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Boss is an autonomous vehicle that uses on-board sensors (global positioning system,
lasers, radars, and cameras) to track other vehicles, detect static obstacles, and localize
itself relative to a road model. A three-layer planning system combines mission, behav-
ioral, and motion planning to drive in urban environments. The mission planning layer
considers which street to take to achieve a mission goal. The behavioral layer determines
when to change lanes and precedence at intersections and performs error recovery maneu-
vers. The motion planning layer selects actions to avoid obstacles while making progress
toward local goals. The system was developed from the ground up to address the require-
ments of the DARPA Urban Challenge using a spiral system development process with
a heavy emphasis on regular, regressive system testing. During the National Qualifica-
tion Event and the 85-km Urban Challenge Final Event, Boss demonstrated some of its
capabilities, qualifying first and winning the challenge. C© 2008 Wiley Periodicals, Inc.

1. INTRODUCTION

In 2003 the Defense Advanced Research Projects
Agency (DARPA) announced the first Grand Chal-
lenge. The goal was to develop autonomous vehi-
cles capable of navigating desert trails and roads at
high speeds. The competition was generated as a re-
sponse to a congressional mandate that a third of
U.S. military ground vehicles be unmanned by 2015.
Although there had been a series of ground vehi-
cle research programs, the consensus was that exist-
ing research programs would be unable to deliver
the technology necessary to meet this goal (Commit-
tee on Army Unmanned Ground Vehicle Technology,
2002). DARPA decided to rally the field to meet this
need.

The first Grand Challenge was held in March
2004. Though no vehicle was able to complete the
challenge, a vehicle named Sandstorm went the far-
thest, setting a new benchmark for autonomous ca-
pability and providing a template on how to win the
challenge (Urmson et al., 2004). The next year, five ve-
hicles were able to complete a similar challenge, with
Stanley (Thrun et al., 2006) finishing minutes ahead
of Sandstorm and H1ghlander (Urmson et al., 2006)
to complete the 244-km race in a little under 7 h.

After the success of the Grand Challenges,
DARPA organized a third event: the Urban Chal-
lenge. The challenge, announced in April 2006, called
for autonomous vehicles to drive 97 km through an
urban environment, interacting with other moving
vehicles and obeying the California Driver Hand-
book. Interest in the event was immense, with 89
teams from around the world registering interest in
competing. The teams were a mix of industry and
academics, all with enthusiasm for advancing au-
tonomous vehicle capabilities.

To compete in the challenge, teams had to pass
a series of tests. The first was to provide a credible
technical paper describing how they would imple-
ment a safe and capable autonomous vehicle. Based
on these papers, 53 teams were given the opportu-
nity to demonstrate firsthand for DARPA their ability
to navigate simple urban driving scenarios including
passing stopped cars and interacting appropriately
at intersections. After these events, the field was fur-
ther narrowed to 36 teams who were invited to par-
ticipate in the National Qualification Event (NQE) in
Victorville, California. Of these teams, only 11 would
qualify for the Urban Challenge Final Event (UCFE).

This article describes the algorithms and mech-
anism that make up Boss (see Figure 1), an au-
tonomous vehicle capable of driving safely in traffic
at speeds up to 48 km/h. Boss is named after Charles
“Boss” Kettering, a luminary figure in the automotive
industry, with inventions as wide ranging as the all-
electric starter for the automobile, the coolant Freon,
and the premature-infant incubator. Boss was devel-
oped by the Tartan Racing Team, which was com-
posed of students, staff, and researchers from sev-
eral entities, including Carnegie Mellon University,
General Motors, Caterpillar, Continental, and Intel.
This article begins by describing the autonomous
vehicle and sensors and then moves on to a discus-
sion of the algorithms and approaches that enabled it
to drive autonomously.

The motion planning subsystem (described in
Section 3) consists of two planners, each capable of
avoiding static and dynamic obstacles while achiev-
ing a desired goal. Two broad scenarios are consid-
ered: structured driving (road following) and un-
structured driving (maneuvering in parking lots).
For structured driving, a local planner generates
trajectories to avoid obstacles while remaining in its
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Figure 1. Boss, the autonomous Chevy Tahoe that won the 2007 DARPA Urban Challenge.

lane. For unstructured driving, such as entering/
exiting a parking lot, a planner with a four-
dimensional search space (position, orientation, di-
rection of travel) is used. Regardless of which plan-
ner is currently active, the result is a trajectory that,
when executed by the vehicle controller, will safely
drive toward a goal.

The perception subsystem (described in
Section 4) processes and fuses data from Boss’s
multiple sensors to provide a composite model of the
world to the rest of the system. The model consists
of three main parts: a static obstacle map, a list of
the moving vehicles in the world, and the location of
Boss relative to the road.

The mission planner (described in Section 5) com-
putes the cost of all possible routes to the next mission
checkpoint given knowledge of the road network.
The mission planner reasons about the optimal path
to a particular checkpoint much as a human would
plan a route from his or her current position to a desti-
nation, such as a grocery store or gas station. The mis-
sion planner compares routes based on knowledge
of road blockages, the maximum legal speed limit,
and the nominal time required to make one maneu-
ver versus another. For example, a route that allows
a higher overall speed but incorporates a U-turn may
actually be slower than a route with a lower overall
speed but that does not require a U-turn.

