this article will help inspire some remedies for that.

N76, HT66, and STM8: Low-cost parts with a smattering of development headaches

https://jaycarlson.net/pf/microchip-pic32mm/
https://jaycarlson.net/pf/nuvoton-m051/
https://www.digikey.com/product-detail/en/YRPBRL78L1A/YRPBRL78L1A-ND/6605483?curr=usd&WT.z_cid=ref_octopart_dkc_buynow&site=us
https://jaycarlson.net/pf/renesas-rl-78/
https://jaycarlson.net/pf/texas-instruments-msp430fr/
https://jaycarlson.net/pf/microchip-pic24/
https://www.renesas.com/en-us/products/software-tools/boards-and-kits/renesas-promotion-boards/yrpbrl78g13-for-rl78-g13.html

The STM8 is probably the nicest of the “cheapie” parts. It has nice peripherals and really good performance for an 8-bit part running at its
frequency, but I think the entry-level 38-cent STM8S103F2P6 is a more compelling part than the higher-end one reviewed here — simply
because of its ultra-low price. The part I reviewed here looks a lot like the other 8-bit microcontrollers — but with an ancient-looking IDE that’s
not nearly as productive as the competition. And almost everything out there has better power consumption �gures.

Still, this part is relatively cheap to get going (ahoy, $5 ST-Link clones), and the IDE and toolchain are completely free. But in that regard, you
get what you pay for: STVD feels trapped in 2002, and there’s no way to set up a more modern development and debugging environment for it

Though, there’s some emerging SDCC / GDB support for pairing it with an ST-Link in an open-source fashion, which might help it make
inroads with the classic tinyAVR and megaAVR users.

You’ll be forking over quite a bit of money for a Keil C51 license to develop for the N76 — all for a part that doesn’t look much different than
some entry-level EFM8s that have a day-and-night difference in ease of development. Still, at 23 cents per unit, it’s tough to beat for volume
applications — and hobbyists and hackers can probably get by with the 2K code limit of Keil’s evaluation version. SDCC users need not apply:
there’s no stand-alone tools for loading code into this part, and I doubt µVision can be coaxed into loading an SDCC-compiled hex �le.

The Holtek HT-66 has terrible processing performance, but barely uses any run-mode current — there’s plenty of application-speci�c models
to choose from, and while the IDE is goofy, I found it to be fairly productive — and it’s completely free. Careful, though: only the more-expensive
“V” parts have on-chip debugging.

STC8: A neat performance-heavy part for hacking — but probably not for serious,

professional work

I think every hacker and advanced hobbyist really ought to throw $10 at AliExpress/Taobao and get some STC15 and STC8 parts — just for fun.

Both are jam-packed full of peripherals and memory (more than every other part reviewed), and the STC8 is also really fast. There are some
interesting projects you can do with a part that hits your C interrupt code 10 clock cycles after an interrupt occurs — that’s 320 nanoseconds.
Both these parts support debugging over UART, so there’s no proprietary debugger to purchase.

I wouldn’t seriously consider using these parts in U.S-based commercial work, as we have no access to STC inventory here, but the part is just
plain fun to play with.

15

https://jaycarlson.net/pf/st-stm8/
https://lcsc.com/product-detail/ST-Microelectronics_STMicroelectronics_STM8S103F2P6TR_STM8S103F2P6TR_C8242.html
https://jaycarlson.net/pf/nuvoton-n76/
https://lcsc.com/product-detail/NUVOTON_N76E003AT20_C82751.html
https://jaycarlson.net/pf/holtek-ht-66/
https://jaycarlson.net/pf/stcmicro-stc8/

ON Semiconductor LC-87: Skip

You can probably skip over the ON Semiconductor LC87. This is a rare part outside the Japanese market, and it looks like it’s on its way out the
door. I called Altium to try to get an evaluation version of the Tasking LC87 toolset, and the person I talked to had never heard of the LC87
before, and was almost positive they hadn’t made a compiler for it for at least three years. This part has terrible power consumption, few
peripherals, and the worst development environment I saw in this review. Skip.

Kinetis KL03: Sleep-mode specialist not for beginners

While the Kinetis KL03 has excellent deep-sleep current and ultra-tiny CSP package availability, it de�nitely feels like a specialized part not
useful for the applications I evaluated. It has far fewer peripherals than the other parts reviewed, and despite NXP’s low-power claims, was
consistently in the middle of my Arm rankings for the DMX-512 receiver test — though it nearly matches the SAM D10 in full-speed active
mode.

Kinetis SDK is awkward to use, and the dev boards are terrible — requiring a lot of reverse-engineering and hacking to get the board doing
anything other than running pre-written demos (especially if you’re interested in measuring power consumption). Still, MCUXpresso is a
productive, modern Eclipse-based IDE, and the KL03 has some of the lowest-leakage power modes out there, which means you can get 8-bit-
like performance when you’re running an RTC or interrupt wake-up project from a coin-cell battery.

Kinetis KE04: Decent peripheral assortment with a powerful — yet clunky — code gen tool

The Kinetis KE04 had pretty heavy power consumption in my testing — but this was largely due to the heavy-handed Processor Expert code
that Kinetis Design Studio generated. This environment is really suited to much larger, faster microcontrollers running RTOSes and not
needing especially good low-level I/O performance.

But, hey, if you don’t really care about performance, the nice thing about Processor Expert is it abstracts the peripherals to such a high level
that you’ll never need to crack open a datasheet for the part if you’re using the peripherals in normal con�gurations.

