Cognitive Systems

C. Section

cognitio

2020 edition

T6

Marcio Lobo Netto João E. Kogler Jr.

PSI 3560 – COGNITIVE SYSTEMS

class T6

Marcio Lobo Netto João Eduardo Kogler Junior

Polytechnic School of the University of São Paulo Department of Electronic Systems Engineering © 2019 – University of São Paulo

ARTIFICIAL INTELLIGENCE AND COGNITIVISM

Symbolic Approach, Symbol Systems, General Artificial Intelligence

Session T6

Summary

– Second session (9:20 – 11:00)

- Conceptual design of AI systems
- Symbol systems approach
- The Al agent

Design of a Cognitive System

- Conceptual analysis:
 - What the application does ?
 - » It is a cognitive system that does... ?
 - How does it do that ?
 - » Agent or tool ?
- After the <u>formal statement</u> of what the application does,
- Then comes the problem of modelling the cognitive system

Design of a Cognitive System

MODELLING THE COGNITIVE SYSTEM

- Marr's approach
 - Three levels of analysis
 - Computational model
 - » What kind of computations are required ?
 - » What is the nature of the computations ?
 - Logical, statistical, both?
 - ARTIFICIAL INTELLIGENCE
 - MACHINE LEARNING
 - EVOLUTIVE SYSTEMS
 - Algorithmic specification
 - Physical implementation

Artificial Intelligence

	Acting humanly	Acting rationally
Behavior	Turing test	Optimal adaptation
	 Matching human performance on actions 	 Matching specified performance on actions
Reasoning	 Thinking humanly Cognitivism Matching human performance on decisions and inferences (General AI) 	 Thinking rationally Logical AI Matching specified performance on decisions and inferences
	Human standards	Specified standards

Artificial Intelligence

Behavior	Acting humanly	Acting rationally
	Turing test	Optimal adaptation
	 Matching human performance on actions 	 Matching specified performance on actions
Reasoning	 Thinking humanly Cognitivism Matching human performance on decisions and inferences (General AI) 	 Thinking rationally Logical AI Matching specified performance on decisions and inferences
	Human standards	Specified standards

Agents

Tools

Artificial Intelligence

- Agents
 - Examples
 - Autonomous robots
 - Manufacture cells
 - Intelligent environments
- Tools
 - Examples
 - Diagnostic systems
 - Expert systems
 - Coaching assistants
 - Decision-making assistants
 - Retailing assistants

Specified standards

Agent versus Tool

- Agent x Tool (for A.I.)
 - Agent → anything that perceive its environment through sensors and acts upon the environment through actuators. (Russell & Norvig, 1995-2010)
 - Tool \rightarrow can be an agent (under AI view of Russell & Norvig)
 - Agent is an abstraction of interacting system
 - Inputs \rightarrow perceptions
 - Outputs \rightarrow actions
- Agent x Tool (Cognitive systems)
 - Agent → produces actions
 - Tool \rightarrow helps an agent, which produces the actions

We will follow this view and adapt A.I.'s to ours

- A.I. \rightarrow two main phases
 - Classical
 - GOFAI Good Old-fashioned A.I. (M. Boden)
 - Computationalist view \rightarrow problem solving oriented
 - Modular (functional) architecture
 - Symbol system manipulation
 - Based on logical-deductive formalism
 - Connectionist A.I.
 - Machine learning
 - Connectionist view \rightarrow data associations oriented
 - Network (topological) architecture
 - Learning of associations
 - Based on statistical formalism

- Cognitive Systems
 - Cognitive science views
 - Internalism
 - Cybernetics ------
 - − Computationalism ← Classical A.I.
 - − Connectionism ← Connectionist A.I.

Dynamic systems view

- Externalism
 - Enactivism \rightarrow Cognitive robotics
 - Distributed cognition \rightarrow Cognitive environments
- No connection with data analytics
 - It is just A.I.
 - It could be cognitive tool

- Problem solving
 - Computer science \rightarrow study of problems
 - Computer : activity vs. machine
 - Problem components
 - States
 - » Initial state
 - » Final (desired) state
 - Process
 - » Process of solution
 - Conditioning
 - » Restrictions
 - » Requirements
 - Statement

- Agent approach vs. Problem solving
 - Agent behavior
 - Sequence of actions
 - Consequences of the actions
 - » Change the state of the environment
 - Agent behavior as problem solving
 - Natural behavior
 - » Nomological aspect
 - Trial-and-error approach
 - Prescribed behavior
 - » Normative aspect
 - Design approach
 - Follow prescriptions

- Agent behavior as problem solving
 - Design approach
 - Goal
 - Task
 - Process \rightarrow state transition
 - Task \rightarrow state transformation
 - » Elementary changes \rightarrow unitary operations
 - Task presupposed functionality
 - Solution
 - Design methodology
 - Functional capacity
 - Modularity
 - Methodological reduction
 - » Top-down decomposition \rightarrow analytical reduction
 - » Bottom-up composition \rightarrow synthetical reduction
 - Rational condition

