

Types

In vitro

Ex vivo

In vivo

In situ

In silico

Advantages

Several preparations from single animal

Small amount of drug

Drug effect is tested directly

Guinea pigs

Rabbits

Sources

Rats & Mice

Cats & Dogs

Isolated strips of intestine

Abundant material, more resistant &

easy to set up

Variable spontaneous activity of

different sections

Different type of pharmacological

actions can be studied

Biophase Muscle tone Rate of action of a Drug Contact period of the Drug with the tissue

Process

- Complete adjustment of organ bath
- Adjustment of lever
- Animal and tissue selection
- Surgical process and collection of a tissue
- Tissue attachment to organ bath
- Relaxation time to tissue

- Prepare the standard drug
- Test any concentration of drug for response
- Standardize tissue response with same dose
- Prepare DRC for standard drug
- Prepare DRC with test drug

Important Points to Remember

- Check Organ bath and PSS
- Writing Lever
- Dissection
- Rest
- Empty organ bath regularly
- Add drug slowly

- Allow drug to act
- Wash
- Put a mark on drum
- Use stopwatch during experiment
- Start with a very low concentration

Physiological Salt Solution

- Also called as **PSS** / Ringer solution
- Maintains tissue outside the animal body
- Select PSS in which tissue last longer
- Prepare the solution with the help of distilled or double distilled or deionised water
- Prepare fresh solution

Krebs solution	Ringer-Locke solution	Frog-Ringer solution	Tyrode solution	SOLUTION
Any tissue	Heart muscle preparation	Amphibian tissue	Mammalian smooth muscle	USE

- glucose McEwen solution - sucrose in addition to
- Krebs solution used for any tissue
- DeJalon, Frog-Ringer and Ringer-Locke do not contain magnesiun and phosphate
- Krebs, DeJalon and McEwen aerated with isolated organ and avian skeletal muscle carbogen and used for the mammalian

Fast Contracting Smooth Muscle Preparation

TISSUE	DRUG
Guinea pig ileum	Histamine
Rat colon	Acetylcholine (ACh)
Rat uterus	ACh
Rat anococcygeus	ACh
Rat vas deferens	ACh
Guinea pig atria	Adrenaline (Adr)

Guinea Pig lleum

- **AIM**: To determine unknown concentration of histamine by using guinea pig ileum
- Guinea pig ileum is most sensitive to histamine.
- It has the spontaneous activity and specificity assay) or mepyramine (for acetylcholine) in is improved by using atropine (for histamine Tyrode.

- lleum is preferred because of less mesentry attached to it, and nearly all receptors are present.
- 10 cm of ileum attached to the cecum should be excluded.
- Spontaneous activity of the tissue is reduced by performing the experiment 5-7°C lower than body temperature.

Rat Colon

- **AIM:-** To determine unknown concentration of ACh using rat ascending/descending colon.
- Sensitivity may increase by keeping colon at 4°C for 24 hr.
- Expression of calcium-sensing receptors(CaSR) trisphosphate. mediates increase in inositol 1,4,5-

- Easy to isolate and more handling resistant.
- muscle and frog rectus abdominis. For ACh, most sensitive tissue is dorsal leech
- Initial few centimeters of colon usually used for bioassay of Adr and NA.

Guinea Pig Atria

- **AIM:-** To determine unknown concentration of Adr using guinea pig atria
- Beta 2 receptors widely present in atria
- Required less trimming or slicing of the tissue
- Advantages: Tissue thickness, easy contractile tension, stability etc separation of right and left atria, good

Rat Uterus

- AIM:-To determine unknown concentration of **ACh** using rat uterus
- Induce the estrus cycle in female rat
- Treat with stilbestrol 0.1mg/kg, SC, 24 hrs before the experiment
- Other drugs like adrenaline, histamine, oxytocin also sensitive to uterus

- variation in estrus cycle. Response depends on the animal age due to
- Other drugs like 5-HT,NA can be assayed.

Rat Vas Deferens

- **AIM**:- To determine unknown concentration of ACh using rat vas deferens
- Described by the Henderson et al(1972) and Hart et al(1979)
- Rat and guinea pig are suitable animals
- Animal should be fed with oats for 3 days.