Plus, the KE04 (and KE02) are 5V-compatible parts, and they’re available in old-school, easy-to-solder 1.27mm SOIC and 0.8mm packages — so I
could imagine hobbyists would �nd this part useful.

https://jaycarlson.net/pf/sanyo-on-semiconductor-lc87/
https://jaycarlson.net/pf/freescale-nxp-kinetis-kl03/
https://jaycarlson.net/pf/atmel-microchip-sam-d10/
https://jaycarlson.net/pf/freescale-nxp-ke04/

LPC811: Few perks, and less interesting than the LPC810

The LPC810 drew people in with its odd, 8-pin DIP form-factor. That chip has since been discontinued, but the LPC81x line remains. The LPC811
reviewed here is sparse on peripherals — not even having an ADC — and brought in poor performance. There’s really nothing that this part
does that you can’t get from one of the other vendors; but don’t discredit NXP completely — their higher-end offerings have some interesting
capabilities (like dual-core Cortex-M4/M0 designs), and their development environment, MCUXpresso, is an inoffensive Eclipse system.

PSoC 4000S & MSP430: Bottom-of-the-barrel parts that o er a glimpse into nice

ecosystems

I hesitated to review the PSoC and MSP430 because they tend to be relatively expensive parts, so in a $1 shoot-out, you end up with bottom-
end parts that don’t look nearly as useful as their higher-cost relatives. If you really want to get a feel for what the MSP430 or PSoC parts can
do, I recommend buying into a higher-end part — preferably on one of the excellent dev boards that these manufacturers make.

PSoC Creator and the recon�gurable digital and analog blocks in the PSoC line draw many professional and hobbyist users into the
architecture — but instead of grabbing the 4000S from this review, reach for a PSoC5 (or soon-to-launch PSoC6) dev board to get a feel for the
platform.

Same with the MSP430. In the DMX-512 test, it dominated in power consumption, but barely put up marks in any other category (this is
especially challenging when you have no hardware multiplier, and only a smattering of peripherals).

Still, the part has a solid development ecosystem with Code Composer Studio and a choice between the proprietary (but now free) TI compiler,
and the open-source GCC one. Plus, hobbyists will love the easy Arduino migration path (with Code Composer Studio directly supporting
Energia *.ino sketch projects) and $10 dev boards.

And really, everyone starting a battery-based product needs to go buy an MSP430 Launch Pad and play around with it — these really are
amazing parts that still have a lot of relevance in 2017.

Nuvoton M051: Ecosystem issues stifle a performance-packed part

https://jaycarlson.net/pf/nxp-lpc811/
https://jaycarlson.net/pf/cypress-psoc-4000s/
https://jaycarlson.net/pf/texas-instruments-msp430fr/

The Nuvoton M051 — one of the most-endowed parts reviewed — suffers ecosystem issues that Nuvoton could easily remedy in the future, so
I’ll reserve judgment. There’s no manufacturer-provided Eclipse-based IDE — instead, the only IDE options are CooCox, and Keil µVision —
neither of which I’m particularly fond of.

I was able to get CooCox working (though the peripheral libraries that are in the CooCox repo are old and full of bugs). The M0 had some of the
worst power-consumption �gures in the review, but it makes up for that with tons of communications peripherals, beautiful 32-bit control-
friendly timers, and easily-digestible runtime libraries and documentation that are far easier to use than other vendors’. When Nuvoton �xes
the IDE absence, I’ll de�nitely move this part from the “meh” to “yeah” column — since it accomplishes all of these feats while remaining one
of the lowest-cost Arm microcontrollers out there.

CONCLUSION

I had a ton of fun playing with all these different parts for the last few months for this microcontroller review, and in many ways, came away
thinking what I already knew: there is no perfect microcontroller — no magic bullet that will please all users. What I did learn, however, is it’s
getting easier and easier to pick up a new architecture you’ve never used before, and there have never been more exciting ecosystems to
choose from.

And that’s what I want people to think about as they walk away from this microcontroller review. If you’re an Arduino hobbyist looking where
to go next, I hope you realize there are a ton of great, easy-to-use choices. And for professional developers and hardcore hackers, perhaps
there’s an odd-ball architecture you’ve noticed before, but never quite felt like plunging into — now’s the time.

https://jaycarlson.net/pf/nuvoton-m051/

Footnotes

1. ↑ To get technical: I purchased several different MCUs — all less than a $1 — from a wide variety of brands and distributors. I’m sure
people will chime in and either claim that a part is more than a dollar, or that I should have used another part which can be had
for less than a dollar. I used a price-break of 100 units when determining pricing, and I looked at typical, general suppliers I
personally use when shopping for parts — I avoided eBay/AliExpress/Taobao unless they were the only source for the parts, which
is common for devices most popular in China and Taiwan.

2. ↑ There’s considerable debate as to the precise de�nition of a “RISC architecture” is, but while the PIC16 has a single-word
instruction length for all instructions, the PIC16 varies greatly from most RISC parts in that it is an accumulator-based machine,
and has no working registers. I’ll leave it up to you to decide.

3. ↑ Formerly ARM, but as of August 1, 2017, “Arm” is the capitalization style they now use.

4. ↑ Advanced Microcontroller Bus Architecture — these multi-level acronyms are getting tedious

5. ↑ the 8051 is a member of a family of�cially called the “MCS-51” — along with the 8031, 8032, 8051, and 8052 — plus all the subsequent
versions that were introduced later

6. ↑ Expensive windows ceramic packages allowed EPROM programming for developers, but production units were mask-ROM or OTP
— or, in the case of the 8031, only external ROM was supported.

7. ↑ The only other mainstream MCU that has an integrated Ethernet PHY is the $14 Tiva-C TM4C129x, a giant 128-pin 120 MHz Arm
Cortex-M4 from Texas Instruments. There are a few other (albeit odd) choices out there: Freescale’s legacy ColdFire
microcontrollers include the MCF5223X, which has an integrated Ethernet PHY. Fabless designer ASIX manufacturers the AX11015,
a 100 MHz 8051 with an integrated Ethernet PHY

8. ↑ and a growing chorus is questioning whether they’re in violation of GPL

It’s an exciting time to be involved with electronics — whatever parts you choose to pick up, I hope you’ve enjoyed learning about what’s out
there, and can get inspired to go build something great. De�nitely leave a note in the comments below if you’ve got something to contribute to
the discussion!

http://linuxgizmos.com/arm-becomes-arm-or-is-it-arm/
https://jaycarlson.net/2017/06/27/blinking-an-led-with-an-original-intel-8051/
https://www.eevblog.com/forum/microcontrollers/is-microchip-violating-the-gpl/
https://www.embeddedrelated.com/showthread/comp.arch.embedded/91196-1.php

9. ↑ Full disclosure: Raisonance has a stake in GCC, as they use it in their Ride7 proprietary IDE.