The behavioral system (described in Section 6)
formulates a problem definition for the motion plan-

ner to solve based on the strategic information pro-
vided by the mission planner. The behavioral subsys-
tem makes tactical decisions to execute the mission
plan and handles error recovery when there are prob-
lems. The behavioral system is roughly divided into
three subcomponents: lane driving, intersection han-
dling, and goal selection. The roles of the first two sub-
components are self-explanatory. Goal selection is re-
sponsible for distributing execution tasks to the other
behavioral components or the motion layer and for
selecting actions to handle error recovery.

The software infrastructure and tools that enable
the other subsystems are described in Section 7. The
software infrastructure provides the foundation upon
which the algorithms are implemented. Additionally,
the infrastructure provides a toolbox of components
for online data logging, offline data log playback, and
visualization utilities that aid developers in building
and troubleshooting the system. A run-time execu-
tion framework is provided that wraps around algo-
rithms and provides interprocess communication, ac-
cess to configurable parameters, a common clock, and
a host of other utilities.

Testing and performance in the NQE and UCFE
are described in Sections 8 and 9. During the develop-
ment of Boss, the team put a significant emphasis on
evaluating performance and finding weaknesses to
ensure that the vehicle would be ready for the Urban
Challenge. During the qualifiers and final challenge,
Boss performed well, but made a few mistakes.
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Despite these mistakes and a very capable field of
competitors, Boss qualified for the final event and
won the Urban Challenge.

2. BOSS

Boss is a 2007 Chevrolet Tahoe modified for au-
tonomous driving. Modifications were driven by the
need to provide computer control and also to support
safe and efficient testing of algorithms. Thus, modi-
fications can be classified into two categories: those
for automating the vehicle and those that made test-
ing either safer or easier. A commercial off-the-shelf
drive-by-wire system was integrated into Boss with
electric motors to turn the steering column, depress
the brake pedal, and shift the transmission. The third-
row seats and cargo area were replaced with electron-
ics racks, the steering was modified to remove excess
compliance, and the brakes were replaced to allow
faster braking and reduce heating.

Boss maintains normal human driving controls
(steering wheel and brake and gas pedals) so that
a safety driver can quickly and easily take control
during testing. Boss has its original seats in addi-
tion to a custom center console with power and net-
work outlets, which enable developers to power lap-
tops and other accessories, supporting longer and
more productive testing. A welded tube roll cage
was also installed to protect human occupants in the
event of a collision or rollover during testing. For un-
manned operation a safety radio is used to engage
autonomous driving, pause, or disable the vehicle.

Boss has two independent power buses. The
stock Tahoe power bus remains intact with its 12-
V dc battery and harnesses but with an upgraded
high-output alternator. An auxiliary 24-V dc power
system provides power for the autonomy hardware.
The auxiliary system consists of a belt-driven alter-
nator that charges a 24-V dc battery pack that is in-
verted to supply a 120-V ac bus. Shore power, in the
form of battery chargers, enables Boss to remain fully
powered when in the shop with the engine off. Ther-
mal control is maintained using the stock vehicle air-
conditioning system.

For computation, Boss uses a CompactPCI chas-
sis with 10 2.16-GHz Core2Duo processors, each
with 2 GB of memory and a pair of gigabit Ether-
net ports. Each computer boots off of a 4-GB flash
drive, reducing the likelihood of a disk failure. Two
of the machines also mount 500-GB hard drives for
data logging. Each computer is also time synchro-

nized through a custom pulse-per-second adaptor
board.

Boss uses a combination of sensors to provide
the redundancy and coverage necessary to navigate
safely in an urban environment. Active sensing is
used predominantly, as can be seen in Table I. The de-
cision to emphasize active sensing was primarily due
to the team’s skills and the belief that in the Urban
Challenge direct measurement of range and target
velocity was more important than getting richer, but
more difficult to interpret, data from a vision system.
The configuration of sensors on Boss is illustrated in
Figure 2. One of the novel aspects of this sensor con-
figuration is the pair of pointable sensor pods located
above the driver and front passenger doors. Each pod
contains an ARS 300 radar and ISF 172 LIDAR. By
pointing these pods, Boss can adjust its field of re-
gard to cover crossroads that may not otherwise be
observed by a fixed-sensor configuration.

3. MOTION PLANNING

The motion planning layer is responsible for execut-
ing the current motion goal issued from the behav-
iors layer. This goal may be a location within a road
lane when performing nominal on-road driving, a lo-
cation within a zone when traversing through a zone,
or any location in the environment when performing
error recovery. The motion planner constrains itself
based on the context of the goal to abide by the rules
of the road.

