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ABSTRACT
Leptin is a master regulator of energy balance and body adiposity. Additionally, leptin exerts
important control on glucose homeostasis, thermogenesis, autonomic nervous system and
neuroendocrine axes. In metabolic diseases, such as obesity and diabetes mellitus, leptin signaling
may be compromised, indicating the important role of this hormone in the etiology and
pathophysiological manifestations of these conditions. In the present manuscript, we reviewed
important concepts of leptin signaling, as well as about the effects of leptin on several biologic
functions. We also discussed the possible therapeutic use of leptin administration and how our
current obesogenic environment contributes to the development of leptin resistance. Our objective
was to provide a comprehensive and state-of-the-art review about the importance of leptin to
maintain the homeostasis and during pathological conditions.
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Leptin is a 16-kDa peptide hormone produced
mainly by adipocytes, although other tissues and
organs, such as mammary gland, ovary, skeletal
muscle, stomach, pituitary gland and lymphoid tis-
sue may produce lower amounts, possibly for local
action.1 Leptin is secreted proportionally to the
mass of adipose tissue, thereby representing an
important marker of energy storage. The adipo-
cyte-derived leptin secretion displays a circadian
profile, with highest levels at night and lowest lev-
els at daytime in humans.2 Leptin secretion also
has a marked sexual dimorphism, with higher
serum leptin concentration in women at any level
of adiposity.3 Several hormones modulate leptin
secretion. For example, insulin induces leptin
secretion,4,5 whereas cortisol displays an inverse
circadian rhythm.6

Remarkably, the physiologic role of leptin
started to be studied before the discovery of leptin
itself. This unusual situation was possible because
spontaneous mutations generated leptin and leptin
receptor (LepR; also known as Ob-R) deficient
mice decades before the identification of their
mutations.7-9 The first description of the leptin
deficient mouse occurred in 1950 and this mouse
strain was named as ob/ob because of its morbid

obese phenotype.10 In 1966, another mutation was
described in an inbred strain of mouse that was
characterized by a metabolic disturbance resem-
bling diabetes mellitus. Consequently, homozygous
mutants were named as db/db because they carried
the diabetes gene.9 Years later, Coleman and col-
leagues through parabiosis experiments came to
the conclusion that the obesity of ob/ob mice was
likely caused because they lacked a circulating fac-
tor, whereas the phenotype of db/db mice was pos-
sibly caused by the lack of the receptor for that
factor.7,8,11-13 It turned out that Coleman and col-
leagues were right, and in 1994 Jeffrey Friedman’s
group discovered that the ob gene encodes the hor-
mone leptin.14 In two separated papers, the Lepr
gene was identified and demonstrated that LepR is
encoded by the db gene.15,16

Growing literature shows that not only leptin is a
master regulator of energy balance, but it also modu-
lates glucose homeostasis, neuroendocrine axes, auto-
nomic nervous system, memory, neural plasticity, and
other biologic functions. The objective of this manu-
script is to provide a comprehensive review about the
effects of leptin on several biologic functions, its mech-
anisms of action and how leptin is related to several
diseases, such as obesity and diabetes mellitus.
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The biology of leptin

Leptin receptor and signaling pathways

Leptin acts by binding to its membrane receptor,
which is expressed in many tissues. Through an
expression cloning strategy, six LepR isoforms were
identified (LepRa-f).15 Although all six LepR isoforms
share a common extracellular ligand-binding domain
at the N-terminus, they differ in their intracellular
domain, and therefore in their physiologic role. LepRe
lacks the transmembrane domain, representing a solu-
ble LepR isoform. Thus, LepRe is a leptin-binding pro-
tein and possibly regulates leptin biologic activity by
removing it from circulation.17 LepRa, a short isoform
of the receptor, is abundantly expressed in the choroid
plexus, and has been hypothesized to be implicated in
leptin transport into the central nervous system
(CNS) through the blood–brain barrier (BBB).18 Only
the long isoform (LepRb or Ob-Rb) contains all intra-
cellular motifs required for complete activation of the
intracellular signaling pathways. LepRb is predomi-
nantly expressed in the CNS and is essential for leptin
action.19-22 Consequently, this isoform is responsible
for the main biologic effects of leptin. The obese
mouse model known as db/db lacks exclusively the
LepRb, and its phenotype is similar to mutants that
have no LepR isoforms (db3J mutation).23 LepR
belongs to the family of class 1 cytokine receptors
with many similarities to the interleukin (IL)-6 recep-
tor. This type of receptor does not contain intrinsic
tyrosine enzymatic activity but signals via an associ-
ated tyrosine kinase protein from the Janus kinase
family (JAK) (Fig. 1). When leptin binds to LepRb,
JAK2 is recruited, activated and promotes autophos-
phorylation and phosphorylation of three tyrosine res-
idues of LepRb (Y985, Y1077 and Y1138). These
phosphorylated tyrosine residues act as docking sites
for downstream signaling molecules, representing a
Src homology 2 (SH2)-binding motif that recruits spe-
cific SH2-containing effector proteins to mediate sub-
sequent intracellular signaling.24 The major signaling
pathway recruited by leptin is the signal transducer
and activator of transcription 3 (STAT3), which
depends on the phosphorylation of Y1138.25,26 STAT3
is a transcription factor and after phosphorylation
STAT3 migrates to the nucleus where the expression
of target genes will be transcriptionally regulated.
When the Y985 residue of LepR is phosphorylated,
Src homology 2-containing tyrosine phosphatase

(Shp2; encoded by Ptpn11 gene) is recruited to LepR,
leading to the activation of extracellular signal-regu-
lated kinases (ERK) signaling pathway (Fig. 1).24 Y985
is also a binding site for the suppressor of cytokine sig-
naling 3 (SOCS3), which is a protein that exerts inhib-
itory effects on leptin signaling. Since SOCS3
transcription is dependent on leptin signaling through
STAT3, it exerts its inhibition via a classic negative
feedback way. Finally, phosphorylation of Y1077
recruits STAT5. Although the activation of STAT5 is
mainly dependent on the Y1077 residue, STAT5 can
also be activated by phosphorylation on Y1138.27

STAT5 pathway is more related to metabolic functions
controlled by other cytokines like growth hormone
(GH) and prolactin.28 However, STAT5 pathway
mediates some of the effects of leptin on the regulation
of energy balance and reproduction (Fig. 1).28,29

Another signaling pathway activated by leptin is the
phosphatidylinositol 3-kinase (PI3K). PI3K is a major
signaling pathway for insulin and other growth factors
in peripheral tissues as well as the CNS.30 JAK2 phos-
phorylates insulin receptor substrates (IRS) leading to
PI3K activation (Fig. 1). Unlike the JAK/STAT path-
way, which acts through gene expression regulation,
PI3K can produce fast cellular responses by promoting
changes in ion channels and thereby in cell activity.31

For many years it was challenging to identify leptin-
responsive cells. Antibodies against LepR produce
poor staining frequently leading to false-positive or
false-negative results.32,33 The use of radiolabeled lep-
tin to identify binding sites was not able to identify
many brain areas that also contain LepR expression.15

Furthermore, the LepR mRNA levels are commonly
low in many brain areas, which makes it difficult the
precise identification of LepR-expressing cells.34-39

Due to these limitations, many studies begun to iden-
tify leptin-responsive cells via the activation of its sig-
naling pathways. Therefore, STAT3 phosphorylation
(pSTAT3) after an acute leptin stimulus became a
popular marker to identify leptin-responsive cells
(Fig. 2).25,40-42 Additionally, STAT3 phosphorylation
is also widely used as a way to evaluate leptin sensitiv-
ity.43-46

The physiologic role of leptin

The word leptin is derived from the Greek root lept�os
that means thin. The choice of Friedman’s group to
name the hormone leptin was based on the first
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studies that infused leptin in mice and observed a sig-
nificant reduction in their body weight and adipos-
ity.47 Although these earlier studies may indicate that
leptin could have an application in the treatment of
obesity, latter evidence demonstrated that most cases
of obesity are characterized by excess of leptin and lep-
tin resistance.48 Only in rare cases of obesity caused by
congenital deficiency (similar to the ob/ob model) lep-
tin treatment was a useful tool to revert obesity.49,50

The deficiency of leptin or LepR produces a very
characteristic phenotype of hyperphagia, morbid obe-
sity and insulin resistance.51 As described above, leptin
treatment in ob/ob mice reversed their obese pheno-
type, which led to the conclusion that the physiologic
role of leptin is to reduce the body weight and food
intake.47 However, over the years, many studies have
shown that leptin’s role is in fact much more complex,
given its participation in many other physiologic func-
tions, from neuronal development and plasticity,
memory and cognition, glucose homeostasis,

reproduction and metabolic programming, which will
be detailed across this review.52,53 For some authors,
leptin’s biologic role is not to make an animal thin, as
originally described, but to act as a signal to the brain
to convey the energy status of the body and thereby
modulate energy-demanding functions to maintain
homeostasis.54 In response to fasting, leptin levels
decrease intensively, more than expected by the
changes in body adiposity. This rapid reduction in lep-
tin levels coordinates profound alterations in the
metabolism and neuroendocrine axes that will save
energy to ensure survival during conditions of nega-
tive energy balance. Falling in leptin levels can also
trigger behaviors that will increase the search for food.
When leptin is supplemented in fasted individuals,
starvation-induced changes are attenuated.55-57 There-
fore, leptin’s main physiologic role is likely to promote
survival, via neuroendocrine, behavioral and meta-
bolic adaptations to preserve energy and increase food
intake in situations of negative energy balance.