10. ↑ PL/M-51 wasn’t a C compiler — it actually compiled code written PL/M, a proprietary Intel high-level language. Man, the 80s were
weird.

11. ↑ Yes, I know you can disable these extensions with the NOEXTEND compiler directive… but obviously then you can’t use these
directives.

12. ↑ xdata

13. ↑ The N76 and STC15 have poor performance at bit arithmetic (4 and 3 cycles, respectively) compared to the single-cycle EFM8 and
STC8, but this shouldn’t affect the results of this experiment.

14. ↑ While interrupt latency is a property of the core — not the peripherals — we often measure interrupt latency relative to an actual
event happening. Here, peripherals play a major role in determining latency. UARTs with FIFOs in this test had signi�cantly
higher interrupt latencies than UARTs without FIFOs.

15. ↑ Though, there’s some emerging SDCC / GDB support for pairing it with an ST-Link in an open-source fashion, which might help it
make inroads with the classic tinyAVR and megaAVR users

 COMMENTS (59)

CHARLES

November 6, 2017 at 1:18 pm

Purchase links would be appreciated

REPLY

https://jaycarlson.net/pf/nuvoton-n76/
https://jaycarlson.net/microcontrollers/?replytocom=9#respond

ALAIN

November 6, 2017 at 1:19 pm

Impressive work! I’m a big user of Atmega, SAMD and STM32F0, and I learned a lot in this article. I agree that SAMD is a great series
of chips that comes with poor libraries. STM32F0 has better libraries but peripherals are sometimes a bit quirky… So it’s good to play
with both worlds. And I see from this article that there is a lot more!

REPLY

STEF

November 6, 2017 at 1:21 pm

well done, great comparison, appreciate Your work, Thanks a lot.

REPLY

PETER

November 6, 2017 at 1:38 pm

A wonderful article! It would have been interesting to include the EFM32ZG (https://www.silabs.com/products/mcu/32-bit/efm32-
zero-gecko) in this comparison. Another ARM Cortex-M0+ that can be had for just under a dollar with 4KB �ash and 2KB RAM.

REPLY

http://omzlo.com/
https://jaycarlson.net/microcontrollers/?replytocom=10#respond
https://jaycarlson.net/microcontrollers/?replytocom=11#respond
https://www.silabs.com/products/mcu/32-bit/efm32-zero-gecko
https://jaycarlson.net/microcontrollers/?replytocom=12#respond

PETE

November 6, 2017 at 2:30 pm

Detail-packed review! I’d often thought I’d like to do a series on various low-cost MCUs and their ease of climbing the complexity
ladder from blinking a LED to something more advanced. Your review here covers nearly everything I would have done and then
some. Thanks!

REPLY

ZACH FREDIN

November 6, 2017 at 3:13 pm

Excellent article. I really appreciate the attention to detail — peripherals, �rmware, packaging, toolchain, everything.

I’ve had good luck with the relatively new STM32L0 series. Might be worth a look — it addresses the above-average power
consumption concern you listed for the F0. I have used the cheaper versions (STM32L011x) in a few designs and it’s a nice little
chip. And cheap.

REPLY

DAVID L JENKINS

https://jaycarlson.net/microcontrollers/?replytocom=13#respond
https://jaycarlson.net/microcontrollers/?replytocom=14#respond

November 6, 2017 at 4:50 pm

Great work and very much appreciated. I will take a few days to digest it. But I still can’t believe that you can get a powerful
machine like this for only a dollar.

REPLY

DANIEL

November 6, 2017 at 7:47 pm

Very interesting and detailed post. It pretty much agrees with a lot I’ve experienced myself. Just two cents from my side: It’s not just
Atmel Start which is horrible but the whole peripheral section of the ATSAMD are rather shitty with their dozens of unsychronized
running clocks which tend to lock up the system rather easily and hard if one forgets even just one of the obligatory waiting loops.
Just thinking of them makes me want to cry out loud in horror, only emphasised by the largely incomplete documentation with
thousands of errors and discrepancies and a complete lack of examples both in and outside of documentation. I will gladly take any
opportunity I get to stay the hell away from them.

The other thing I wanted to add is that STM32CUBEMX can not only generate code for the rather sizeable HAL API (it’s actually a
nice touch that it can also generate Make�le projects and include all required APIs for that), but also code for the much slimmer
(and hence for me) more useful LL API.

REPLY

KAT

November 6, 2017 at 7:56 pm
REPLY

https://jaycarlson.net/microcontrollers/?replytocom=15#respond
https://jaycarlson.net/microcontrollers/?replytocom=21#respond
https://jaycarlson.net/microcontrollers/?replytocom=16#respond

What about ESP8266 ?

BOB SEELEY

November 6, 2017 at 9:48 pm

Incredibly well done. It certainly has opened up a lot of information that I didn’t know existed. Thank you very much.

REPLY

BYRON SHILLY

November 6, 2017 at 10:47 pm

Quality piece. Keep up the good work.

REPLY

PATRICK O

November 7, 2017 at 8:24 am

REPLY

https://jaycarlson.net/microcontrollers/?replytocom=17#respond
https://jaycarlson.net/microcontrollers/?replytocom=18#respond
https://hackaday.io/lightlysalted
https://jaycarlson.net/microcontrollers/?replytocom=28#respond

This. As popular as the ESP8266 is, I’m also disappointed it wasn’t included here. Probably the lack of documentation.
Nonetheless, this was a great write up.