In all cases, the motion planner creates a path
toward the desired goal and then tracks this path
by generating a set of candidate trajectories that fol-
low the path to various degrees and selecting from
this set the best trajectory according to an evaluation
function. This evaluation function differs depending
on the context but includes consideration of static
and dynamic obstacles, curbs, speed, curvature, and
deviation from the path. The selected trajectory can
then be directly executed by the vehicle. For more
details on all aspects of the motion planner, see
Ferguson, Howard, and Likhachev (2008, submitted).

3.1. Trajectory Generation

A model-predictive trajectory generator originally
presented in Howard and Kelly (2007) is responsible
for generating dynamically feasible actions from an
initial state x to a desired terminal state. In general,
this algorithm can be applied to solve the problem
of generating a set of parameterized controls u(p,x)
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Table I. Description of the sensors incorporated into Boss.

Sensor Characteristics

Applanix POS-LV 220/420 GPS/IMU (APLX) • Submeter accuracy with Omnistar VBS corrections
• Tightly coupled inertial/GPS bridges GPS outages

SICK LMS 291-S05/S14 LIDAR (LMS) • 180/90 deg × 0.9 deg FOV with 1/0.5-deg angular resolution
• 80-m maximum range

Velodyne HDL-64 LIDAR (HDL) • 360 × 26-deg FOV with 0.1-deg angular resolution
• 70-m maximum range

Continental ISF 172 LIDAR (ISF) • 12 × 3.2 deg FOV
• 150-m maximum range

IBEO Alasca XT LIDAR (XT) • 240 × 3.2 deg FOV
• 300-m maximum range

Continental ARS 300 Radar (ARS) • 60/17 deg × 3.2 deg FOV
• 60-m/200-m maximum range

Point Grey Firefly (PGF) • High-dynamic-range camera
• 45-deg FOV

Figure 2. The mounting location of sensors on the vehicle; refer to Table I for abbreviations used in this figure.

that satisfy state constraints C(x) whose dynamics
can be expressed in the form of a set of differential
equations f:

·x = f[x, u(p, x)]. (1)

To navigate urban environments, position and
heading terminal state constraints are typically re-
quired to properly orient a vehicle along the road.
The constraint equation xC is the difference between

the target terminal state constraints and the integral
of the model dynamics:

xC = [xC yC θC]T , (2)

C(x) − xC −
∫ tf

0

·x(x, p) dt = 0. (3)

The fidelity of the vehicle model directly cor-
relates to the effectiveness of a model-predictive
planning approach. The vehicle model describes
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the mapping from control inputs to state response
(changes in position, orientation, velocity, etc.). Se-
lecting an appropriate parameterization of controls
is important because it defines the space over which
the optimization is performed to satisfy the boundary
state constraints.

The vehicle model used for Boss combines a cur-
vature limit (the minimum turning radius), a curva-
ture rate limit (a function of the maximum speed at
which the steering wheel can be turned), maximum
acceleration and deceleration, and a model of the con-
trol input latency. This model is then simulated using
a fixed-timestep Euler integration to evaluate the con-
straint equation.

The control inputs are described by two param-
eterized functions: a time-based linear velocity func-
tion vcmd and an arc-length-based curvature function
κcmd:

u(p, x) = [vcmd(p, t) + κcmd(p, s)]T . (4)

The linear velocity profile takes the form of a
constant profile, linear profile, linear ramp profile,
or a trapezoidal profile (Figure 3). The local motion
planner selects the appropriate parameterization for
particular applications (such as parking and distance
keeping).

The response to the curvature command function
by the vehicle model defines the shape of the tra-
jectory. The profile consists of three dependent pa-
rameters (κ0, κ1, and κ2) and the trajectory length sf.
A second-order spline profile was chosen because it
contains enough degrees of freedom (four) to sat-
isfy the boundary state constraints (three). The initial
spline knot point κ0 is fixed during the optimization
process to a value that generates a smooth or sharp tra-
jectory and will be discussed later:

pfree = [κ1 κ2 sf ]T . (5)

As described, the system retains three parameter-
ized freedoms: two curvature command spline knot
points (κ1, κ2) and the trajectory length s. The duality
of the trajectory length sf and time tf can be resolved
by estimating the time that it takes to drive the en-
tire distance through the linear velocity profile. Time
was used for the independent variable for the linear
velocity command function because of the simplicity
of computing profiles defined by accelerations (linear
ramp and trapezoidal profiles). Arc length was used
for the curvature command function because the tra-
jectory shape is less dependent on the speed at which
trajectories are executed.

Given the three free parameters and the three
constraints in our system, we can use various opti-
mization techniques to solve for the parameter values
that minimize our constraint equation. An initial es-
timate of the parameter values is defined using a
precomputed approximate mapping from state space
to parameter space in a lookup table. The parame-
ter estimates are iteratively modified by linearizing
and inverting the differential equations describing
the equations of motion. A correction factor is gen-
erated by taking the product of the inverted Jacobian
and the boundary state constraint error. The Jacobian
is model invariant because it is determined numeri-
cally through central differences of simulated vehicle
actions:

xF (p, x) =
∫ tf

0

·x(x, p) dt, (6)

C(x, p) = xC − xF (p, x), (7)

�p = −
[
δC(x, p)

δp

]−1

C(x, p). (8)

The control parameters are modified until the
residual of the boundary state constraints is within
acceptable bounds or until the optimization diverges.