Adrenaline and phenylephrine contract the phentolamine. vas deferens whose action is blocked by the

Rat Anococcygeus

- **AIM**: To determine unknown concentration of ACh using rat anococcygeus muscle preparation
- Decribed by Gillespie (1972)
- It arises from sacral vertebrae and reaches to terminal colon (near anus).
- It has tendinous origin and do not appear soft.

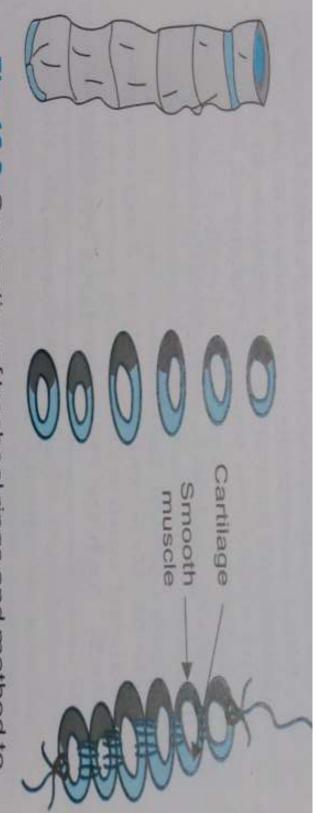
- It has a dense adrenergic excitatory and inhibitory innervations.
- Insenistive to histamine.

Slow Contracting Muscle

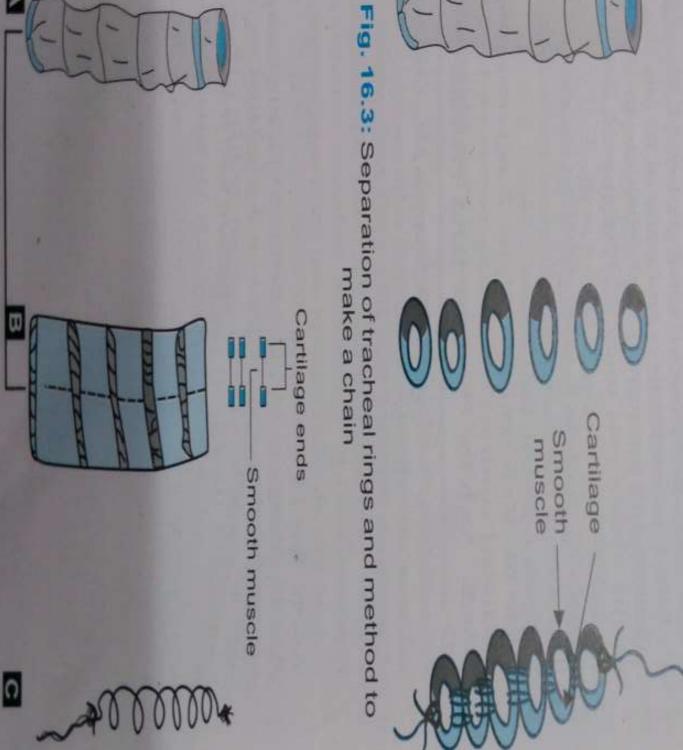
Chick biventral cervicis	Rat phrenic nerve diaphragm	Guinea pig trachea	Frog rectus abdominis	Rat fundus	TISSUE
Neuromuscular blocking agents	ACh	ACh	ACh	Seretonin (5-HT)	DRUG

Rat Fundus

- **AIM**:-To determine unknown concentration of 5-HT using rat stomach(fundus)
- Stomach fundus is most sensitive tissue among the whole parts of stomach.
- fundus identification gray color, above the pink thick pylorus.
- Insensitive to histamine


- Animal should be fasted properly.
- Fundus contains the swallowed air.
- Sometimes it needs a stretching weight.
- Both longitudinal and circular muscles may be transverse cut made to prepare the tissue. used in the experiment which depends on the

Frog Rectus Abdominis


- **AIM**:- To determine unknown concentration of ACh using frog rectus abdominis muscle.
- It's a striated skeletal muscle sensitive to Ach and the easiest isolated tissue to handle.
- Contains more of multiple-innervated fibers so show the slow contraction.
- Frog, being an amphibian animal, it responds under room temperature.

