

PQI 5888 Fisiologia e Biotecnologia de Leveduras

Prof. Thiago Basso

29 de abril de 2020

[Aula 5 EaD] Leveduras – Aplicações Industriais (Engenharia Metabólica - Uso de CO₂)

Engenharia Metabólica (Exemplo #2)

Guadalupe-Medina *et al. Biotechnology for Biofuels* 2013, **6**:125 http://www.biotechnologyforbiofuels.com/content/6/1/125

RESEARCH

Open Access

Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast

Víctor Guadalupe-Medina^{1,2}, H Wouter Wisselink^{1,2}, Marijke AH Luttik^{1,2}, Erik de Hulster^{1,2}, Jean-Marc Daran^{1,2}, Jack T Pronk^{1,2} and Antonius JA van Maris^{1,2*}

Aumentar o rendimento em etanol (Y_{SE}) pela captura de CO₂ em leveduras

Can S. cerevisiae be engineered to reduce CO₂ to ethanol?

Victor Guadalupe *et al.* (2013) Biotechnology for Biofuels - accepted

Phosphoribulokinase (PRK) and ribulose-1,5-bisphosphate carboxylase (Rubisco) key enzymes in the Calvin cycle for autotrophic CO₂ fixation

Qual deve ser a função do glicerol?

Tabela I.I — Proporção dos diversos produtos da fermentação alcoólica, em g/100g de glicose metabolizada, de acordo com várias fontes e para diferentes eficiências fermentativas

Produto da fermentação	Pasteur 95%	Jackman, 1987 90—95%	Basso et al. 1996 85—92 %
Etanol	48,5	45,0—49,0	43,0—47,0
Gás carbônico	46,4	43.0-47.0	41.0-45.0
Glicerol	3,3	2,0—5,0	3,0—6,0
Acido succínico	0,6	0,5—1,5	0,3—1,2
Ácido acético	MOSE CLARK	0,0—1,4	0,1—0,7
Óleo fúsel	electric in the second	0,2—0,6	alupiaran, par
Butilenoglicol		0,2—0,6	HGAM
Biomassa (massa seca)	1,2	0,7—1,7	1,0—2,0

Figure 1

Schematic representation of the distribution of sugar for ethanol production, formation of yeast biomass, and formation of glycerol as a by-product. To achieve a high ethanol yield on sugar, the robustness of the process and yeast strains are essential. Rubisco and PRK-expressing *S. cerevisiae* Product yields in anaerobic, sugar-limited chemostat cultures (D = 0.05 h⁻¹, N₂-sparged, equimolar glucose/galactose feed)

Relevant genotype	reference	cbbM, PRK, groEL/ES
Biomass yield on sugar (g g ⁻¹)	0.083 ± 0.000	0.093 ± 0.000
Glycerol yield on sugar (mol mol ⁻¹)	$\textbf{0.14} \pm \textbf{0.00}$	$\textbf{0.04} \pm \textbf{0.00}$

70 % reduction of glycerol production Rubisco/PFK competes with native glycerol pathway

Victor Guadalupe *et al.* (2013) Biotechnology for Biofuels - accepted

Engenharia Metabólica (Exemplo #3)

Production of the antimalarial drug precursor artemisinic acid in engineered yeast

Dae-Kyun Ro¹*, Eric M. Paradise²*, Mario Ouellet¹, Karl J. Fisher⁶, Karyn L. Newman¹, John M. Ndungu³, Kimberly A. Ho¹, Rachel A. Eachus¹, Timothy S. Ham⁴, James Kirby², Michelle C. Y. Chang¹, Sydnor T. Withers², Yoichiro Shiba², Richmond Sarpong³ & Jay D. Keasling^{1,2,4,5}

Malaria

a

Artemisinin the best anti-malarial drug

O Ciclo da Engenharia Metabólica

Jens Nielsen, 2001. Appl Microbiol Biotechnol (2001) 55:263–283

Projeto (design)

Projeto, Síntese, e Análise

Linhagem	Modificação	[amorphadiene]
EPY201	ADS	5
EPY208	ERG13, 12, 8 (up)	25
EPY225	ERG9 down	50
EPY213	UPC2 (transcrição)	100
EPY224	tHMG, ERG20 (up)	150

Figure 2 | **Production of amorphadiene by** *S. cerevisiae* strains. The various *S. cerevisiae* strains are described in the text. Cultures were sampled after 144 h of growth, and amorphadiene levels were quantified. Data, shown as total production, are mean \pm s.d. (n = 3).

Conclusões

- Prova-de-conceito para produção de artemisinina através de um bioprocesso através do uso de engenharia metabólica
- Produção de artemisinina (ácido artemisinico) com uma produtividade muito maior que da planta (Artemisia annua)
- Independência de fatores climáticos e políticos
- Sem risco de outros terpenos contaminantes