Figure 1. Leptin signaling pathways. Scheme summarizing the main intracellular pathways activated by the long-form of leptin receptor
(LepR). Abbreviations: PI3K, phosphatidylinositol-3-kinase; IRS, insulin receptor substrate; JAK2, janus kinase 2; STAT, signal transducer
and activator of transcription; SOCS3, suppressor of cytokine signaling-3; PTP1B, phosphotyrosine phosphatase 1B; SHP-2, src-homol-
ogy-2 containing phosphotyrosine phosphatase 2; MAPK, mitogen-activated-protein-kinase; Raf, raf proto-oncogene serine/threonine-
protein kinase; Ras, family of small GTPase; ERK1/2, Extracellular signal-regulated kinases; MEK, mitogen-activated protein kinase kinase;
PDK-1, phosphoinositide-dependent kinase-1; AKT, ak strain transforming/protein kinase FOXO-1, forkhead box protein O1.
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Because in nature is more common the need of sur-
vival mechanisms in situations of undernutrition, lep-
tin elicits more robust physiologic responses when its
levels are low (conveying a signal of low levels of
energy stocks), differently than when its levels are
increased (like in obesity), a rare situation in nature
(reviewed in Leibel58).

Food intake
Leptin plays a pivotal role regulating food intake. Ob/
ob and db/db mice exhibit a marked hyperphagic
behavior.47 Leptin infusion, either peripherally or cen-
trally, produces a significant suppression in food
intake in ob/ob and wild-type animals, but not in db/
db mice.47,51,59,60 A robust voluntary reduction in
energy intake is also achieved in leptin-deficient
humans chronically treated with leptin.50,61 Several
intracellular signaling pathways mediate the effects of
leptin on food intake. While disruption of LepR/
STAT3 pathway produces hyperphagia, pharmacolog-
ical or genetic disruption of the PI3K pathway pre-
vents the suppression of food intake in the 24 h
following leptin administration.62,63

Although different neuronal populations are likely
responsible to mediate leptin’s effects on food intake,
the arcuate nucleus of the hypothalamus (ARH) is cer-
tainly an important area.64 In the ARH, leptin acts at
least in two distinct neuronal populations to affect
food intake. Neurons that co-express the proopiome-
lanocortin (POMC) prohormone and the cocaine and
amphetamine regulated transcript (CART) are
responsive to leptin.36,65 ARH POMC/CART neurons
are activated by leptin and these cells normally inhibit
food intake.66-68 This occurs because CART has
anorexigenic effects,69 whereas POMC is cleaved in
different peptides, including a-melanocyte-stimulat-
ing hormone (a-MSH), which is able to activate mela-
nocortin receptors 3 and 4 (MC3R/MC4R) leading to
increased satiety.70 MC4R ablation reproduces many
of the metabolic aspects observed in db/db mice,
including their morbid obesity and hyperphagia.71

Anatomically, POMC neurons are found predomi-
nantly in the lateral ARH (Fig. 3A).72 On the other
hand, located in the ventromedial ARH (close to the
third ventricle and median eminence), neurons that
co-express the neuropeptide Y (NPY), the agouti-
related protein (AgRP) and the amino acid GABA are
inhibited by leptin (Fig. 3A).73 The NPY/AgRP/GABA
neurons are potent inducers of food intake due to sev-
eral reasons.74,75 NPY is one of most powerful orexi-
genic neuropeptides as demonstrated by the robust
feeding produced by intracerebroventricular NPY
injections.76 AgRP is an inverse agonist of MC3R/
MC4R. Consequently, AgRP blocks the capacity of
a-MSH to activate MC3R/MC4R, which also leads to
an increase in food intake.70,77 Finally, several pieces
of evidence also indicate that the inhibitory GABAer-
gic transmission of these neurons is important to
modulate neural circuits involved in feeding behav-
ior.75,78,79 Therefore, via a relationship of antago-
nism,77 POMC/CART and NPY/AgRP/GABA
neurons form the central melanocortin system con-
trolling the activity of second-order neurons that typi-
cally express the MC4R. It is worth mentioning
though that although leptin exerts important effects
on POMC/CART and NPY/AgRP/GABA neurons,80

many pieces of evidence indicate that leptin must act
on multiple neuronal populations and neurocircuits to
properly regulate food intake and energy balance. For
instance, disruption of LepR expression exclusively in
POMC/CART or NPY/AgRP/GABA neurons produ-
ces relatively modest effects on food intake and energy

Figure 2. Distribution of leptin responsive neurons in the mouse
mediobasal hypothalamus. Leptin-responsive cells could be visu-
alized by the phosphorylation of STAT3 (black nuclear staining)
90 min after an acute peritoneal injection of mouse recombinant
leptin (10 mg/g body weight). Abbreviations: ARH, arcuate
nucleus of hypothalamus; DMH, dorsomedial nucleus of hypo-
thalamus; LHA, lateral hypothalamic area; VMH, ventromedial
nucleus of hypothalamus; VMHdm, dorsomedial part of the VMH;
VMHvl, ventrolateral part of the VMH.
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balance,81,82 which markedly contrasts with the pro-
found impact in the energy homeostasis caused by the
complete ablation of NPY/AgRP/GABA neurons (via
diphtheria toxin) or by the lack of MC4R.71,83

The paraventricular nucleus of the hypothalamus
(PVH) is an important brain structure that receives
dense projections from either POMC/CART or NPY/
AgRP/GABA neurons (Fig. 3B).84-86 Expression of
MC4R exclusively in PVH neurons can rescue the
increased food intake observed in Mc4r null mice.84

During calorie-restricted conditions, ARH NPY/AgRP/
GABA neurons are strongly activated as demonstrated
by an increased intrinsic action potential frequency.87

The increased activity of ARH NPY/AgRP/GABA neu-
rons is mediated by the decreased levels of anorexigenic
hormones, such as leptin, while the orexigenic hor-
mone ghrelin activates these cells.88 However, recent
evidence also indicates that PVH neurons can provide
a potent excitatory input to ARH NPY/AgRP/GABA

neurons during fasting, representing another way to
produce hunger in calorie-restricted conditions.89,90

Consequently, there is a reciprocal regulation between
ARH and PVH neurons to control food intake.

Other brain structures also interact directly to
ARH neurons to control feeding. For example,
NPY/AgRP/GABA neurons project to the parabra-
chial nucleus (PBN) which in turn regulates neu-
rons in the amygdala to control food intake. This
circuit is especially important in conditions when it
is unfavorable to eat, such as after severe overfeed-
ing or during illness.78,91,92 The lateral hypotha-
lamic area (LHA) receives projections from
different populations of LepR-expressing neurons,
and it is also a critical structure that regulates feed-
ing.93 Neurons that express the neuropeptides mel-
anin-concentrating hormone (MCH) or orexin
(also known as hypocretin) are found in the LHA
and these cells stimulate feeding, although they do

Figure 3. Hypothalamic distribution of key neuronal populations involved in the regulation of energy balance. (A) AgRP neurons in the
ARH are located close to the third ventricle and median eminence, whereas POMC neurons are predominantly in the lateral ARH. POMC
neurons were visualized by immunostaining b-endorphin peptide, while AgRP neurons were visualized using a reporter mouse that
express the tdTomato fluorescent protein under the Agrp promoters. (B) PVH receives dense projections from LepR/AgRP neurons.
Green fibers were visualized by immunostaining AgRP peptide, whereas axons from LepR-expressing neurons were visualized using a
reporter mouse that express the tdTomato fluorescent protein under the Lepr promoters, as previously shown.86 Note the extensive co-
localization (yellow color). (C, D) MCH (C) and orexin (D) neurons represent a segregate neuronal population in the LHA and do not
express LepR. MCH and Orexin neurons were immunostained using specific antisera, whereas LepR-expressing neurons were visualized
using a reporter mouse that express the tdTomato fluorescent protein under the Lepr promoters. Abbreviations: 3V, third ventricle;
ARH, arcuate nucleus of hypothalamus; DMH, dorsomedial nucleus of hypothalamus; fx, fornix; LHA, lateral hypothalamic area; ME,
median eminence; PVH, paraventricular nucleus of the hypothalamus; VMH, ventromedial nucleus of hypothalamus. Scale bar: A–B D
100 mm; C–D D 200 mm.
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not express the LepR (Fig. 3C and D).94 On the
other hand, LepR expression in the LHA is found
in neurotensin-positive neurons, and LepR ablation
in these cells increases food intake.95 Leptin acts in
LHA neurotensin neurons leading to an inhibition
of orexin neurons.96 Neurotensin receptor-1 disrup-
tion promotes hedonic feeding.97

The ability of leptin to regulate feeding depends
on several neuronal populations and neurocircuits.
Pharmacogenetic activation of LepR-expressing
neurons in the median preoptic area (MPO) indu-
ces a robust suppression of food intake in mice.98