PAUL GEORGE

November 6, 2017 at 10:50 pm

 Bro.
Came here as a part of the hackernews hug of death . Technical Literature of this kind is badly needed by the embedded
community. Hats off , In aggreement with most of the discussion on the hacker news post . I struggled with the selection of a
microcontroller for a product I had to develop, and SEO in this domain is poor .

You’ve Earned yourself a Email Subscriber.
I`m personally engaged with the development of RISC-V Cores as a part of the Shakti Processor project at IIT Madras . I’d love to lend
a hand towards the extensive homework needed to keep these going !!
Kudos !

REPLY

AUTARCHEX

November 6, 2017 at 11:49 pm

This is an amazing and thorough treatment, thank you! This beats the pants off every MCU roundup I’ve ever seen.

REPLY

http://paulgeorge.in/
https://jaycarlson.net/microcontrollers/?replytocom=19#respond
https://jaycarlson.net/microcontrollers/?replytocom=20#respond

I would like to suggest a minor correction to the ARM Cortex-M0 description, though:
“Another problem with ARM processors is the severe 12-cycle interrupt latency. When coupled with the large number of registers
that are saved and restored in the prologue and epilogue of the ISR handlers, these cycles start to add up.”

As I understand it the majority of those 12 cycles *are* the save/restore of registers on entry/exit of the ISR, which is performed
automatically by hardware. The use of ‘when coupled with’ implies that the 12 cycle hit is extended beyond this, but unless the
compiler is incredibly naive or the ISR is (too) complicated, there should be no prologue/epilogue code and no additional latency.

STEPH_TSF

November 7, 2017 at 9:41 am

autarchex – Sorry buddy, you understood it the wrong way. The interrupt latency takes 12 cycles, for your interrupt code to
start executing. And, speaking of a microcontroller that is not featuring a shadow register set, your interrupt code is supposed
to start with the IRS prologue (possibly automatically generated by the compiler) that’s saving the context (all CPU registers
that your ISR does modify).

REPLY

DANIEL

November 9, 2017 at 8:03 am

Err, no:
“To make the Cortex-M devices easy to use and program, and to support the automatic handling of nested exceptions or
interrupts, the interrupt response sequence includes a number of stack push operations. This enables all of the

REPLY

https://jaycarlson.net/microcontrollers/?replytocom=24#respond
https://jaycarlson.net/microcontrollers/?replytocom=41#respond

interrupt handlers to be written as normal C subroutines, and enables the ISR to start real work immediately without
the need to spend time on saving current context.”

[https://community.arm.com/processors/b/blog/posts/beginner-guide-on-interrupt-latency-and-interrupt-latency-of-
the-arm-cortex-m-processors]

However it’s not 12 cycles but 15/16 minimum for Cortex-M0.

RICH WEBB

November 7, 2017 at 2:52 am

Yes, excellent write-up. It’s going to take more than one read-through to digest it all.

Bummer that the Arm M0 chips don’t include bit banding, which would have covered the bit-addressable register topic, but one
can’t have everything.

REPLY

E SHULL

November 7, 2017 at 8:41 am

Incredible writeup; thanks for putting this out there!

Because sometimes I can’t avoid proofreading, a couple formatting issues I noticed:
* Under the Peripherals comparison section, the notes for the PWM tab are on the previous (timers) tab.

REPLY

https://jaycarlson.net/microcontrollers/?replytocom=22#respond
https://jaycarlson.net/microcontrollers/?replytocom=23#respond

* In the discussion of code generation for the ST STM32CubeMX, you appear to have an inadvertent paragraph break in the middle
of the sentence “The other problem is how basic some of the periphe”

JAY

November 7, 2017 at 4:41 pm

Actually, the TimerMark score includes PWM channels as part of the criteria; the separate PWM tab is just for convenience —
I will add some clarity to that section in the future. And thanks for spotting that random line break! Appreciate the editing
help

REPLY

STEPH_TSF

November 7, 2017 at 9:45 am

Do all 8051 clones (reviewed here) feature shadow registers sets (register bank switching)?

REPLY

JAY

November 7, 2017 at 5:12 pm

REPLY

https://jaycarlson.net/
https://jaycarlson.net/microcontrollers/?replytocom=33#respond
https://jaycarlson.net/microcontrollers/?replytocom=25#respond
https://jaycarlson.net/
https://jaycarlson.net/microcontrollers/?replytocom=34#respond

Thanks for the good question. While the EFM8LB1 and N76 do, the STC8 actually maps some of its peripherals into XRAM
(controversial, but considering most of these register interactions are one-time initialization, I’m not opposed to the slower
speed).

Lower-end EFM8 parts — like the Busy Bee (EFM8BB1) — do not, either (since all their peripherals �t into the register set).

GARY BERGSTROM

November 7, 2017 at 10:23 am

Nice article.
Of course I’ve got a comment about the micro I use most – the MSP430.
You can get a quite full featured (a/d, dma, multiplier etc) part in the family for $1.10.
Not quite the $1 price of your eval. And if you let that number creep then you get thousands of parts. And it gets more dif�cult to do
any kind of eval.
I’m moving to the Arm Cortex parts and I’m pretty happy with the newer Cypress devices. But most of the things I look at cost much
more than $1. I do lower volume, harder to do things. The cost of the CPU is way down the list. IDE tools may be the most important
as development costs dwarf the micro cost when you only build 1000 (or less!) of something.

But again, nice article.

REPLY

JON SMIRL

November 7, 2017 at 1:53 pm
REPLY

http://www.magnesense.com/
https://jaycarlson.net/microcontrollers/?replytocom=31#respond
https://jaycarlson.net/microcontrollers/?replytocom=27#respond

What about the ESP32? About $1.50

Another group, the ONVIF camera chips.

HI3518e, GM8135S — ARM9 + 128MB RAM, $3.50
Allwinner V3S — Cortex-A9 + 128MB, $3.50
These chips contain two dies inside the package.