Figure 3. Velocity profiles used by the trajectory generator.
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If the boundary state constraints are infeasible to
reach given a particular parameterization (e.g., inside
the minimum turning radius), the optimization is ex-
pected to diverge. The resulting trajectory is returned
as the best estimate and is evaluated by the motion
planner.

3.2. On-Road Navigation

During on-road navigation, the motion goal from the
behavioral system is a location within a road lane.
The motion planner then attempts to generate a tra-
jectory that moves the vehicle toward this goal loca-
tion in the desired lane. To do this, it first constructs
a curve along the centerline of the desired lane. This
represents the nominal path that the center of the ve-
hicle should follow. This curve is then transformed
into a path in rear-axle coordinates to be tracked by
the motion planner.

To robustly follow the desired lane and to avoid
static and dynamic obstacles, the motion planner gen-
erates trajectories to a set of local goals derived from
the centerline path. The local goals are placed at a
fixed longitudinal distance down the centerline path
but vary in lateral offset from the path to provide sev-
eral options for the planner. The trajectory genera-
tion algorithm is used to compute dynamically fea-
sible trajectories to these local goals. For each goal,
two trajectories are generated: a smooth trajectory
and a sharp trajectory. The smooth trajectory has the
initial curvature parameter fixed to the curvature of
the forward-predicted vehicle state. The sharp tra-
jectory has the initial curvature parameter set to an
offset value from the forward-predicted vehicle state
to produce a sharp initial action. The velocity pro-
file used for each of these trajectories is computed
based on several factors, including the maximum ve-
locity bound given from the behavioral subsystem,
the speed limit of the current road segment, the maxi-
mum velocity feasible given the curvature of the cen-
terline path, and the desired velocity at the goal (e.g.,
zero if it is a stop line).

Figure 4 provides an example of smooth and
sharp trajectories (light and dark) generated to the
same goal poses. The smooth trajectories exhibit con-
tinuous curvature control throughout; the sharp tra-
jectories begin with a discontinuous jump in curva-
ture control, resulting in a sharp response from the
vehicle.

The resulting trajectories are then evaluated
against their proximity to static and dynamic obsta-

Figure 4. Smooth and sharp trajectories. The trajectory
sets are generated to the same endpoints but differ in their
initial commanded curvature.

cles in the environment, as well as their distance from
the centerline path, their smoothness, and various
other metrics. The best trajectory according to these
metrics is selected and executed by the vehicle. Be-
cause the trajectory generator computes the feasibil-
ity of each trajectory using an accurate vehicle model,
the selected trajectory can be directly executed by the
vehicle controller.

Figure 5 provides an example of the local planner
following a road lane. Figure 5(a) shows the vehicle
navigating down a two-lane road (lane boundaries
shown in blue, current curvature of the vehicle
shown in pink, minimum turning radius arcs shown
in white) with a vehicle in the oncoming lane.
Figure 5(b) shows the extracted centerline path from
the desired lane (in red). Figure 5(c) shows a set of
trajectories generated by the vehicle given its current
state and the centerline path and lane boundaries.
From this set of trajectories, a single trajectory is se-
lected for execution, as discussed above. Figure 5(d)
shows the evaluation of one of these trajectories
against both static and dynamic obstacles in the envi-
ronment, and Figure 5(f) shows this trajectory being
selected for execution by the vehicle.

3.3. Zone Navigation

During zone navigation, the motion goal from behav-
iors is a pose within a zone (such as a parking spot).
The motion planner attempts to generate a trajectory
that moves the vehicle toward this goal pose. How-
ever, driving in unstructured environments, such as
zones, significantly differs from driving on roads. As
mentioned in the preceding section, when traveling
on roads the desired lane implicitly provides a pre-
ferred path for the vehicle (the centerline of the lane).
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(a) (b) (c)

(d) (e) (f)

Figure 5. A single timeframe following a road lane from the DARPA Urban Challenge. Shown is the centerline path
extracted from the lane (b), the trajectories generated to track this path (c), and the evaluation of one of these trajectories
against both static and dynamic obstacles (d and e).

In zones there are no driving lanes, and thus the
movement of the vehicle is far less constrained.

To efficiently plan a smooth path to a distant goal
pose in a zone, we use a lattice planner that searches
over vehicle position (x, y), orientation θ , and speed
v. The set of possible local maneuvers considered for
each (x, y, θ, v) state in the planner’s search space is
constructed offline using the same vehicle model as
used in trajectory generation, so that it can be accu-
rately executed by the vehicle. This planner searches
in a backward direction, from the goal pose out into
the zone, and generates a path consisting of a se-
quence of feasible high-fidelity maneuvers that are
collision-free with respect to the static obstacles ob-
served in the environment. This path is also biased
away from undesirable areas within the environment,
such as curbs and locations in the vicinity of dynamic
obstacles.