Dopamine neurons in the ventral tegmental area
(VTA) express the LepR as well.99,100 Direct admin-
istration of leptin to the VTA decreases food
intake.99 Additionally, long-term RNAi-mediated
knockdown of LepR in the VTA strengthens the
sensitivity to highly palatable food and increases
food intake.99 Leptin also modulates the activity of
urocortin 1 neurons in the Edinger–Westphal (EW)
nucleus.101 Since urocortin 1 produces anorexigenic
effects, this particular neuronal population may
mediate some of the leptin’s effects on food
intake.101 LepR expression is also found in brain-
stem neurons, including cells of the nucleus of the
solitary tract (NTS),102-104 which is an important
sensory relay from the upper gastrointestinal tract.
LepR-expressing cells in the NTS co-express differ-
ent neurochemical markers including POMC, cho-
lecystokinin (CCK) and glucagon-like peptide-1
(GLP-1).105 Selective inactivation of LepR in
Phox2b positive cells causes LepR deletion in NTS
GLP-1 neurons.106 This genetic manipulation gen-
erates mice that display increased food intake after
fasting, indicating that leptin action on GLP-1 neu-
rons also controls food intake.106 In line with these
findings, RNAi-mediated knockdown of LepR in
NTS resulted in hyperphagia for chow, high-fat or
high-sucrose diets, leading to an increase in body
weight and adiposity.107 Recent evidence also sug-
gests that leptin signaling in non-neuronal cells
regulates feeding. Astrocyte-specific LepR deficiency
leads to increased food intake.108 Overall, leptin
possibly acts in neurons located in the ARH, LHA,
MPO, VTA and NTS, as well as in non-neuronal
cells to control different aspects of feeding behav-
ior. Fig. 4 summarizes the participation of different
brain nuclei in the multiple physiologic functions
regulated by leptin signaling.

Energy expenditure and thermogenesis
It is well known that leptin affects the energy balance
not only through the modulation of food intake, but it
also has potent effects on energy expenditure. Ob/ob
and db/dbmice have high metabolic efficiency because
of low energy expenditure.51,109 These defects can be
corrected by leptin replacement only in ob/ob mice.51

Similarly to food intake, the regulation of energy
expenditure by leptin depends on multiple neuronal
populations. Conditional deletion of LepR from
POMC cells leads to obesity without affecting food
intake.81 Actually, these mutants exhibit a tendency
toward low energy expenditure.81 In accordance with
these findings, selective expression of LepR only in
POMC cells produces no change in food intake, while
the low energy expenditure observed in LepR-deficient
mice is significantly rescued.110 Ablation of LepR only
in AgRP neurons or simultaneously in POMC and
AgRP cells does not affect food intake in adult mice,
although these animals develop obesity, suggesting an
alteration in energy expenditure.82 Accordingly, the

Figure 4. Brain distribution of LepR-expressing neurons and their
known biologic functions regarding leptin signaling. Abbrevia-
tions: ARH, arcuate nucleus of the hypothalamus; DMH, dorsome-
dial nucleus of the hypothalamus; EW, Edinger–Westphal
nucleus; Hip, hippocampus; LHA, lateral hypothalamic area; MPO,
medial preoptic area; NTS, nucleus of the solitary tract; PBN, para-
brachial nucleus; PMv, ventral premammillary nucleus; VMH, ven-
tromedial nucleus of the hypothalamus; VTA, ventral tegmental
area.
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low energy expenditure of ob/ob mice is partially
improved in NPY-deficient animals.111

The ventromedial nucleus of the hypothalamus
(VMH) is also an important structure involved in the
energy balance regulation. Since steroidogenic factor-1
(SF1)-positive neurons are found only in the VMH,
SF1 became a marker to induce genetic manipulations
in this nucleus. Mice carrying a selective deletion of
LepR in SF1 cells show a similar degree of obesity com-
pared with POMC specific LepR ablation.112,113 Nota-
bly, this obese phenotype occurs in the absence of
changes in food intake. However, SF1 specific LepR
knockout mice exhibit an attenuated thermogenic
response to high-fat diet (HFD).112,113 Several reports
have demonstrated that leptin action in the dorsome-
dial nucleus of the hypothalamus (DMH) increases
sympathetic tone to brown adipose tissue (BAT) and
interscapular BAT temperature.114-116 Acute cold expo-
sure induces c-Fos in DMH LepR-expressing neu-
rons.115 Disruption of LepR selectively in DMH
neurons causes obesity, reduces the energy expenditure
and blocks thermogenic responses to leptin, without
affecting food intake.116,117 Besides regulating food
intake, MPO LepR-expressing neurons are also
involved in temperature-dependent body weight
homeostasis.98,115 This specific population innervates
sympathetic BAT circuits.115 Activation of MPO LepR-
expressing neurons suppresses energy expenditure lead-
ing to a reduction in body temperature.98

It is worth mentioning that leptin can regulate
energy expenditure not only by changes in auto-
nomic nervous system, but also through neuroen-
docrine mechanisms. Thyrotropin-releasing
hormone (TRH) neurons in the PVH are master
regulators of the thyroid gland function, whose
hormones exert profound impact in the cellular
metabolism and consequently in energy expendi-
ture. PVH TRH neurons receive projections from
ARH LepR-expressing neurons (Fig. 3B).118,119 Dur-
ing calorie-restricted conditions, the reduction in
leptin levels coordinates endocrine and metabolic
changes to save energy, which includes suppression
of TRH, thyroid-stimulating hormone and thyroid
hormones.55,57 Infusion of either a-MSH or CART
is able to prevent fasting-induced suppression of
TRH mRNA levels in the PVH.118-121 Therefore,
leptin signaling in ARH neurons controls neuroen-
docrine cells of the PVH to regulate thyroid axis
according to nutritional status.

Ob/ob mice exhibit a reduced body temperature,
and in the past this phenotype was thought to be the
result of lower energy expenditure.122-124 However,
recent findings indicate that leptin actually acts cen-
trally to modulate thermoregulatory mechanisms rais-
ing the defended body temperature and/or reducing
thermal conductance.125,126 BAT is the main organ
that produces heat by increasing energy expenditure.
BAT expresses the uncoupling protein 1 (UCP1), a
mitochondrial channel that uncouples the proton
motive force of the respiratory chain from ATP pro-
duction to heat production.127 BAT is innervated by
the sympathetic nervous system and the activation of
UCP1 is mainly regulated by b3-adrenergic recep-
tors.128 Rats treated with leptin showed increased oxy-
gen consumption and UCP1 mRNA expression, and
this response is elevated after fasting.129 In the past, it
was believed that BAT’s function was critical only in
small rodents; however, nowadays we known that
BAT is present and functional in adult humans as well
and became a potential target for obesity treatment.130

Genetic approaches enhancing leptin and insulin sig-
naling in POMC neurons increase white adipose tissue
browning and energy expenditure, conferring a pro-
tection against diet-induced obesity (DIO).131 In addi-
tion, the absence of hypothalamic insulin and leptin
receptors maintains a lower body temperature (at 20–
22 �C) than when either of the receptors is removed
independently.132

Since endotherms need to maintain their internal
body temperature, a process that demands large
amounts of energy, during fasting conditions small
endotherms may enter a status of daily torpor, thereby
suppressing their metabolic rate together with a fall of
core temperature lasting for a period of several
hours.133 This event can also be present in situations
of low energy sources or in in a low temperature ambi-
ent.134 Evidence in literature shows that the critical
factor that determines the moment of entering torpor
is the achievement of a critical low body mass, which
drives the decrease in daytime core temperature in
both DIO and lean mice facing fasting.135

Since leptin’s structure resembles a cytokine, it is
not surprising that leptin has an important role in
the immune system. Leptin levels increase during
infections, inflammations or lipopolysaccharide
(LPS) exposure as a part of the host immune
response (Fig. 5). This change is mediated by IL1-
b.136 Evidence in animal models has demonstrated
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that systemic inflammation caused by LPS leads to
increased circulating leptin,137,138 and the peak of
leptin is preceded by an increase in tumor necrosis
factor (TNF)-a, which by itself is also capable of
increasing leptin circulating levels.139 Systemic
inflammation and sepsis are closely related to
changes in body temperature, both in animals and
humans.140,141 Systemic inflammation is commonly
followed by fever; however, in some situations it
can evoke hypothermia.142 In animals, the response
to LPS depends on the dose given and the environ-
ment temperature. In thermoneutral environment,
fever is the predominant response. Low doses of
LPS induce monophasic fever, which turns into
polyphasic fever when the dose is increased.143

However, if a high dose of LPS is given in a low
temperature environment, the response changes to
hypothermia.144 Evidence shows that fever is a pre-
dominant response for mild stimuli, whereas hypo-
thermia is a natural response for stronger
inflammatory injuries.145 A major regulator for
these responses is TNF-a that, depending on the
dose, can be thermogenic or cryogenic. LepR KO
rats (Koletsky f/f) have the same fever response to
low doses of LPS as wild-type rats, but when
treated with high doses of LPS express a severe
hypothermia that lasts longer, associated with
increased levels of TNF-a. A possible explanation
for the TNF-a increase in LepR KO rats is the fact
that they are unable to fully activate their hypotha-
lamic-pituitary-adrenal axis which has anti-inflam-
matory actions in response to LPS, and therefore
leptin seems to be important to recover from hypo-
thermia induced by LPS.146 Further evidence for
this point is that ob/ob mice do not activate their
hypothalamic–pituitary–adrenal axis in response to
LPS, compared with wild-type animals.147,148 In

leptin responsive animals, stimuli that normally
evoke highly febrigenic responses in fed animals
result in hypothermia or low fever when the ani-
mals are fasted and they show elevated TNF-a lev-
els.149-152 This is suggested to be related to low
levels of leptin in fasted animals, because of the
similar response observed in leptin-irresponsive
rats (Koletsky f/f) (reviewed in refs.153,154).