Guinea Pig Trachea

- **AIM**: to determine unknown concentration of ACh using guinea pig trachea
- Extraction of at least 6 cm of trachea required
- shape. Tracheal ring is in "D" form and smooth muscle is present in the straight line of "D"
- period Response is slow to develop but last for longer

make a chain

Figs 16.4A to C: Another method to prepare trachea for bioassay

- Mainly to demonstrate the respiratory dominant adrenoreceptor so utilized to study the bronchodilators like Adr, theophylline.
- Ideal model to study the contractile drugs like aminophylline. can be studied by drugs like Adr, Ach, 5-HT and histamine, and their antagonism

Rat Phrenic Nerve Diaphragm

- **AIM**:- To determine unknown concentration of ACh using rat phrenic nerve diaphragm
- This is primary motor nerve of the diaphragm which arises mainly from the 4th cervical nerve.
- Useful for evaluation for neuromuscular **function**

Chick Biventer-Cervicis

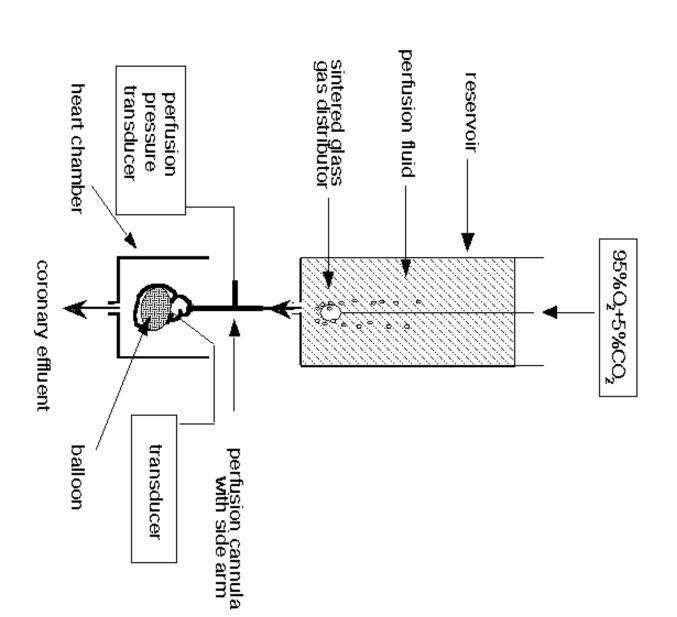
- drugs using innervated biventer-cervicis preparation **AIM**: - To determine neuromuscular blocking
- Biventer-cervicis an anatomically complex tendinous muscle
- different stimuli Responds differently twitch / contraction to

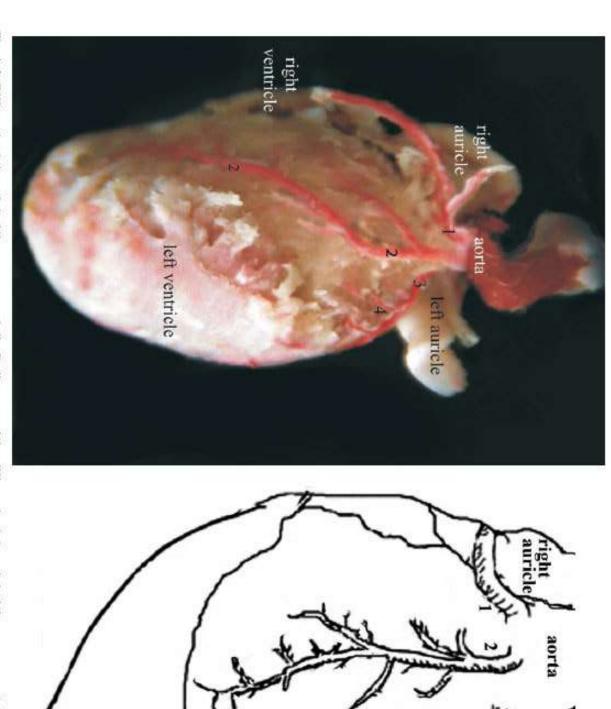
Cardiac Muscle Preparation

(Langendorff's preparation) Effect of various drugs on Isolated heart

Hypodynamic Rabbit heart Effect of different drugs on Normal and

various drugs on Frogs heart Effect of inotropic and chronotropic effects of


Langendorff's Preparation


- **AIM**: To observe the effect of various drugs on Isolated heart
- In 1897, Oscar Langendorff established the isolated mammalian heart preparation.
- Based on principle of retrograde flow in aorta either at constant flow or constant pressure.