To efficiently generate complex plans over large,
obstacle-laden environments, the planner relies on
an anytime, replanning search algorithm known as
Anytime D∗ (Likhachev, Ferguson, Gordon, Stentz, &
Thrun, 2005). Anytime D∗ quickly generates an ini-
tial, suboptimal plan for the vehicle and then im-
proves the quality of this solution while deliberation

time allows. At any point in time, Anytime D∗ pro-
vides a provable upper bound on the subotpimality
of the plan. When new information concerning the
environment is received (for instance, a new static or
dynamic obstacle is observed), Anytime D∗ is able to
efficiently repair its existing solution to account for
the new information. This repair process is expedited
by performing the search in a backward direction, be-
cause in such a scenario, updated information in the
vicinity of the vehicle affects a smaller portion of the
search space so that less repair is required.

To scale to very large zones (up to 0.5 × 0.5 km),
the planner uses a multiresolution search and ac-
tion space. In the vicinity of the goal and vehicle,
where very complex maneuvering may be required,
the search considers states of the vehicles with 32
uniformly spaced orientations. In the areas that are
not in the vicinity of the goal or a vehicle, the search
considers only the states of the vehicle with 16 uni-
formly spaced orientations. It also uses a sparse set of
actions that allow the vehicle to transition between
these states. Because coarse- and dense-resolution
variants share the same dimensionality and, in par-
ticular, have 16 orientations in common, they seam-
lessly interface with each other, and the resulting
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Figure 6. Replanning when new information is received. As Boss navigates toward its desired parking spot (lattice path
shown in red, trajectories to track path in various colors), it observes more of one of the adjacent vehicles and replans a path
that brings it smoothly into the spot.

solution paths overlapping both coarse and dense ar-
eas of the space are smooth and feasible.

To ensure that a path is available for the vehicle
as soon as it enters a zone, the lattice planner begins
planning for the first goal pose within the zone while
the vehicle is still approaching the zone. By planning
a path from the entry point of the zone in advance, the
vehicle can seamlessly transition into the zone with-
out needing to stop, even for very large and complex
zones. In a similar vein, when the vehicle is in a zone
traveling toward a parking spot, we have a second
lattice planner computing a path from that spot to the
next desired location (e.g., the next parking spot to
reach or an exit of the zone). When the vehicle reaches
its intended parking spot, the vehicle then immedi-
ately follows the path from this second planner, again
eliminating any time spent waiting for a plan to be
generated.

The resulting plan is then tracked by the local
planner in a similar manner to the paths extracted
from road lanes. The motion planner generates a set
of trajectories that attempt to follow the plan while
also allowing for local maneuverability. However, in
contrast to when following lane paths, the trajecto-
ries generated to follow the zone path all attempt to

terminate on the path. Each trajectory is in fact a con-
catenation of two short trajectories, with the first of
the two short trajectories ending at an offset position
from the path and the second ending back on the
path. By having all concatenated trajectories return
to the path, we significantly reduce the risk of having
the vehicle move itself into a state that is difficult to
leave.

Figure 6 illustrates the tracking of the lattice plan
and the replanning capability of the lattice planner.
These images were taken from a parking task per-
formed during the NQE (the top-left image shows
the zone in green and the neighboring roads in blue).
The top-right image shows the initial path planned
for the vehicle to enter the parking spot indicated by
the white triangle. Several of the other spots were oc-
cupied by other vehicles (shown as rectangles of var-
ious colors), with detected obstacles shown as red ar-
eas. The trajectories generated to follow the path are
shown emanating from our vehicle. (Notice how each
trajectory consists of two sections, with the first leav-
ing the path and the second returning to the path.) As
the vehicle gets closer to its intended spot, it observes
more of the vehicle parked in the right-most park-
ing spot (bottom-left image). At this point, it realizes
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that its current path is infeasible and replans a new
path that has the vehicle perform a loop and pull in
smoothly. This path was favored in terms of time over
stopping and backing up to reposition.

The lattice planner is flexible enough to be used
in a large variety of cases that can occur during on-
road and zone navigation. In particular, it is used dur-
ing error recovery when navigating congested inter-
sections, to perform difficult U-turns, and to get the
vehicle back on track after emergency defensive driv-
ing maneuvers. In such cases, the behaviors layer is-
sues a goal pose (or set of poses) to the motion plan-
ner and indicates that it is in an error recovery mode.
The motion planner then uses the lattice planner to
generate a path to the set of goals, with the lattice
planner determining during its planning which goal
is easiest to reach. In these error recovery scenarios
the lattice planner is biased to avoid areas that could
result in unsafe behavior (such as oncoming lanes
when on roads).

4. PERCEPTION

The perception system is responsible for providing
a model of the world to the behavioral and motion
planning subsystems. The model includes the mov-
ing vehicles (represented as a list of tracked objects)
and static obstacles (represented in a regular grid)
and localizing the vehicle relative to, and estimating
the shape of, the roads it is driving on.