- Agent behavior as problem solving
 - Design approach
 - Design methodology
 - Rational condition
 - » Rationality
 - Rational \rightarrow ratio, proportion, fitness
 - Reasoning \rightarrow reason, satisfaction, correctness
 - Reasoning agent \rightarrow logical inferences
 - Deduction \rightarrow propositional calculus
 - Syntactic structure
 - Semantic mapping
 - Conceptual abstraction
 - » Symbolic representation
 - » Symbol system
 - » Symbol grounding
 - » Symbol manipulation

coanitic

Reflex agent

Sensors \rightarrow give <u>information</u> about the world's and agent's <u>state variables</u>

Actuators \rightarrow perform actions changing the relations between the agent's state and the word's state

Codes. representations \rightarrow Symbol system

Agent Position	World Status	Code	Action	Action Code
Left boundary	Clean	000	Turn	00
Left boundary	Dirty	001	Suck	01
Any place	Clean	010	Move	10
Any place	Dirty	011	Suck	01
Right boundary	Clean	110	Turn	00
Right boundary	Dirty	111	Suck	01

01

Agent Position	World Status	Code	Action	Action Code
Left boundary	Clean	000	Turn	00
Left boundary	Dirty	001	Suck	01
Any place	Clean	010	Move	10
Any place	Dirty	011	Suck	01
Right boundary	Clean	110	Turn	00
Right boundary	Dirty	111	Suck	01

Agent Position	World Status	Code	Action	Action Code
Left boundary	Clean	000	Turn	00
Left boundary	Dirty	001	Suck	01
Any place	Clean	010	Move	10
Any place	Dirty	011	Suck	01
Right boundary	Clean	110	Turn	00
Right boundary	Dirty	111	Suck	01

Dirt sensor = (clean) lead to 2 more agent state transitions by making action = (turn)

Agent Position	World Status	Code	Action	Action Code
Left boundary	Clean	000	Turn	00
Left boundary	Dirty	001	Suck	01
Any place	Clean	010	Move	10
Any place	Dirty	011	Suck	01
Right boundary	Clean	110	Turn	00
Right boundary	Dirty	111	Suck	01

Agent Position	World Status	Code	Action	Action Code
Left boundary	Clean	000	Turn	00
Left boundary	Dirty	001	Suck	01
Any place	Clean	010	Move	10
Any place	Dirty	011	Suck	01
Right boundary	Clean	110	Turn	00
Right boundary	Dirty	111	Suck	01

Left boundary	Clean	000	Turn	00
Left boundary	Dirty	001	Suck	01
Any place	Clean	010	Move	10
Any place	Dirty	011	Suck	01
Right boundary	Clean	110	Turn	00
Right boundary	Dirty	111	Suck	01

Agent Position	World Status	Code	Action	Action Code
Nose	Painted	000	Turn	00
Nose	Unpainted	001	Paint	01
Fuselage	Painted	010	Move	10
Fuselage	Unpainted	011	Paint	01
Tail	Painted	110	Turn	00
Tail	Unpainted	111	Paint	01

Agent Position	World Status	Code	Action	Action Code
Nose	Painted	000	Turn	00
Nose	Unpainted	001	Paint	01
Fuselage	Painted	010	Move	10
Fuselage	Unpainted	011	Paint	01
Tail	Painted	110	Turn	00
Tail	Unpainted	111	Paint	01

Reflex agent

Reflex agent

- Reflex agent
 - Actions are selected as reactions to world states
 - Input → world state (from sensors)
 - Output \rightarrow agent actions (via effectors)
 - Action selection \rightarrow function mapping
 - − LUT \rightarrow look-up table
 - Functional expression
 - » First-order propositional calculus
 - Functions of the logical variables
 - Drawback: how to stop the examples' agents ?
- Conditional reflex agent

Conditional reflex agent

Conditional reflex agent

Predictive agent

- Reasoning agent \rightarrow logical inferences
 - Deduction \rightarrow propositional calculus
 - Propositional implications lead to syntactic consequences
 - Semantic mapping \rightarrow models
 - Symbol manipulation
 - Syntactic manipulation \rightarrow to produce inferential sentences
 - Semantics \rightarrow mapped do inferential sentences
 - Interpretations have meaning in the world
 - » Symbol grounding
 - Knowledge can't be deduced
 - It must be provided externally
 - » Notice that knowledge is not built with A.I.
 - It is provided to the system

Deductive versus Inductive

- The cognitive quest
 - Cognition \rightarrow Knowledge
 - Build it, use it...
 - Classical A.I. ("GOFAI")
 - Deductive inferences only
 - Knowledge is provided **<u>externally to the system</u>** ...
 - ... at the system project phase \rightarrow it is formally introduced
 - » No knowledge is actually produced by the system
 - » It is only transformed:
 - Everything is reduced to a symbol system
 - Inferences come from symbol manipulations

No knowledge building, no cognition

Deductive versus Inductive

- The cognitive quest
 - Cognition \rightarrow Knowledge
 - Build it, use it...
 - Change deductive inference to inductive inference
 - Probabilistic inference
 - Machine Learning
 - » Is here a hope for building knowledge ?
 - » Knowledge can be learned from the data ...
 - » ... through an inductive process
 - The inductive process detects patterns in the data
 - These patterns bring the invariants
 - ... that make the knowledge...

This is all for today.