JAY

November 7, 2017 at 5:36 pm

These are all interesting parts that deserve study (especially those Allwinner chips that integrate DDR with the CPU), but
they’re all way more than $1, and really have little to do with anything else on the page. Thanks for the recommendations,
though — I’ll have to do a future project with one of these devices.

REPLY

JOSEPH CHIU

November 7, 2017 at 2:42 pm

Wow, amazing body of work! I fully agree with your PSoC assessment — if you can’t make use of the virtual peripheral and touch
sense capabilities, it’s far less interesting.

REPLY

https://jaycarlson.net/
https://jaycarlson.net/microcontrollers/?replytocom=35#respond
http://toybuilderlabs.com/ps
https://jaycarlson.net/microcontrollers/?replytocom=29#respond

The value of a good toolchain and IDE cannot be stressed enough for people trying to “grow up” past using the standard Arduino
environment. You get so much more accomplished with a proper environment to write and debug code in!

DOCTOR WIZARD

November 7, 2017 at 3:22 pm

If you are not already familiar with it, you should check the VisualMicro extension for Visual Studio. It works with any controller
that has an Arduino-like GCC/Wiring platform. And you get intellisense and all the other bells and whistles of Visual Studio. (Great
if you are already used to Visual Studio and do non-microcontroller related stuff too). I use it with AVR, Arm, STM8 and STM32,
ESP8266 and ESP32, ChipKit and PIC32.

REPLY

MATHEUS

November 7, 2017 at 4:41 pm

Congrats for the really amazing work on this comparison!

There is so much information here that I haven’t had enough time to read everything yet but sure I will

I’d like to know which tools did you use to get the current measurements. I’m in need of a tool to provide this kind of information
while developint at my work.

Regards,

REPLY

http://wizmotronics.com/
https://jaycarlson.net/microcontrollers/?replytocom=30#respond
https://jaycarlson.net/microcontrollers/?replytocom=32#respond

JAY

November 8, 2017 at 1:36 am

Thanks! I used a Silicon Labs STK for current measurement. I’ve updated the article with this information.

REPLY

BOZ

November 7, 2017 at 7:33 pm

My only real bug-bears on the PIC MPLABX IDE is the removal of the optimization on the non-paid for C Compilers which happens
to the 32 bit and 24 bit compilers as well as the 8 bit ones!

REPLY

JAVIER CANO

November 8, 2017 at 2:38 pm

Congratulations for this EPIC uCs review Jay, kudos for you!

REPLY

https://jaycarlson.net/
https://jaycarlson.net/microcontrollers/?replytocom=37#respond
http://rodyne.com/
https://jaycarlson.net/microcontrollers/?replytocom=36#respond
http://www.soportelinux.net/
https://jaycarlson.net/microcontrollers/?replytocom=39#respond

I use to dig with ATmegaAVRs just with command line tools (avrdude and the good old Nano editor) on my Mac, so IDE stuff is no
issue at all for people like me, and believe me, there is a lot more fun in a plain terminal than in IDEs.

You have one more email suscriber!

Best regards.

MOHAMED FEZARI

November 9, 2017 at 2:42 am

Impressive work, great comparison , we apreciat this work that can help in choice of microcontroller to design an application.
I have learned a lot. Many Thanks

REPLY

BAH

November 11, 2017 at 10:13 am

This is one excreably crappy site. There’s text but I can’t read it because all the shitty reinventing-the-obvious with much too much
javascript.

REPLY

https://jaycarlson.net/microcontrollers/?replytocom=40#respond
https://jaycarlson.net/microcontrollers/?replytocom=43#respond

TROLL DETECTOR

January 9, 2018 at 10:34 am

Troll Alert

REPLY

CAMERON

November 13, 2017 at 3:44 pm

Cheers Jay,
Thank you for such a deep comparison. Judging from the other things on your site, I’d love to see a write-up from you on embedded
Linux / RTOS functionality on the bigger brothers of some of these. You’ve got me as a subscriber, no matter what you’re working
non next.
-cb

REPLY

GEORGE A. CHAPMAN

November 14, 2017 at 10:20 pm

AVR
1. “And interrupts are one of the weak points of the AVR core: there’s only one interrupt priority, …”
tinyAVR 1-series has two interrupt priority levels (datasheet, CPUINT)

REPLY

http://trollalert.com/
https://jaycarlson.net/microcontrollers/?replytocom=134#respond
https://jaycarlson.net/microcontrollers/?replytocom=49#respond
https://jaycarlson.net/microcontrollers/?replytocom=50#respond

2. like megaAVR, tinyAVR 1-series is Harvard architecture but with uni�ed memory (datasheet, Memories, Memory Map)
3. tinyAVR 1-series UPDI is more capable than megaAVR debugWIRE

Parametric Reach
megaAVR
XMEGA AVR are a follow-on to some megaAVR.
—
ATmega2561 – 16MHz, 64 pins, 256KB, 8KB
ATxmega384C3 – 32MHz, 64 pins, 384KB, 32KB
—
ATmega1280 – 16MHz, 100 pins, 128KB, 8KB + 56KB on EBI
ATxmega128A1U – 32MHz, 100 pins, 128KB, 8KB + 16MB on EBI

Atmel Studio
“The excellent IntelliSense engine that Microsoft spent years perfecting has been replaced by some sort of Atmel-proprietary
“Visual Assist” technology that …”
1. IntelliSense and AVR is available from third party(ies)
2. Visual Assist from Whole Tomato Software

Microchip Customizations
“As these compilers [XC] are quite expensive and …”
About 1USD/day though the dongle is 1495USD

Discussion
megaAVR
“While the megaAVR has a perplexing debugging experience that requires two completely different interfaces and protocols to work
with the part, …”
fyi, once debugWIRE is enabled then stay with it until done.
“… low-cost, open-source programmers (which don’t support the UPDI interface).”
pyupdi is Python UPDI programming via an inexpensive USB UART; debug via UPDI is currently only Atmel-ICE or Power Debugger

PIC32
“… expensive compilers …”

Can chipKIT PIC32 GCC be invoked from MPLAB X?