- Animals : -
- -Albino Rats
- -New Zealand Rabbits
- -Guinea pig
- 23° ± 2° C temperature, 12:12 hr light and ad libitum dark cycle, free access to tap water and food

- Animal is pretreated with the heparin.
- The recording is done by attaching the thread with the student physiograph to a strain gauge transducer, an attachment

Figure 1

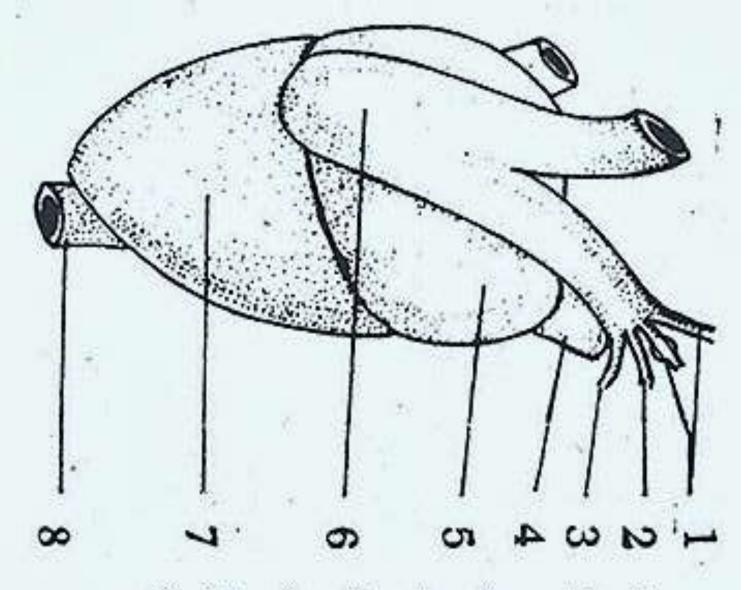

left \
auricle

Fig. 4: A, Different origin point of the ramus septalls; B, diagram of the different origin point of the ramus septalls. 1 = arteria coronaria dextra, 2 = ramus septalis, 3 = arteria coronaria sinistra.

Rabbit Heart

- **AIM**: To determine effect of different drugs on Normal and Hypodynamic Rabbit heart
- Hypodynamic heart defined as the heart normal one. exhibiting subnormal power or force than the
- Experimentally, it is developed by the supply the required one which reduces the heart of the 1/4th of Calcium chloride(CaCl2) than

- For normal heart McEwens solution
- For hypodynamic heart $-1/4^{th}$ of CaCl2 in McEwens solution