4.1. Moving Obstacle Detection and Tracking

The moving obstacle detection and tracking subsys-
tem provides a list of object hypotheses and their
characteristics to the behavioral and motion planning
subsystems. The following design principles guided
the implementation:

• No information about driving context is used
inside the tracking algorithm.

• No explicit vehicle classification is per-
formed. The tracking system provides
information only about the movement state
of object hypotheses.

• Information about the existence of objects is
based on sensor information only. It is pos-
sible for some objects to be predicted, but
only for short time intervals, as a compensa-
tion for known sensor parameters. Detection
dropouts caused by noise, occlusions, and
other artifacts must be handled elsewhere.

x

T
,,,,, avyxx

T
,,,,, yxyxyxx

x
(a) (b)

Figure 7. The two models used by the tracking system: a
reduced bicycle model with a fixed shape (a) and a point
model without shape information (b).

• Object identifiers are not guaranteed to be
stable. A new identifier does not necessarily
mean that it is a new object.

• Well-defined and distinct tracking models are
used to maximize the use of information pro-
vided by heterogeneous sensors.

• Motion prediction exploits known road ge-
ometry when possible.

• Sensor-specific algorithms are encapsulated
in sensor-specific modules.

Figure 7 shows the two tracking models used
to describe object hypotheses. The box model repre-
sents a vehicle by using a simplified bicycle model
(Kaempchen, Weiss, Schaefer, & Dietmayer, 2004)
with a fixed length and width. The point model pro-
vides no estimate of extent of the obstacle and as-
sumes a constant-acceleration model (Darms, Rybski,
& Urmson, 2008a) with adaptive noise dependent on
the length and direction of the velocity vector. Provid-
ing two potential tracking models enables the system
to represent the best model of tracked objects sup-
ported by the data. The system is able to switch be-
tween these models as appropriate.

The system classifies object hypotheses as either
moving or not moving and either observed moving or not
observed moving, so that each hypothesis can be in one
of four possible states. The moving flag is set if the
object currently has a velocity that is significantly dif-
ferent from zero. The observed moving flag is set once
the object has been moving for a significant amount
of time (on the order of 0.4 s) and is not cleared un-
til the vehicle has been stopped for some larger sig-
nificant amount of time (on the order of 10 s). The
four states act as a well-defined interface to the other
software modules, enabling classes of tracked objects
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Figure 8. The moving obstacle detection and tracking system architecture.

to be ignored in specific contexts (e.g., not observed
moving object hypotheses that are not fully on a road
can be ignored for distance-keeping purposes, as they
likely represent vehicles parked at the side of the
road or other static obstacles (Darms, Baker, Rybski,
& Urmson, 2008).

Figure 8 illustrates the architecture of the track-
ing system. It is divided into two layers, a sensor layer
and a fusion layer (Darms & Winner, 2005). For each
sensor type (e.g., radar, scanning laser, etc.), a special-
ized sensor layer is implemented. For each physical
sensor on the robot a corresponding sensor layer in-
stance runs on the system. The architecture enables
new sensor types to be added to the system with
minimal changes to the fusion layer, and other sen-
sor modules, such as new physical sensors, can be
added without any modifications to source code. The
following paragraphs describe the path from sensor
raw data to a list of object hypotheses.

Each time a sensor receives new raw data, its cor-
responding sensor layer instance requests a predic-
tion of the current set of object hypotheses from the
fusion layer. Features are extracted out of the mea-
sured raw data with the goal of finding all vehicles
around the robot (e.g., edges from laser scanner data;
MacLachlan, 2005). Artifacts caused by ground detec-
tions or vegetation, for example, are suppressed by
validating features in two steps. In the first step val-
idation is performed with sensor-specific algorithms,
e.g., using the velocity measurements inside a radar
module to distinguish a static ground return from

a moving vehicle. The second step is performed via
a general validation interface. The validation per-
formed inside the fusion layer uses only non-sensor-
specific information. It performs checks against the
road geometry and against an instantaneous obstacle
map, which holds untracked three-dimensional (3D)
information about any obstacles in the near range.
The result is a list of validated features that poten-
tially originate from vehicles.

The validated features are associated with the
predicted object hypotheses using a sensor-type-
specific association algorithm. Afterward, for each
extracted feature (associated or not), multiple possi-
ble interpretations as a box or point model are gen-
erated using a sensor-type-specific heuristic, which
takes the sensor characteristics into account [e.g., res-
olution, field of view (FOV), detection probabilities].
The compatibility of each generated interpretation
with its associated prediction is computed. If an inter-
pretation differs significantly, or if the feature could
not be associated, the sensor module initializes a new
object hypothesis. In case of an associated feature, a
new hypothesis can replace the current model hy-
pothesis (box or point model). Note that for each fea-
ture, multiple new hypotheses can be generated. A
set of new object hypotheses is called a proposal.