Thank you!

————————————
Notes
1. IntelliSense with most AVR is available from VisualGDB
2. IntelliSense is in Visual Studio Code and AVR might be available via the Native Debug extension
3. The next release of PlatformIO may restore AVR debugging; Visual Studio(s) are some of the IDE that integrate PlatformIO
4. LLVM AVR may be a current or future alternate to AVR GCC
5. ATmega328PB is approaching 1USD each for 100 though it has a supply and demand problem that’s easing 17Q4 (should be
resolved 18Q1)
6. 32KB tinyAVR 1-series is likely for ’18 and probably under the price limit

Ref.
VisualGDB, https://visualgdb.com/tutorials/avr/
Visual Studio Code, https://code.visualstudio.com/
Native Debug, https://marketplace.visualstudio.com/items?itemName=webfreak.debug
PlatformIO, AVR, http://platformio.org/platforms/atmelavr
PlatformIO for Visual Studio Code, https://marketplace.visualstudio.com/items?itemName=formulahendry.platformio
Whole Tomato Software, https://www.wholetomato.com/default.asp
XC8 PRO subscription, http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=SW006021-SUB
Featured MPLAB XC Compiler Licenses, http://new.microchipdirect.com/product/Cat10_SubCat12
LLVM, Changes to the AVR Target, http://releases.llvm.org/5.0.0/docs/ReleaseNotes.html#changes-to-the-avr-target
Python UPDI driver for programming “new” tinyAVR devices, https://github.com/mraardvark/pyupdi/
chipKIT, http://chipkit.net/

DMITRY

https://visualgdb.com/tutorials/avr/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=webfreak.debug
http://platformio.org/platforms/atmelavr
https://marketplace.visualstudio.com/items?itemName=formulahendry.platformio
https://www.wholetomato.com/default.asp
http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=SW006021-SUB
http://new.microchipdirect.com/product/Cat10_SubCat12
http://releases.llvm.org/5.0.0/docs/ReleaseNotes.html#changes-to-the-avr-target
https://github.com/mraardvark/pyupdi/
http://chipkit.net/

November 19, 2017 at 12:42 pm

Some little nitpicks:
> From left, the STM32, PSoC 4000S, Microchip SAM D10, Silicon Labs EFM8, and NXP Kinetis KL03 development boards.
The �rst board on this photo is actually an STM8 board. You also tell that STM32Discovery is a snap-apart board — that’s again an
attribute of STM8Discovery.

> I also hope these open-source projects can add UPDI support to their tools
There is an open-source UPI programmer already! And it is really simple to make: https://github.com/mraardvark/pyupdi
Unfortunately, I don’t have new tiny parts lying around, so I couldn’t test this one.

REPLY

BRETT SMITH

November 19, 2017 at 1:07 pm

Great write up, con�rms my feeling that the STM32 is the right choice for my next project. One small corrections.

One small correction. DMX-512 has 512 bytes after the start bit (the “0”) not 511. The “0” is an optional start code to say that the data
is something other than raw control data.

REPLY

PAUL CARPENTER

November 21, 2017 at 10:31 am
REPLY

https://github.com/mraardvark/pyupdi
https://jaycarlson.net/microcontrollers/?replytocom=62#respond
http://www.brettklinesmith.com/
https://jaycarlson.net/microcontrollers/?replytocom=63#respond
http://www.pcserviceselectronics.co.uk/
https://jaycarlson.net/microcontrollers/?replytocom=70#respond

Actually yes DMX-512 is up to 512 bytes after a START code like a ‘0’ See standard avalailable from http://www.plasa.org

However the ‘0’ is NOT optional it is mandatory as this is theDimmer Cl;assData stating that up to the next 512 bytes are 8 bit
fader levels.

The START code MUST be processed and actioned appropriately depending on its value and should NEVER be assumed to
always be ‘0’ (NULL as de�ned in the standard). It is never optional.

DMX-512 Annex D states other start codes are reserved with codes in DECIMAL

23 ASCII text packet
85 Test packet (network test)
144 UTF-8 Text packet
146 – 169 reserved
171 – 205 reserved
207 System Information Packet
240 – 247 experimental do not use

MORSY

November 19, 2017 at 2:23 pm

Thank you

REPLY

http://www.plasa.org/
http://mahmoud-morsy.com/
https://jaycarlson.net/microcontrollers/?replytocom=64#respond

RANDO

November 20, 2017 at 7:54 pm

Double Thank You!

REPLY

ANDY

November 20, 2017 at 8:48 pm

Great post, very interesting. I’m a big fan of the MSP430 myself, mainly for the low power capability. I �nd them relative easy to
program/debug with GCC.
Though its not a $1 part TI have a special offer($4.30) on the new FR2433 Launchpad if you want to grab some, I just got 2. I have just
built a custom board with mighty MSP430FR5994., 4 UART and 4SPI/I2C. Nowhere near 1$ but makes me smile.

Thanks again

REPLY

TOMASZ

November 21, 2017 at 9:44 am

Very good job! And I’d have suggestion to make another review of ‘under �ver’ wireless SoC’s. Whatever usable for sensor apps etc.
Recently I started using Nordic nRF52 and I’m impressed by these Arm-CortexM4 capabilities, say nothing about low power power

REPLY

https://jaycarlson.net/microcontrollers/?replytocom=68#respond
http://www.canoboard.com/
https://jaycarlson.net/microcontrollers/?replytocom=66#respond
https://jaycarlson.net/microcontrollers/?replytocom=69#respond

operation and excellent wireless (I use Nordic custom protocols and shy away from BLE stack) . All important is excellent SDK with
examples, all producing small ef�cient code. Cheers!

JOHNNY HANSEN

November 21, 2017 at 2:14 pm

Really impressive work.

Please concider Renesas Rx100 series as well.
Extreemly core ef�cient and <1USD as well.