In DIO rats, in which leptin levels were blocked
with specific antiserum, the later phases of the fever
response were attenuated. Thus, leptin was suggested
to play an important role modulating the late phase of
the fever response to LPS in obese animals.155 Higher
levels of circulating leptin in old rats were associated
with enhanced duration and degree of symptoms after
LPS injection together with prolonged fever compared
with young rats, showing that leptin has a role in age-
dependent febrile responses to inflammation.156

Another phenomenon that can alter the regulation
of body temperature is the psychological stimulated
hyperthermia, both in animals and humans. This con-
dition increases BAT thermogenesis157 and can be
diminished by systemic administration of a b3-adre-
noceptor antagonist in rats.158 However, the physio-
logic mechanisms involved in the hyperthermia
induced by psychological stress are different from
those involved in LPS-induced fever.159

In summary, leptin signaling in the ARH (POMC
and AgRP/NPY neurons), VMH, DMH and MPO
modulates the autonomic nervous system or endo-
crine axes leading to changes in energy expenditure
and thermogenesis. Therefore, the powerful effects of
leptin on the energy balance depend on a simulta-
neous regulation of food intake and energy expendi-
ture. Furthermore, there is also evidence that leptin
regulates immune responses, as well as body
temperature through the modulation of central

Figure 5. Physiological responses to systemic inflammation. Scheme summarizing changes in body temperature, behavior and secreted
factors after LPS-induced inflammation as well as the leptin’s role in the recovery of febrigenic or hypothermic processes.

TEMPERATURE 265

D
ow

nl
oa

de
d 

by
 [

Si
st

em
a 

In
te

gr
ad

o 
de

 B
ib

lio
te

ca
s 

U
SP

] 
at

 0
8:

52
 1

9 
Se

pt
em

be
r 

20
17

 



thermoregulatory mechanisms. Fig. 5 summarizes the
physiologic responses to systemic inflammation and
the role of leptin in the recovery of febrigenic or hypo-
thermic processes.

Regulation of cardiovascular functions via autonomic
nervous system
Recent reports indicate that DMH LepR-expressing
cells also control blood pressure.160 Interestingly, lep-
tin or LepR deficiency protects against hypertension,
despite the morbid obese phenotype caused by these
mutations. Additionally, increased leptin levels in
DIO promotes increased blood pressure in rodents,
which is an effect likely mediated by DMH neu-
rons.114,160 The same protection against obesity-
induced hypertension is observed in MC4R deficient
mice, which indicates the involvement of the central
melanocortin system in this dysfunction.161 Accord-
ingly, MC4R expression in cholinergic neurons, which
include sympathetic and parasympathetic pregangli-
onic neurons, restores obesity-associated hypertension
in MC4R deficient mice.162 Additionally, exclusive
MC4R expression in cholinergic neurons is sufficient
to normalize the energy expenditure abnormalities
exhibited by MC4R deficiency, without affecting food
intake.163 Thus, leptin acts via the melanocortin sys-
tem and DMH LepR neurons to regulate blood pres-
sure through the modulation of the autonomic
nervous system.160,161,164

Glucose homeostasis
Glucose homeostasis is regulated by brain leptin
signaling, independently of its effects on adiposity.
For example, leptin infusion at low doses that does
not affect body weight is able to correct the hyper-
glycemia and hyperinsulinemia of ob/ob mice.51

Additionally, genetic manipulation that increases
leptin sensitivity in LepR-expressing cells does not
prevent DIO, but protects mice from obesity-
induced insulin resistance.165 Since adiposity plays
a major role contributing to insulin resistance, it is
sometimes difficult to determine whether leptin
signaling in a specific brain structure directly con-
trols glucose homeostasis or if the observed effects
are secondary to changes in body weight and adi-
posity. However, there is solid evidence that some
specific neuronal populations are particularly
important to mediate leptin’s effects on glucose
homeostasis. Unilateral LepR reactivation in the

ARH of otherwise LepR-deficient mice produces
modest effects on body weight and adiposity,
although this manipulation causes marked
improvements in hyperinsulinemia and blood glu-
cose levels.64 Leptin signaling in POMC neurons
probably explains much of these effects, since
selective expression of LepR only in POMC cells
also produces robust improvements in the hyperin-
sulinemia and hyperglycemia of LepR-deficient
mice, even though it causes small effects on body
weight and adiposity.110,166 In accordance with the
role of the central melanocortin system controlling
glucose homeostasis, Rossi et al.163 found that,
compared with MC4R deficient mice, re-expression
of MC4R in cholinergic neurons (autonomic sym-
pathetic and parasympathetic preganglionic neu-
rons) produces expressive improvements in glucose
control, insulin sensitivity and insulin-mediated
suppression of hepatic glucose production. Inter-
estingly, restoration of MC4R expression in the
dorsal motor nucleus of the vagus (DMX), which
is composed of parasympathetic preganglionic neu-
rons, attenuates the hyperinsulinemia, but does not
normalize the hyperglycemia of MC4R deficient
mice, suggesting that the melanocortin system
probably influences both sympathetic and para-
sympathetic branches to regulate different aspects
of glucose homeostasis.162,163

There is some evidence that leptin signaling in
VMH neurons also regulates glucose homeostasis. For
example, selective inactivation of SOCS3 in SF1 cells
increases leptin sensitivity, leading to an improvement
of glucose homeostasis, without affecting body
weight.167 VMH is a key area involved in counter-reg-
ulatory responses to hypoglycemia.168 Excitatory glu-
tamatergic transmission from VMH neurons is
required to prevent fasting-induced hypoglycemia.169

A neurocircuit between brainstem and VMH was
recently described to control counter-regulatory
responses to hypoglycemia. In this circuit, leptin-
responsive cells in the lateral PBN express CCK and
are inhibited by glucose. Leptin inhibits PBN CCK
neurons and inactivation of LepR in CCK cells enhan-
ces counter-regulatory responses to hypoglyce-
mia.170,171 PBN CCK neurons project to and regulate
VMH SF1 cells via CCK release, and this neurocircuit
is both necessary and sufficient for triggering counter-
regulatory responses to hypoglycemia.168,170,171 Thus,
several pieces of evidence indicate that leptin controls
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sympathetic and parasympathetic nervous systems via
the melanocortin system to regulate glucose homeo-
stasis. PBN CCK neurons are also directly regulated
by leptin to modulate counterregulatory responses to
hypoglycemia via connections with VMH SF1
neurons.

Reproduction
Calorie-restricted conditions also suppress the repro-
ductive axis and these effects are leptin depen-
dent.55,57,172,173 Several studies investigated potential
brain areas that could mediate leptin’s effects on
reproduction. Although LepR-expressing cells are
located nearby gonadotropin-releasing hormone
(GnRH) neurons, there is no direct effect of leptin on
these cells.174 Consequently, interneurons are neces-
sary to convey leptin signal to GnRH neurons. Kiss-
peptin (peptide encoded by the Kiss1 gene) expressing
neurons are required to sense estrogen levels to regu-
late GnRH neurons.175 Although earlier reports iden-
tified LepR mRNA expression in Kisspeptin
neurons,176 more recent studies found a very limited
LepR expression in these cells.177,178 Additionally,
selective manipulation of LepR in Kisspeptin cells pro-
duced no significant impact on reproduction.177,179

On the other hand, neurons in the ventral premam-
millary nucleus (PMv) exhibit an abundant expression
of LepR and play a critical role mediating leptin’s
effects on reproduction.180,181 PMv neurons project to
GnRH cell bodies and fibers that reach median emi-
nence, exerting an excitatory effect through their glu-
tamatergic transmission.179,182,183 Excitotoxic lesions
of the PMv in adult female rats disturb estrous cycle,
the activation of GnRH neurons during the proestrus
and GnRH and Kiss1 mRNA expression at the night
of proestrus.184,185 PMv-lesioned rats also failed to
show the stimulatory effects of leptin on luteinizing
hormone (LH) secretion during fasting.185 The most
substantial evidence that PMv neurons mediate the
effects of leptin on reproduction came from studies
that induced LepR-expression only in PMv neurons of
otherwise LepR-deficient mice. In this study, unilateral
re-activation of LepR in the PMv was sufficient to
restore fertility, despite a complete absence of changes
in body weight and food intake.179

Besides the PMv, MPO LepR-expressing neurons
also regulate reproduction. These cells are found close
to GnRH neurons and release nitric oxide (NO).103,186

Neuronal NO synthase (nNOS) knockout mice are

unable to show the stimulatory effect of leptin on LH
secretion, and pharmacological nNOS inhibition in
the preoptic area prevents the restoration of fertility in
leptin-treated ob/ob female mice.186 NPY/AgRP neu-
rons are also important targets of leptin to regulate
reproduction. Db/db mice carrying inactivation in
Agrp gene exhibit significant improvements in repro-
duction, including normal timing of vaginal opening
and estrous cycling, as well as recovery in fertility.187

In another study, NPY/AgRP neurons were ablated in
ob/ob mice.188 The authors reported a restoration in
body weight, food intake and glucose tolerance to lev-
els similar to wild-type mice. Interestingly, this manip-
ulation recovered the fertility of either male or female
ob/ob, indicating that under low leptin levels NPY/
AgRP neurons exert an important inhibitory effect on
reproductive axis.188 Leptin probably acts on POMC/
CART neurons to regulate reproduction as well.
a-MSH is able to activate 70% of GnRH neurons,
whereas approximately 15% of GnRH neurons are
excited by CART.189 Additionally, the combined inac-
tivation of LepR and insulin receptor in POMC cells
reduces the fertility in mice, elevates serum testoster-
one levels and causes ovarian abnormalities.190 There-
fore, the current evidence in the literature indicates
that LepR-expressing neurons in the MPO, PMv and
ARH (NPY/AgRP and POMC/CART cells) are able to
sense leptin levels to modulate the onset of puberty
and reproduction.