For each associated feature the interpretation that
best fits the prediction is used to generate an observa-
tion. An observation holds all of the data necessary
to update the state estimation for the associated ob-
ject hypothesis in the fusion layer. If no interpretation
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Figure 9. The moving obstacle detection system predicts the motion of tracked vehicles. In parking lots (left) predictions
are generated by extrapolating the tracking filter. For roads (right) vehicles are predicted to move along lanes.

is compatible, then no observation is generated and
only the proposal exists. As additional information
for each extracted feature becomes available, the sen-
sor module can also provide a movement observa-
tion. The movement observation tells the fusion layer
whether an object is currently moving. This infor-
mation is based only on sensor raw data (e.g., via
an evaluation of the velocity measurement inside the
radar module).

The proposals, observations, and movement ob-
servations are used inside the fusion layer to update
the object hypotheses list and the estimated object
states. First the best tracking model (box or point)
is selected with a voting algorithm. The decision is
based on the number and type of proposals provided
from the different sensors (Darms, Rybski, & Urmson,
2008b). For objects that are located on roads, the road
shape is used to bias the decision.

Once the best model is determined, the state esti-
mate is either updated with the observation provided
by the sensor layer or the model for the object hy-
pothesis is switched to the best alternative. For unas-
sociated features, the best model of the proposal is
added to the current list of object hypotheses. With
the update process complete, object hypotheses that
have not been observed for a certain amount of time
are removed from the list.

Finally, a classification of the movement state for
each object hypothesis is carried out. It is based on the
movement observations from the sensors and a statis-
tical test based on the estimated state variables. The
movement observations from sensors are prioritized
over the statistical test, and movement observations
that classify an object as not moving overrule move-

ment observations that classify an object as moving
(Darms et al., 2008).

The result is an updated list of object hypothe-
ses that are accompanied by the classification of the
movement state. For objects that are classified as
moving and observed moving, a prediction of the
state variables is made. The prediction is based on
logical constraints for objects that are located on the
road. At every point where a driver has a choice
to change lanes (e.g., at intersections), multiple hy-
potheses are generated. In zones (parking lots, for
example), the prediction is solely based on the esti-
mated states of the hypothesis (see Figure 9).

4.2. Static Obstacle Detection and Mapping

The static obstacle mapping system combines data
from the numerous scanning lasers on the vehicle
to generate both instantaneous and temporally fil-
tered obstacle maps. The instantaneous obstacle map
is used in the validation of moving obstacle hypothe-
ses. The temporally filtered maps are processed to re-
move moving obstacles and are filtered to reduce the
number of spurious obstacles appearing in the maps.
Whereas several algorithms were used to generate
obstacle maps, only the curb detection algorithm is
presented here.

Geometric features (curbs, berms, and bushes)
provide one source of information for determin-
ing road shape in urban and off-road environments.
Dense LIDAR data provide sufficient information to
generate accurate, long-range detection of these rel-
evant geometric features. Algorithms to detect these
features must be robust to the variation in features
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found across the many variants of curbs, berms,
ditches, embankments, etc. The curb detection algo-
rithm presented here exploits the Haar wavelet to
deal with this variety.

To detect curbs, we exploit two principle insights
into the LIDAR data to simplify detection. First, the
road surface is assumed to be relatively flat and
slow changing, with road edges defined by observ-
able changes in geometry, specifically in height. This
simplification means that the primary feature of a
road edge reduces to changes in the height of the
ground surface. Second, each LIDAR scan is pro-
cessed independently, as opposed to building a 3D
point cloud. This simplifies the algorithm to consider
input data along a single dimension. The curb detec-
tion algorithm consists of three main steps: prepro-
cessing, wavelet-based feature extraction, and post-
processing.

The preprocessing stage provides two important
features: mitigation of false positives due to occlu-
sions and sparse data, and formatting the data for fea-
ture extraction. False geometric cues can result from
striking both foreground and background objects or
be due to missing data in a scan. Foreground ob-
jects are typically detected as obstacles (e.g., cones,
telephone poles) and do not denote road edges. To
handle these problems, points are initially clustered
by distance between consecutive points. After clus-
tering, small groups of points are removed from the
scan. A second pass labels the points as dense or
sparse based on the distances between them. The
dense points are then linearly resampled in order to
produce an input sequence of 2n heights.

The wavelet-based feature extraction step ana-
lyzes height data through a discrete wavelet trans-
form using the Haar wavelet (Daubechies, 1992). The
Haar wavelet is defined by the mother wavelet and
scaling function:

�(t) =

⎧⎪⎨
⎪⎩

1 if 0 ≤ t < 1
2 ,

−1 if 1
2 < t < 1,

0 otherwise,

(9)

ϕ(2j t − i) =
⎧⎨
⎩

1 if 0 ≤ t < 1,

j > 0 ∧ 0 ≤ i ≤ 2j − 1.

0 otherwise,

(10)

The Haar transform results in a sequence of coef-
ficients representing the scaled average slopes of the

input signal within various sampling windows (Shih
& Tseng, 2005). Because each sampling window is
half the size of the previous window, these windows
successively subdivide the signal into higher resolu-
tion slopes or detail levels.