1 Carotid trunk

2. Systemic trunk

3. Pulmo cutaneous trunk

4. Precaval vein

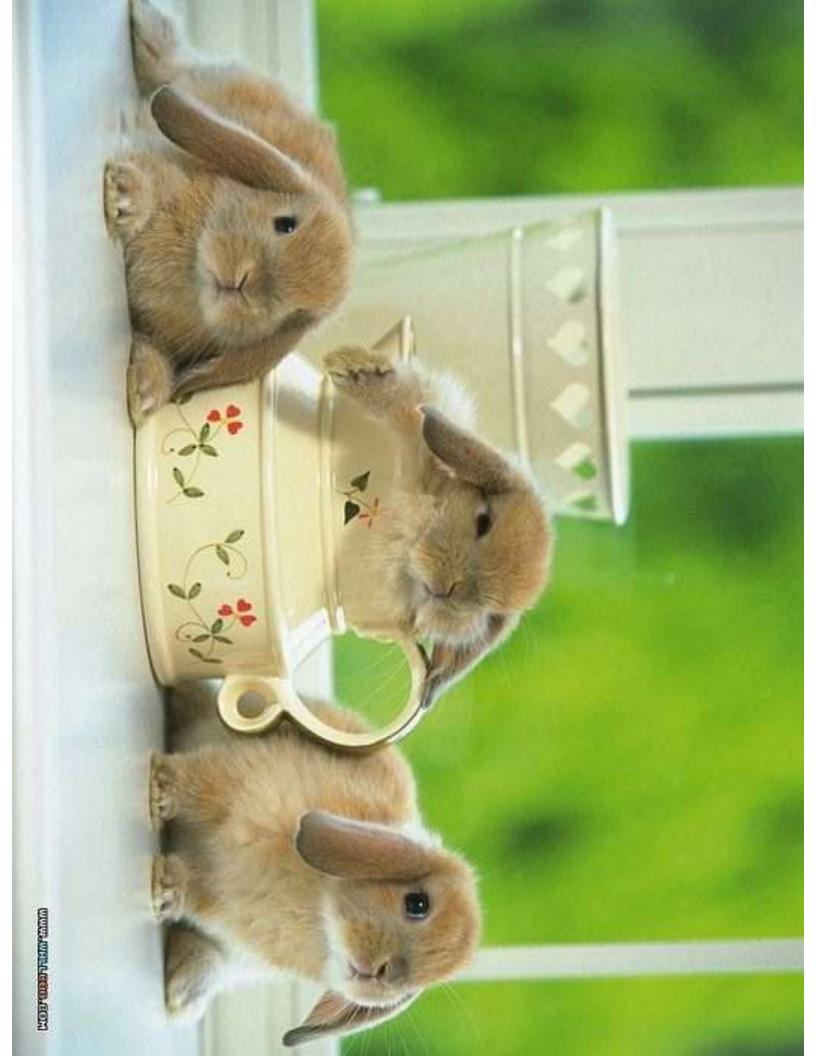
5. Left auricle

6 Truncus arteriosus

y ventricle

8 Post caval vein

Frog heart-Ventral view


Frog Heart

- frog heart **AIM**: To demonstrate the Effect of inotropic and chronotropic effects of various drugs on
- drug target. The heart is the most common site for the
- Positive inotropic & chronotropic drugs like Adr and NA.
- ACh. Negative inotropic & chronotropic drugs like

Uterus	Vas deferens	Anococcygeus	Descending colon	Ascending colon	lleum	Stomach fundus	Tracheal chain	Tissues/muscle
Clear two horn above rectum connected to ovary	Attached to epididymis	Thin muscle strip arises from the sacral vertebrae	5-7cm above rectum	4-7 cm from ileocecum junction	Cecum at middle part & large intestine at distal part	Upper grey part attached to thick red Pylorus	Above esophagus	Identification point
Oxytocin,5-HT,A,NA Ach	NA & Ach	NA, Ach, 5-HT , isoP, No histamine	Ach	NA>A Ach,5-HT	Histamine >Ach	5-HT > Ach > Histamine > Bradykinin	NA,A&Ach	Drug sensitivity
β, α M2/M3	α1, Muscarinic	Adrenergic supply, NANC	Muscarinic	β3,5HT-2A,5HT4	H1, Muscarinic	5HT-D	β2 & M2/M3	Receptors

Rabbit Perfused Ear Artery

- Lop-eared rabbit is used
- dissected & perfused. Central artery is identified , cannulated ,
- Used for bioassay of catecholamines

Rabbit Aortic Strips

- Descending thoracic aorta is used
- Aorta is cut in a close spiral.
- 2 to 4 cms of strips are used for experiment.
- Has a very slight spontaneous tone.
- Shows no rhythmic contraction.
- Responds to Adr and NA.

	Relaxation	
Both	contraction	Mouse isolated spleen
	Inhibition	Rat isolated uterus
β2	Inhibition	Guinea pig isolated trachea
	Inhibition	Rabbit isolated jejunum
β1	Contraction	Rabbit isolated perfused heart
Presynaptic α ₂	Inhibition	Rabbit isolated ear artery and jejunum
	Inhibition	Guinea pig isolated ileum
	Inhibition	Rabbit isolated jejunum
	Contraction	Rabbit and guinea pig isolated aorta
Postsynaptic α ₁	Contraction	Rat isolated vas deferens and
Receptor	Response	Tissue / Organ
Receptor	Response	