Locomotor activity, neuronal plasticity, development
and other brain functions
The biologic effects of leptin extend beyond the
regulation of energy balance and glucose homeo-
stasis. There is plenty of information indicating
that several behaviors and brain functions are reg-
ulated by leptin signaling. Voluntary locomotor
activity is directly regulated by leptin signaling,
independently of body weight changes. For exam-
ple, ob/ob or LepR-deficient mice show reduced
locomotor activity, which is not caused by their
morbid obesity. Leptin signaling only in the ARH
or specifically in POMC neurons can partially res-
cue the hypoactivity displayed by LepR-deficient
mice.64,110,166 NPY/AgRP neurons also regulate
locomotor activity since LepR ablation only in
these cells causes decreased ambulatory activity
compared with wild-type mice.82 Acute activation
of MPO LepR-expressing neurons causes
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suppression in locomotor activity.98 However, the
reduction in body temperature caused by the acti-
vation of MPO LepR neurons could impair loco-
motion.98 Mice carrying LepR ablation in LHA
neurotensin neurons exhibit decreased locomotor
activity as well.95 These animals show an altered
regulation of orexin neurons and mesolimbic dopa-
mine system, since they have lower fasting-induced
activation of orexin neurons and reduced orexin
expression in the LHA, as well as a blunted
amphetamine-induced increase in locomotor activ-
ity.95 As previously mentioned, leptin can directly
regulate mesolimbic dopamine system through
LepR-expressing cells in the VTA.100 Knockdown
of LepR in the VTA increases locomotor activity
of rats.99 In another study, LepR was selectively
inactivated in dopamine neurons.191 These mice
display anxiogenic-like behavior in the elevated
plus-maze, light-dark box, social interaction and
novelty suppressed feeding tests. However, depres-
sion-related behaviors were not affected by the
lack of leptin signaling in dopamine neurons.191

Therefore, several leptin responsive neural popula-
tions are responsible to mediate leptin’s effects on
locomotor activity, including neurons in the ARH,
MPO, LHA and VTA. In addition, the direct
(through VTA) or indirect (through LHA) regula-
tion of mesolimbic dopamine system allows leptin
to control different behaviors, such as anxiety and
preference to palatable foods.

Neuroplasticity is the process through which neural
circuits adapt to variations in stimuli coming from the
environment. Leptin-deficient mice have reduced
brain mass and cortical brain volume,192 and they
have an immature expression pattern of synaptic and
glial proteins. Some of these defects cannot be reverted
by leptin treatment at adulthood.193 However, leptin
treatment in adults with missense leptin mutations is
able to increase gray matter concentration in the fron-
tal cortex, left inferior parietal lobule and left
cerebellum.194

As described above, the most studied role of leptin
is related to the regulation of body weight and food
intake. However, this function does not begin until
the first month of life in rodents. It was shown by Mis-
try and collaborators that leptin administration
peripherally or centrally, even in high doses, has no
impact in body weight, food intake or fat deposition
until the first month of postnatal life.195 This explains

why ob/ob and db/db mice express their obese pheno-
type only after that period. Therefore, leptin’s role is
possibly different in very young mice. Leptin is
expressed in the fetus, but its production originates
from diverse tissues since adipose tissue is minimal
during this stage of development.196 The majority of
leptin-responsive neurons in adult brain are born in
the first 2 weeks of embryonic life.196 Leptin’s trans-
port into the brain through the LepRa is finely regu-
lated since embryonic stage,197 and leptin reaches the
brain at a very young age.198 Between postnatal days 6
and 14 there is a leptin surge, with concentrations sig-
nificantly higher than the values exhibited in adult
life.199 To understand the physiologic role of this lep-
tin surge, it is important to state that in mice and rats
the hypothalamus begins to develop during mid-gesta-
tion and continues to develop during the first weeks of
postnatal life.200 The development of the projections
from ARH neurons to different hypothalamic nuclei
coincides with the postnatal leptin surge, although it
occurs at different moments, starting with the DMH
(established by postnatal day 6, P6), whereas those to
the PVH develop later, by P8–10, and finally the pro-
jections to the LHA are established by P16.85,201 Previ-
ous studies by Bouret and colleagues showed that
leptin has an important trophic role in the mouse
brain during the first weeks of life by regulating axon
growth in specific neuronal populations. Conse-
quently, ob/ob mice have fewer projections from the
ARH to other brain regions, including the PVH. This
deficiency could be reversed only when leptin was
replaced in the first weeks of life, whereas leptin treat-
ment in adult ob/ob mice was unable to restore these
projections.85 However, despite this critical neonatal
window for leptin’s neurotrophic action, leptin treat-
ment is still able to revert the obese phenotype of adult
ob/obmice, indicating that further studies are still nec-
essary to understand the biologic importance of the
neurotrophic effect of leptin.179 There is evidence that
leptin also influences synaptic plasticity. Ob/ob mice
have altered synaptic inputs in NPY/AgRP/GABA and
POMC/CART neurons, with marked excitatory inputs
on orexigenic neurons, thus stimulating food intake.
In contrast to the critical leptin’s neonatal window to
regulate axon growth, leptin treatment reverses the
altered pattern of the synaptic inputs of ob/ob mice
within hours.202

Several studies have also identified a role of leptin
in cognitive processes through activation of LepR in
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the hippocampus. It has been reported that leptin reg-
ulates hippocampal excitability by modulating large-
conductance calcium-activated potassium channels.203

Leptin can reduce hippocampal excitability in an ani-
mal model of epilepsy204 or act as pro-convusant,
depending on the target population of hippocampal
cells.205 The hippocampus is required for learning and
memory. The long-term potentiation is a form of syn-
aptic plasticity important for learning/memory and
this phenomenon is impaired in db/db mice.206 Addi-
tionally, leptin deficiency reduces brain myelina-
tion.207 Obese rats also show memory deficits related
tasks,208 indicating a possible role of leptin in the for-
mation of memory and learning. Baseline neurocogni-
tive tests in a child with a mutation in the leptin gene
indicated a developmental cognitive age lower than
expected by their chronological age. Interestingly,
treatment with leptin improved their neurocognitive
skills.209 LepR-deficient mice also show depression-
like and anxiolytic behaviors from a young age, as well
as psychosis-like behavior, which is present only in
adult animals.210 On the other hand, animals exposed
to stress paradigms have a significant decrease in lep-
tin serum levels, and leptin administration into the
hippocampus reverted depressive-like behavior in the
forced swim test.211,212 In summary, there is evidence
indicating that leptin can affect numerous cognitive
processes and behaviors.

The role of leptin in disease

Potential therapeutic effects of leptin administration

Obesity
Leptin replacement in leptin-deficient subjects leads to
enormous beneficial effects restoring their energy bal-
ance, glucose homeostasis, neuroendocrine and cogni-
tive dysfunctions.49,50,61,209 Mutations in the leptin
gene can also produce a biologically inactive leptin, in
which treatment with recombinant human leptin is
able to normalize the eating behavior and cause weight
loss.213 However, these mutations are very rare.214 The
potential therapeutic effects of leptin administration
to treat obese humans, who do not carry any muta-
tions in the Lep gene, were tested in several clinical tri-
als. However, treatment with exogenous leptin
resulted in no or only modest effects on body
weight,215-220 including obese individuals after gastric
bypass surgery.221 Additionally, no significant preven-
tion in calorie restriction-induced neuroendocrine

adaptations was achieved with leptin administra-
tion.218,222 These results indicate that in obese individ-
uals with already elevated leptin levels, exogenous
leptin no further helps in the body weight manage-
ment. Thus, leptin administration is likely a poor ther-
apy for the obesity treatment. However, the perception
of hunger/satiation was significantly improved in lep-
tin-treated patients.223,224 Some reports also indicate
that leptin administration induces a robust weight loss
in a small percentage of patients,215 suggesting that a
subgroup of obese individuals could benefit from lep-
tin treatment.