REPLY

MARTIN KLINGENSMITH

November 29, 2017 at 6:47 am

The PIC16 discussion is nostalgic to me because I spent several years writing assembly code for PIC16 and PIC18. The old version of
MPLAB before it became NetBeans was very quick. Low on fancy features, but you could compile/program/debug in seconds. The
newer MPLABX was a tough pill to swallow.

Also I’m glad to see you reinforce my experience with Atmel START. Should be called Atmel STOP.

REPLY

https://jaycarlson.net/microcontrollers/?replytocom=72#respond
http://martin.engineer/wp/
https://jaycarlson.net/microcontrollers/?replytocom=81#respond

LARRY AFFELT

December 1, 2017 at 8:45 pm

Great article with good comparative analysis! I started out with the Intel ’51 cores (still have my UV eraser), thru the Phillips/NXP ’51
OTP and �ash chips, and now my company is a Microchip house. Yes, the debugging has signi�gant delays but I have learned to live
with that, I’ve had worse! I have used everything from 8 pin PIC12F’s to 144 pin PIC32MZ parts and found that the upgrade paths are
rather easy as the pinouts rarely change within the same package, and once you get used to the IDE and have a good code base to
work from I can develop new designs fairly quickly. Besides, once you get used to an environment it is such a pain to switch to
another manufacturer’s tools …

Thanks, I am looking forward to reading more of your website and updates!

REPLY

BERWYN

December 1, 2017 at 11:17 pm

This is impressive. I’m a complete fan.

One thing missing is packaging — from the comparison tables. Many projects need to make choices based on this. Depending on
project, selection commonly includes con�icting criteria:
– smallest package
– most I/O pins
– hand-solderable
Having these in a comparison table would be very useful.

REPLY

http://www.artisancontrols.com/
https://jaycarlson.net/microcontrollers/?replytocom=85#respond
http://brush.co.nz/
https://jaycarlson.net/microcontrollers/?replytocom=86#respond

AJOY RAMAN

December 2, 2017 at 6:06 am

Wonderful work!

I have been using PIC devices which are 8-10 years old and experimenting with the Arduino and MSP430 series. Your excellent
comparative study will be a great help while migrating to current devices.
— IDE licencing aspects could be a point worth enumerating.

REPLY

MICHAEL

December 2, 2017 at 9:33 am

Hi

I’m quite impressed by the work you have done. It’s a lot of material to read and reading
it reminded me how many hours i have spent in frustration.
As for my personal point of view what is the best to choose . Well i believe every
experienced engineer �nds it’s way to work effectively with mcu weaknesses after
crossing the 8 bit gap and moving to 32 bits .As to what is the best to use the
most important thing is “Second source ” or compatible chip. Strange you might think but
bottom line that’s the weak point of all MCU vendors
No matter how good or bad a chip is the menace of all is when you have to buy at double
price or wait 4-6 months . Using MCU’s as hobby is ok but when you decide to make a leaving
things change . Based on that i believe the choise is clear among various chips you examined .
Thank you for the good job you made !!!!!

REPLY

http://www.ajoyraman.in/
https://jaycarlson.net/microcontrollers/?replytocom=91#respond
https://jaycarlson.net/microcontrollers/?replytocom=92#respond

ALVIN P SCHMITT

December 3, 2017 at 4:11 am

Do you have a .pdf of this paper?

REPLY

FREESCALEISDEAD

December 6, 2017 at 3:19 pm

Great work. And I applaud you for having the guts to state the sad truth about the direction NXP has chosen with their Espresso
toolset. Abandoning Processor Expert is a crime. It has been one of the best tools of its kind. I understand their need to have a
toolset that supports all of the legacy NXP processors, but they are penalizing all of the Freescale users in the process. It’s going to
make me think twice on what platform I use for future projects. ST is looking quite good at this point!

REPLY

ANDREW KOWALCZYK

December 17, 2017 at 10:06 pm

REPLY

https://jaycarlson.net/microcontrollers/?replytocom=93#respond
https://jaycarlson.net/microcontrollers/?replytocom=96#respond
https://jaycarlson.net/microcontrollers/?replytocom=107#respond

I just want to say thank you, I’ve been reading over this for the past two days and I feel like I could keep doing that for weeks or
months with all the excellent information here. I’ve worked a lot with msp430s and STM32s lately, but I now really want to try the
SiLabs 8-bit and 32-bit offerings (even though they’re not listed).

One of the things that I think this addresses better than any other “getting started” is the toolchains and debuggers, I’m a huge fan
of Eclipse-based offerings like Code Composer and Atollic TrueStudio, so anything with a similar debug setup seems like a good
idea to try out. Same goes for debug tools: this is the �rst time I’ve seen debug tools as a consideration for a comparison for part
usability, and it echoes the same problems I encountered trying to work with the AVR and PIC parts on Windows.

Thanks again, and I look forward to seeing future projects.

BRANDON

December 27, 2017 at 9:19 am

Great comparison. I’m an Atmel fan myself – Atmel Studio has been nicely stable for me for the last couple years, although I
remember when it was far worse. And the AtmelICE is actually a deal for a hobbyist – for $140 (less if you skip some accessories),
you have complete source-level debugging to all AVR and SAM devices – that’s a big tool to put in the toolbox.

Atmel ASF can be good or bad. I like the minimalist approach on AVRs – sure, it doesn’t give you structure bit �elds, but I know what
to do to get that kind of operation anyway. On the other hand, some of the SAM ASF packages have been nightmares to work with –
confusing, bloated and hazy documentation (I’m looking at you, Cortex M0+ parts…).

I was glad to see information about Renasas – that’s one brand I’ve wondered about but thought it was kind of out of reach. Maybe
it’s worth a closer look now.

REPLY

https://jaycarlson.net/microcontrollers/?replytocom=120#respond

ASDF

January 25, 2018 at 4:42 pm

Nitpick: The PIC32MM uses the microAptiv UC core, not M4K like the older PIC32MX.