Lipodystrophy
Since leptin is produced by the adipose tissue, any
dysfunction in this organ may affect serum leptin
levels. Congenital or acquired generalized lipodys-
trophy (GL) is a condition characterized by abnor-
mal or degenerative adipose tissue, leading to
incapacity to accumulate fat in this tissue that is
compensated with lipid deposition in other organs,
such as the liver and skeletal muscle. GL can cause
severe insulin resistance, hyperglycemia, dyslipide-
mia and hepatic steatosis. Importantly, patients
with GL show low circulating leptin levels. The
role of GL-induced leptin deficiency was investi-
gated by studies that treated GL patients with lep-
tin. Leptin administration produced profound
improvements in all metabolic defects exhibited by
GL patients.225-228 The beneficial effects of leptin
therapy were observed not only in congenital GL,
but also in HIV-associated lipodystrophy syn-
drome,229,230 and in type 1 diabetes mellitus
(T1DM) associated with acquired GL.231 These
findings led the US Food & Drug Administration
(FDA) to approve in 2014 Myalept� (metreleptin
for injection) as replacement therapy to treat the
complications of leptin deficiency in patients with
congenital or acquired GL. This was the first offi-
cial medical approval of leptin treatment.

Diabetes mellitus
As mentioned earlier, leptin deficiency causes severe
insulin resistance, frequently associated with hypergly-
cemia. Leptin replacement therapy reverses the dia-
betic phenotype of ob/ob mice or leptin deficient
humans.50,51,61 Several studies investigated whether
leptin treatment produces beneficial effects on type 2
diabetes mellitus (T2DM) patients.232,233 In a study,
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metreleptin administration in patients with T2DM
only reduced glycated hemoglobin (HbA1c) margin-
ally, without altering body weight or circulating
inflammatory markers.233 In other report, recombi-
nant methionyl human leptin for 14 d did not produce
any significant effects on insulin sensitivity or body
weight of obese people with T2DM.232 Therefore, in
accordance with the clinical trials to evaluate the
potential efficacy of leptin to treat obesity, the data
available indicates that leptin possesses poor anti-dia-
betic potential when used in hyperleptinemic obese
people with T2DM.

In contrast to the minor effects produced in
T2DM, leptin therapy in type 1 diabetic non-obese
(NOD) mice normalized circulating levels of glu-
cose, HbA1c, free fatty acids, as well as a wide
array of hepatic intermediary metabolites.234 Com-
pared to insulin monotherapy, leptin lowers
plasma and tissue lipids, and lipogenic and choles-
terologenic transcription factors and enzymes.234

The anti-diabetic effects of leptin in T1DM
depends on the CNS, since intracerebroventricular
infusion of leptin has the same beneficial effects
than systemic treatment.235 The mechanisms of
action recruited by leptin to produce such dra-
matic effects resolving the metabolic dysfunctions
in T1DM have been investigated. LepR expression
in POMC cells or in GABA-positive neurons is
sufficient to mediate the lifesaving and antidiabetic
actions of leptin in insulin deficiency.236 Addition-
ally, leptin administration improves hyperglucago-
nemia,234-236 which is a key feature that can lead
to hyperglycemia and further complications of
T1DM.237-240 Thus, pre-clinical studies in animal
models highlight a promising therapeutic potential
of leptin to treat T1DM. Regarding T2DM, leptin
therapy produces small effects, possibly because of
the already elevated serum leptin levels presented
by the majority of type 2 diabetic individuals.

Hypothalamic amenorrhea
The reduction in leptin levels during calorie-
restricted conditions is a determining factor that
leads to suppression of the reproductive axis.55,57

Chronic energy deficiency secondary to strenuous
exercise and/or decreased food intake can produce
functional hypothalamic amenorrhea, which is a
condition characterized by the disruption of GnRH
secretion and consequently anovulation and

infertility. Therefore, under these conditions, hypo-
thalamic amenorrhea may be caused by the relative
leptin deficiency produced by chronic negative
energy balance. In an elegant study, eight women
with hypothalamic amenorrhea due to strenuous
exercise or low body weight received recombinant
human leptin for up to 3 months.172 The authors
observed that leptin treatment increased mean LH
levels and LH pulse frequency after 2 weeks and
increased maximal follicular diameter, the number
of dominant follicles, ovarian volume and estradiol
levels over a period of 3 months. Remarkably,
three patients had an ovulatory menstrual cycle
and two others had preovulatory follicular devel-
opment and withdrawal bleeding during treat-
ment.172 Besides improvements in the reproductive
axis,172,241 leptin treatment in patients with hypo-
thalamic amenorrhea improved bone mineral den-
sity and content, as well as markers of bone
metabolism suggestive of bone formation.241,242

Although larger clinical trial studies are still
required to better assess the effects of leptin in the
hypothalamic amenorrhea, these preliminary find-
ings indicate that leptin treatment may be helpful
to improve fertility and bone mineral density in
lean hypoleptinemic women.

Leptin resistance and obesity

Definition
As previously mentioned, the high leptin levels and the
decreased responsiveness to leptin led the scientific
community to hypothesize that obesity is characterized
by a condition of leptin resistance. It is worth mention-
ing that it is believed that leptin triggers more robust
biologic responses when its levels decrease, such as dur-
ing caloric restriction. Therefore, the reduction of leptin
levels is a powerful cue to coordinate responses to save
energy and increase hunger to increase survival and
protect animals from food deprivation. On the other
hand, nutrient excess is considered such a rare situation
in nature that probably precluded evolution to select
mechanisms capable of preventing efficient weight
gain. A reduced capacity to respond to chronic high
leptin levels is an example of this concept. However,
experimental evidence points out possible mechanisms
that explain the lower responsiveness to high leptin lev-
els,44 as described in more details in the following sec-
tion and summarized in Fig. 6.
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Leptin sensitivity in experimental models is nor-
mally evaluated by measuring the acute or chronic
capacity of exogenous leptin infusion to reduce
body weight, adiposity and/or food intake. Leptin
sensitivity is also determined by measuring the
activation of signaling pathways recruited by LepR
after leptin administration (Fig. 2). Using the
anorexigenic effects of leptin as readout to deter-
mine leptin sensitivity, numerous studies observed
that DIO animals showed an attenuated response
to leptin.243 However, a recent study questioned
the current view of the importance of leptin resis-
tance to induce obesity.244 In this study, LepR
antagonist administration surprisingly increased
feeding and body weight in both lean and DIO
mice. As expected, this antagonist had no effect on
leptin or LepR-deficient mice.244 Therefore,
although several studies have demonstrated that
obesity reduces the anorexigenic effects of leptin,
DIO animals still retain some capacity to respond
to LepR antagonist.

Regarding the assessment of leptin signaling
pathways, M€unzberg et al.45 made a very nice
observation indicating that some brain regions are
more prone to develop leptin resistance compared
with others. In this study, an acute peripheral
(intraperitoneal) leptin infusion was able to induce
an equivalent number of cells expressing pSTAT3
in the VMH, DMH, PMv and NTS of HFD-
induced obese mice, compared with lean animals
on normal chow diet.45 However, the number of
pSTAT3-positive cells in the ARH of obese mice
was significantly lower compared with lean animals
indicating a nucleus-specific leptin resistance.45

Other studies confirmed these findings114 and

further indicated that NPY/AgRP neurons are first
affected by DIO (2 d on HFD are enough to cause
leptin resistance in these cells), whereas leptin
resistance in POMC neurons requires a longer
exposition to HFD.245 The reason for this selective
leptin resistance may be caused by the anatomic
position of LepR-expressing cells in relation to the
BBB. NPY/AgRP neurons are very near to median
eminence, which is a circumventricular organ.
Therefore, median eminence presents extensive
vasculature and lack of a normal BBB. Conse-
quently, factors in the systemic circulation can
affect more significantly neurons located close to
this structure than cells of other brain regions.
Therefore, ARH cells, especially NPY/AgRP neu-
rons, are robustly affected by the pro-inflammatory
and hyperleptinemic effects induced by HFD con-
sumption.245 Besides HFD consumption, leptin
resistance is also observed in other situations, such
as pregnancy.104,246-249 As the primary cause of
leptin resistance in pregnancy likely differs from
what is observed in DIO, the brain nuclei exhibit-
ing leptin resistance in pregnant animals may also
be different. In fact, several studies have observed
a lower responsiveness to leptin in the VMH of
pregnant animals.247-250

The selective leptin resistance may help to explain
some metabolic consequences of obesity. While the
ability of leptin to regulate the energy balance, body
weight and glucose homeostasis is impaired in DIO
animals, since ARH is a major area that regulates these
functions, others effects of leptin may be upregulated.
That seems to be the case of leptin-induced activation
of sympathetic nervous system.114,160,164 As obese ani-
mals have high leptin levels and brain nuclei that drive

Figure 6. Environmental influences on the development of obesity. Scheme summarizing the mechanisms through which an altered
environment can promote obesity and type 2 diabetes mellitus.
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leptin-induced activation of sympathetic nervous sys-
tem maintain leptin sensitivity (e.g., DMH), the over-
activation of leptin signaling can, for example,
predispose obese individuals to hypertension.160 Thus,
leptin resistance is a complex phenomenon that prob-
ably affects some neuronal populations and leptin’s
functions, but not others.