REPLY

JIM K.

January 29, 2018 at 1:09 pm

Great article…lots of good work!!!!

The MSP430FR2111 is out of the price range for this shootout.
I looked on Findchips.
Arrow has it for $1.38.
Digikey sells quantity of one at $1.25.
Your chart lists the Flash size at 16K.
It’s actually a paultry 3.75 K.

A more comparable part is MSP430FR2433
15.K of Flash and 4K of ram…$2.27 for quantity 1 from Arrow.
Not a cheap family.

The new ATTiny chips run from $0.75-$0.98 for quantities of one at Digikey.
I’m waiting for the 32K part to hit the market.

REPLY

https://jaycarlson.net/microcontrollers/?replytocom=163#respond
https://jaycarlson.net/microcontrollers/?replytocom=174#respond

DAVID

January 30, 2018 at 8:55 pm

Excellent!

But I have a double about the “PERIPHERALS/FLASH/Holtek HT66 8K”

Which MCU do you select? The HT66F0185 have only 4K �ash. And the new HT66F019 have 8K.

Thanks.

REPLY

DEAN

February 2, 2018 at 9:55 pm

Excellent write up, thank you for investing the time, extremely useful. Would be great to see the comparison with ESP32, or another
article on the wireless chips.

REPLY

JONATHAN

February 20, 2018 at 9:56 am

REPLY

https://jaycarlson.net/microcontrollers/?replytocom=177#respond
https://jaycarlson.net/microcontrollers/?replytocom=182#respond
https://jaycarlson.net/microcontrollers/?replytocom=221#respond

Hi, thanks very much for your excellent write-up. Just a point to note – since ST bought Atollic at the end of 2017, the TrueStudio
IDE is now free for STM32s. Paired with STs ST-Link V2 debugger, it makes a nice (and cheap) development environment for the
STMs.

EELCO

February 24, 2018 at 3:40 am

Dear Jay,

I can’t thank you enough. Bringing together all of this information is absolutely great! Yet, like everyone else I have some personal
preferences when choosing an microcontroller. I’m an old fart and grew up programming the MC6809 CPU in assembly with it’s
lovely CISC core. Fast forward to 2018 if I had to choose now I would probably not go for a ARM cortex-m0 MCU but look toward the
S12Z MagniV MCU series from NXP (Freescale). Unlike the older S12X series from NXP the S12Z has a nice CISC CPU core with real
32-bit registers and a real 24-bit programcounter so swapping pages is not needed any more. These are automotive parts and can
withstand some electrical abuse. The errata from the S12ZVL ($2,45 @ DigiKey) is only six pages long! I know in this day an age one
should be programming in a high level language like C and not pay attention to what is underneath. But I like to know what’s
underneath and still be able to program the things underneath in assembly language.

REPLY

HOBBY16

February 25, 2018 at 1:46 pm

REPLY

https://jaycarlson.net/microcontrollers/?replytocom=224#respond
http://hobby16.neowp.fr/
https://jaycarlson.net/microcontrollers/?replytocom=227#respond

 LEAVE A COMMENT

Thank you for your awesome review, simply awewome!

About the STM8S that I know well, I must add that what it makes it very attractive is there are plenty of cheap Chinese functioning
modules based on it, thermostat with led display, adjustable power supplies, pwm generator… You can buy them for peanuts and
then reprogram them for your own purpose. For example, a STM8S003F3 based thermostat board with led display, buttons, relay and
NTC costs less than 2$ (!). See a (very partial) list here : https://github.com/TG9541/stm8ef/wiki/STM8S-Value-Line-Gadgets

Another thing, you said “in that regard, you get what you pay for: STVD feels trapped in 2002, and there’s no way to set up a more
modern development and debugging environment for it”. That would be unfair if you don’t mention the IAR IDE, which let you do
codes up to 8kB which is precisely enough for the STM8S003F3 & STM8S103F3 which has 8kB. It’s works at the get go, you can use it
to compile a very ef�cient code and debug in realtime with the ST-Link dongle’s SWIM interface. I use the IAR IDE to develop and
reprogram a digital Volt-ammeter to make the “Charge Doctor”, a product quite well known by electric wheelers :
http://hobby16.neowp.fr/2016/11/07/charge-doctor-v2-�rmware-v-2-03-2/
All the code is less than 8kB, something I could not cram in using the SDCC, so IAR has a really really good IDE and compiler, all for
free, as long as the code doesn’t exceed 8kB.

Last word, the STM8S003F3 has been so successful that Nuvoton has now its pin-to-pin compatible SSOP-20 chip N76E003. It
seems a good replacement, with 12 bit adc (instead of 10 bit) and 16k (instead of 8k) and costing just around 15 cts, half the price of
the STM8S003F3 (!).
The STM8S003F3 in some of the modules above are now shipped with the N76E003. I have bought a batch of one hundred Volt-
ammeters expecting them to have the STM8S but instead they have the N76E003, it was quite a bad surprise. Now it would be neat
if I can �nd a way to port (and debug, if possible) my code to the N76E003 without paying a full �edged IDE from Keil or IAR. I’m still
searching, if someone knows…

https://github.com/TG9541/stm8ef/wiki/STM8S-Value-Line-Gadgets
http://hobby16.neowp.fr/2016/11/07/charge-doctor-v2-firmware-v-2-03-2/

Message *

Name *

Mail *

Website

SEND COMMENT

 Notify me of new posts by email.

Navigation

RULES

CONTENDERS

SPECS

Core

Peripherals

Parametrics

ECOSYSTEM

Dev Environments

Code Generators

Compilers

Header Files

Dev Tools

PERFORMANCE

© 2017 Jay Carlson

Bit Toggling

Biquad

DMX Receiver

DISCUSSION

CONCLUSION

https://www.facebook.com/jaydcarlson
https://twitter.com/jaydcarlson
https://www.instagram.com/jaydcarlson/