Mechanisms
Some authors have suggested that leptin resistance
may be caused by a limited capacity of leptin to enter
into the CNS and therefore activate its cognate recep-
tor in different brain areas. This hypothesis is sup-
ported by the fact that leptin enters into the CNS
through a saturated transport system,251 as well as
because the cerebrospinal-fluid/serum leptin ratio is
decreased in obesity.252,253 Additionally, some studies
have demonstrated that central leptin infusions are
more efficient in inducing leptin’s anorexigenic effects
in obese animals in comparison with peripheral injec-
tions, suggesting that leptin transport from systemic
circulation to the CNS could represent a limiting fac-
tor.60,243 Some pieces of evidence indicate the partici-
pation of short forms of LepR, such as the ObRa, in
the leptin transport from systemic circulation to the
CNS. For example, rats carrying a mutation that pre-
vents the synthesis of short forms of LepR show
decreased transport of leptin across the BBB and
develop obesity.18,254 In addition, the short form of
LepR is abundantly expressed in brain microvessels
and choroid plexus, and ObRa is able to mediate a
transcellular transport of leptin.39,255 However, other
reports presented evidence that leptin transport across
the BBB is not mediated by leptin receptors.256 In
another study, mice carrying a mutation that prevents
the synthesis of the ObRa isoform were studied.257

Although these mutants exhibited a reduced cerebro-
spinal-fluid/serum leptin ratio, they presented very
modest metabolic abnormalities suggesting that ObRa
only plays a minor role in mediating leptin’s effects.257

More recently, the participation of median eminence
tanycytes was described in the leptin transport to the
brain.258 Circulating leptin activates ERK signaling
pathway in median eminence tanycytes, which allows
leptin passage to the cerebrospinal fluid. Interestingly,
leptin taken up by tanycytes accumulates in the
median eminence of DIO or db/db mice, failing to
reach the mediobasal hypothalamus.258 Therefore,
although it is not totally clear the exact role of BBB

leptin transport as the primary cause of leptin resis-
tance in DIO, defects in this mechanism seem to exert
a significant role.

Some authors also suggest that leptin resistance
may emerge as a secondary defect caused by the high
leptin levels observed in obesity.259 However, studies
that artificially produced high leptin levels chronically
observed that animals did not defend a higher body
weight, even after cessation of leptin administration,
suggesting that hyperleptinemia per se does not pro-
duce long-term defects to maintain the energy balance
and body weight.60,260 On the other hand, the most
robust evidence to explain leptin resistance came from
studies that identified intracellular proteins that are
able to block the activation of leptin signaling cas-
cades. STAT transcription factors robustly regulate
the transcription of genes from the SOCS family,
which includes eight intracellular proteins, named as
SOCS1 to SOCS7, and CIS. These proteins have a C-
terminal motif referred to as the SOCS box and a SH2
domain that allows them to bind to other proteins
that contain phosphorylated tyrosine residues.261

Therefore, SOCS proteins bind to tyrosine phosphory-
lated proteins leading them to proteasomal degrada-
tion or blocking their capacity to transduce
intracellular effects.261 Regarding leptin signaling that
conveys its cellular effects through tyrosine phosphor-
ylation and recruits LepR/JAK2/STAT3 pathway, pre-
vious studies have identified SOCS3 as the major
protein from the SOCS family that is able to inhibit
leptin signaling.262 SOCS3 binds to phosphorylated
JAK2 and tyrosine residue 985 of LepR, in both cases
blocking the capacity of LepR/JAK2 pathway to trans-
mit its intracellular signal (e.g., to recruit downstream
proteins such as STAT3).263,264 Interestingly, the acti-
vation of LepR/JAK2/STAT3 signaling pathway indu-
ces a robust SOCS3 expression, indicating that SOCS3
acts as a negative feedback mechanism to modulate
leptin signaling (Fig. 1).262 That is the reason why
hyperleptinemic conditions, like obesity, are normally
associated with high hypothalamic SOCS3 expres-
sion.262 Therefore, the increased SOCS3 levels in
LepR-expressing cells could be a potential cause of
leptin resistance in obesity. The important role of
SOCS3 controlling leptin sensitivity was confirmed by
studies that induced selective SOCS3 inactiva-
tion72,165,167,173,249,250,264-269 or super-expression.270

For example, brain-specific SOCS3 inactivation
increases leptin sensitivity and partially protects
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against DIO.268 SOCS3 expression in specific neuronal
populations including POMC,265 SF1,167, AgRP245 and
LepR-expressing165,173,249,250 cells regulates leptin sen-
sitivity and consequently the metabolism. Since
SOCS3 also inhibits insulin signaling, and insulin and
leptin act together in the CNS to control glucose
homeostasis,271 conditional SOCS3 ablation normally
produces beneficial effects on glucose control, espe-
cially in obese insulin-resistant animals.165,265,268

The SOCS3 capacity to affect leptin signaling and
consequently the metabolism is not limited to condi-
tions that simulate pathological states, such as DIO.
Recent findings have shown that SOCS3 levels in
LepR-expressing cells coordinate the typical metabolic
adaptions of pregnancy.249,250 Pregnant animals must
increase their food intake, adiposity and develop a cer-
tain level of insulin resistance to properly provide
nutrients for the developing fetuses, and later for lac-
tation. During pregnancy, changes in hormone levels
(e.g., increased prolactin or placental lactogens levels)
induce leptin resistance and may increase hypotha-
lamic SOCS3 levels.272-274 Selective inactivation of
SOCS3 in LepR-expressing cells prevents leptin resis-
tance and thereby attenuates the increased food
intake, adiposity and insulin resistance observed in
pregnant mice.249,250 In another study, inactivation of
SOCS3 in LepR-expressing cells mitigated post-
restriction hyperphagia and weight regain in lean
mice by reducing the mRNA levels of hypothalamic
orexigenic neuropeptides during fasting.72

Another important group of proteins that regulates
leptin sensitivity is composed by protein tyrosine
phosphatases (PTPs), which catalyze the dephosphor-
ylation of tyrosine residues. Consequently, these pro-
teins can block leptin signaling through the
dephosphorylation of LepR, JAK2 or STAT3.275 The
protein tyrosine phosphatase 1B (PTP1B; encoded by
Ptpn1 gene), T-cell protein tyrosine phosphatase
(TCPTP; encoded by Ptpn2 gene) and protein tyrosine
phosphatase epsilon (RPTPe; encoded by Ptpre gene)
produce these effects, regulating negatively LepR sig-
naling. Several studies have demonstrated that hypo-
thalamic expression of PTPs is increased in obese
animals and selective ablation of these proteins
improves leptin sensitivity and partially prevents
HFD-induced obesity and insulin resis-
tance.46,131,266,276-280

Leptin signaling can also be positively regulated by
adaptor proteins and other enzymes. For example,

inactivation of the Shp2 decreases leptin sensitivity
and predisposes animals to obesity.281,282 The cyto-
plasmic adaptor protein SH2B1 increases leptin sensi-
tivity by binding to phospho-Tyr813 of JAK2 which
enhances its activity and the activation of downstream
leptin-signaling pathways.283 SH2B1 can also bind
directly to insulin receptor substrate 1 and 2 (IRS1/
IRS2), stimulating leptin-induced activation of PI3K
signaling pathway.283 In accordance with these effects,
neuron-specific SH2B1 knockout mice exhibit leptin
resistance, obesity and hyperglycemia.284 In summary,
several intracellular proteins are able to affect either
positively or negatively leptin signaling, representing
potential candidates to mediate the leptin resistance
observed in specific conditions, such as DIO or
pregnancy.

Link between environment and obesity
The increasing prevalence of obesity and other meta-
bolic diseases provides a link between the environ-
mental changes that have occurred in the last decades
with an impaired capacity to properly regulate the
energy balance (Fig. 6). Regarding this, a frequent con-
sumption of high-palatable/high-caloric diets, associ-
ated with a sedentary and stressful lifestyle, somehow
disturb the functioning of neurocircuits responsible to
control the food intake, body weight and blood glu-
cose levels. The intake of high-palatable/high-caloric
diets can disrupt the energy balance via several mecha-
nisms.285,286 For example, HFD activates proinflam-
matory responses in the hypothalamus, which disturb
the energy and glucose homeostasis.287 HFD can also
lead to suppressed neurogenesis and apoptosis of
hypothalamic neurons, especially those that induce
satiety.288,289 The proinflammatory and proapop-
totic effects of HFD may involve the activation of
toll-like receptor 4 (TLR4), since TLR4 is activated
by saturated fatty acids.290 Consequently, HFD
induces the activation of IKKb/NF-kappaB signal-
ing pathways in the hypothalamus, which induce
the production of proinflammatory cytokines, such
as TNF-a.291,292 A high calorie/fat diet can also
lead to endoplasmic reticulum (ER) stress.290,291,293

ER stress is caused by the accumulation of mis-
folded proteins, which activates the unfolded pro-
tein response.286 This condition, commonly caused
by HFD consumption, plays a central role in the
development of leptin resistance.291,294-297
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More recently, several studies described the partici-
pation of the gut microbiota in the predisposition to
obesity and metabolic complications.285,298-303 Differ-
ences in our diet can change our gut microbiota,
impacting in the risk to develop obesity.300 The gut
microbiota can provide short-chain fatty acids or
other nutrients after bacterial fermentation, and mod-
ulates gastrointestinal permeability and thereby the
penetration of bacteria or bacterial products, such as
LPS, which can induce intestinal or systemic inflam-
mation.285,298,301 Interestingly, non-caloric artificial
sweeteners or dietary emulsifiers, widely used food
additives, can change our gut microbiota and promote
metabolic syndrome.302,303

Can leptin resistance be treated?
Since leptin resistance is a key feature that predisposes
to obesity, the discovery of any treatment capable of
preventing or restoring this condition would have a
tremendous potential as anti-obesity therapy. Unfor-
tunately, so far there is no efficient method to reestab-
lish leptin sensitivity in obese animals. However,
numerous studies have been focused in seeking for
potential therapies that can increase leptin sensitivity.
Obvious candidates would be compounds that inhibit
proteins capable of inducing leptin resistance. Many
natural products contain several lignans and flavo-
noids that exhibit a significant capacity to inhibit
PTP1B.304,305 Resveratrol activates SIRT1, a NADC-
dependent protein deacetylase, which modulates lep-
tin and insulin sensitivity.306 Using drug-screening
methods, some studies found leptin sensitizer com-
pounds with powerful anti-obesity properties, includ-
ing the Celastrol, a pentacyclic triterpene, or
Withaferin A, a steroidal lactone.307,308 Amylin is a
hormone co-secreted with insulin from pancreatic
b-cells, which binds specific receptors in the hind-
brain. Interestingly, concurrent peripheral administra-
tion of amylin and leptin elicits synergistic
anorexigenic effects in DIO animals, indicating that
amylin agonists restore leptin responsiveness in
DIO.309-312 Other studies also observed restoration of
leptin responsiveness in DIO mice using an optimized
leptin analog in combination with exendin-4, a long-
acting GLP-1 receptor agonist, or fibroblast growth
factor 21.313

Not all fatty acids are pro-inflammatory. Actu-
ally, unsaturated fatty acids can revert diet-induced
hypothalamic inflammation,314 suggesting that

dietary changes prioritizing the intake of unsatu-
rated fatty acids instead of saturated fatty acids can
prevent hypothalamic dysfunctions, leptin resis-
tance and consequently obesity. v-3 polyunsatu-
rated fatty acids activate the G protein-coupled
receptor 120 (GPR120) and produce potent anti-
inflammatory and insulin-sensitizing effects.315

Notably, GPR120-deficient mice are prone to
develop obesity and GPR120 mutations increase
the obesity risk in European populations.316 v-3
polyunsaturated fatty acids may also promote neu-
rogenesis in POMC-expressing cells of the ARH,
indicating the potential of v-3 polyunsaturated
fatty acids to correct obesity-associated hypotha-
lamic neuronal loss.317 Regarding non-pharmaco-
logical and non-dietary anti-obesity strategies,
physical exercise has a great potential. The benefi-
cial effects of exercise for the energy and glucose
homeostasis are well-established. However, much
less is known about the molecular mechanisms that
makes physical exercise an efficient anti-obesity
therapy. Previous studies have shown that both
endurance,318,319 and voluntary320-322 exercise
improves leptin sensitivity in peripheral tissues or
in the hypothalamus of obese animals. Additionally,
acute exercise suppresses hypothalamic PTP1B pro-
tein levels, leading to a higher activation of insulin
and leptin signaling pathways in obese rats.323

Leptin and metabolic programming

Together with the genetic background and the envi-
ronment where an organism develops, the interaction
between mother and fetus during gestation perma-
nently influences the organism’s metabolism in adult
life, a concept known as metabolic programming.324

Hales and Baker defined the “thrifty phenotype
hypothesis,” which suggests that poor nutrition during
gestation can permanently program the fetus to
develop metabolic disorders such as metabolic syn-
drome and type 2 diabetes mellitus.325 The conse-
quences of poor nutrition during gestation for the
development of obesity were first observed during the
Dutch famine of 1944–1945, where exposition to
undernutrition during the first half of pregnancy
resulted in high obesity rates, whereas exposition dur-
ing the last trimester or first months after birth
resulted in lower obesity rates.326 Therefore, depend-
ing on the moment where the exposure to
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undernutrition occurs, the progeny will be pro-
grammed to a higher or lower body mass index.53

A recent study using a mouse model of undernutri-
tion during gestation showed that if food is available
during the postnatal period, the undernourished off-
spring often displays accelerated catch-up growth.
This fast recovery seems to be mediated by leptin.327

As mentioned earlier, leptin inhibits NPY/AgRP/
GABA neurons in adult animals. However, there is
evidence that leptin can activate NPY/AgRP/GABA
neurons from postnatal days 13–15 (P13–P15). This
opposite effect occurs because of the lack of functional
ATP dependent potassium channels in LepR cells at
that age. At P21, when pups feed independently, leptin
induces depolarization in 41% of the cells, while 25%
of neurons are hyperpolarized by leptin. By the fourth
week of life, the NPY/AgRP/GABA circuit acquires
the adult phenotype.327 In case of undernutrition fol-
lowed by overnutrition during lactation, the onset of
the potassium channels is delayed and instead of
inhibiting food intake leptin stimulates it, favoring the
accumulation of energy stores until growth and adi-
posity are similar to controls.328

The opposite scenario, overnutrition, also has
severe consequences for the metabolism of the off-
spring. Several studies have shown that overnutri-
tion before, during and shortly after gestation can
induce long-term metabolic disorders in the off-
spring.329 Female mice fed a HFD during gestation
had hyperglycemic pups with higher adiposity.330 If
the HFD was extended to lactation, the offspring
developed greater risk of becoming obese,331 and
the a-MSH and AgRP containing fibers were
decreased in the hypothalamus.332 Similarly to
what was seen in rodents, children born of obese
mothers have higher chances of developing meta-
bolic syndrome.333 Rats treated with leptin antago-
nist during development presented leptin resistance
in adult life, and when submitted to HFD they had
higher chances to gain more weight than control
rats. At 8 months, rats that received leptin antago-
nist during development became hyperleptinemic
with higher adiposity.334

Human and animal models of retarded intrauterine
growth are more susceptible to develop obesity and
metabolic syndrome when challenged with HFD in
adult life. Leptin levels increase at the end of embry-
onic development, but are decreased after birth, being
lower in babies with retarded intrauterine growth

compared with control newborns,335 indicating that
lower leptin during development participates in the
metabolic programming. In rats, neonatal leptin treat-
ment reverses the developmental programming
induced by undernutrition during gestation, showing
that the neonatal period can be influenced by serum
leptin levels.336

Concluding remarks

Leptin is a master regulator of energy balance and
body adiposity. The vast majority of obese individ-
uals present leptin resistance, and recent evidence
indicates that our obesogenic environment contrib-
utes to this condition. Although leptin administra-
tion is a poor therapy to treat obesity, several
pathologies, such as lipodystrophy, hypothalamic
amenorrhea and T1DM can benefit from leptin
treatment. Leptin also has many other important
effects throughout life, which includes the regula-
tion of brain development, behaviors, neuroendo-
crine axes and autonomic nervous system. More
than being a hormone that induces weight loss
and satiety, leptin coordinates numerous biologic
functions to ensure survival, especially during sit-
uations of negative energy balance. This myriad of
effects depends on the coordinated action of multi-
ple populations of LepR-expressing neurons.

Abbreviations

AgRP agouti-related protein
ARH arcuate nucleus of the hypothalamus
BAT brown adipose tissue
BBB blood–brain barrier
CART cocaine and amphetamine regulated

transcript
CCK cholecystokinin
CNS central nervous system
DIO diet-induced obesity
DMH dorsomedial nucleus of the hypothalamus
DMX dorsal motor nucleus of the vagus
ER endoplasmic reticulum
ERK extracellular signal-regulated kinases
GH growth hormone
GL generalized lipodystrophy
GLP-1 glucagon-like peptide-1
GnRH gonadotropin-releasing hormone
GPR120 G protein-coupled receptor 120
HFD high-fat diet
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IL interleukin
IRS insulin receptor substrates
JAK Janus kinase
LepR leptin receptor
LH luteinizing hormone
LHA hypothalamic area
LPS lipopolysaccharide
MCH melanin-concentrating hormone
MCR melanocortin receptors
MPO median preoptic area
nNOS neuronal NO synthase
NO nitric oxide
NOD non-obese diabetic mice
NPY neuropeptide Y
NTS nucleus of the solitary tract
Ob-R leptin receptor
PBN parabrachial nucleus
PI3K phosphatidylinositol 3-kinase
PMv ventral premammillary nucleus
POMC proopiomelanocortin
PTP protein tyrosine phosphatases
PTP1B protein tyrosine phosphatase 1B
PVH paraventricular nucleus of the hypothalamus
RPTPe protein tyrosine phosphatase epsilon
SF1 steroidogenic factor-1
SH2 Src homology 2
Shp2 Src homology 2-containing tyrosine

phosphatase
SOCS suppressor of cytokine signaling
STAT signaltransducerandactivatoroftranscription
T1DM type 1 diabetes mellitus
T2DM type 2 diabetes mellitus
TCPTP T-cell protein tyrosine phosphatase
TLR4 toll-like receptor 4
TNF tumor necrosis factor
TRH thyrotropin-releasing hormone
UCP1 uncoupling protein 1
VMH ventromedial nucleus of the hypothalamus
VTA ventral tegmental area
a-MSH a-melanocyte-stimulating hormone.
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