The feature extraction step (see Figure 10) takes
the Haar coefficients, y, and considers them by win-
dow sizes, going from largest to smallest window.
The algorithm classifies points as road points (class 1)
or nonroad points, and works as follows:

1. Collect coefficients for the current detail
level, i.

2. Label each coefficient with the label of the
coefficient at detail level i − 1, which repre-
sents the same portion of the signal.

3. Calculate ŷroad using these labels.
4. Relabel coefficients by absolute distance

from ŷroad, where the distance threshold for
detail level i is given as di . In other words,
points are labeled by the function

class, (y[n], i) =
{

1 if y[n] − ŷroad| ≥ di

0 otherwise
. (11)

5. Continue to detail level i + 1.

Postprocessing applies a few extra heuristics to
eliminate false positives and detect some additional
nonroad points. Using the dense/sparse labeling
from preprocessing, nonroad labels in sparse sections
are moved from the sparse points to the neighbor-
ing dense point closest to the vehicle. Because all
LIDARs on the vehicle look downward, the closer
point corresponds to the higher surface (e.g., berm,
wall) creating the geometric cue. Afterward, sparse
points are removed from the classification list. The re-
sulting list represents the locations of the likely road
and surrounding geometric cues. Figure 11 illustrates
the performance of the algorithm in a typical on-road
scene from the Urban Challenge.

4.3. Roadmap Localization

Boss is capable of either estimating road geometry or
localizing itself relative to roads with known geome-
try. Most urban roads change shape infrequently, and
most urban driving can be thought of as responding
to local disturbances within the constraints of a fixed
road network. Given that the shape and location of
paved roads change infrequently, our approach was
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Figure 10. A single frame from the feature extraction algorithm. The top frame contains the original height signal (thick
line). The window boundaries are from a single-detail level of the transform. The bottom frame shows the wavelet coeffi-
cients for each window.

to localize relative to paved roads and estimate the
shape of dirt roads, which change geometry more fre-
quently. This approach has two main advantages:

• it exploits a priori knowledge to eliminate the
necessity of estimating road shape in most
cases;

• it enables the road shape estimation problem
to emphasize geometric cues such as berms
and bushes, which are common in environ-
ments with dirt roads and easier to detect at
long range than lane markings.

This approach led to two independent algo-
rithms, one to provide a smooth pose relative to a
road network, and one to estimate the shape of dirt
roads. The two algorithms are never operated si-
multaneously, thus avoiding complex interactions be-
tween them. Both the localization and road shape es-

timation algorithms were heavily tested and proved
to be effective. Despite confidence in the road shape
estimation system, it was not enabled during the
Urban Challenge competition. Based on the way
point density and aerial imagery of the UCFE course,
the team determined that there was not a need to es-
timate road shape. A description of the road shape
estimation approach is provided in Section 4.4 for
completeness because it enables Boss to drive on gen-
eral roads and was ready to be used in the event, if
necessary.

4.3.1. Localization Inputs

The localization process can be thought of as trans-
forming the pose provided by a global position-
ing system (GPS)–based pose estimation system
into a smooth coordinate frame registered to a
road network. To do this it combines data from a
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(a) (b)

(c)

Figure 11. Overhead view of a road section from the Final Event course (a). Points show nonroad points (b). Overlay of
nonroad points on imagery (c).

Table II. Error characteristics of the Applanix POS-LV, as
reported by Applannix.

Error with GPS Error after
and differential 1 km of travel

corrections without GPS

Planar position, m 0.3 0.88
Heading, ◦ 0.05 0.07

commercially available position estimation system
and measurements of road lane markers with an an-
notated road map.

The initial global position estimate is received
from a device (POS-LV) developed by the Applanix
Corporation. This system fuses GPS and inertial and
wheel encoder data to provide a 100-Hz position esti-
mate that is robust to GPS dropout. Table II describes

the nominal performance of this system with and
without GPS. The POS-LV is configured to slightly
outperform the nominal performance specifications
through the use of a combination of Omnistar Virtual
Base Station and High Precision services. By incor-
porating the High Precision data, nominal perfor-
mance is improved to a 0.1-m planar expected posi-
tioning error. Whereas a positioning accuracy of 0.1 m
sounds sufficient to blindly localize within a lane,
these correction signals are frequently disrupted by
even small amounts of overhead vegetation. Once
disrupted, this signal’s reacquisition takes approxi-
mately a half hour. Thus, relying on these correc-
tions is not viable for urban driving. Furthermore,
lane geometries may not be known to meter accu-
racies a priori. It is critically important to be local-
ized correctly relative to the lane boundaries, because
crossing over the lane center could have disastrous
consequences.
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To detect lane boundaries, down-looking SICK
LMS lasers are used to detect the painted lane mark-
ers on roads. Lane markers are generally brighter
than the surrounding road material and are detected
by convolving the intensities across a line scan with
a slope function. Peaks and troughs in the response
represent the edges of potential lane marker bound-
aries. To reduce false positives, only appropriately
spaced pairs of peaks and troughs are considered to
be lane markers. Candidate markers are then further
filtered based on their brightness relative to their sup-
port region. The result is a set of potential lane marker
positions.

The road map used for localization encodes both
correct local geometry and information about the
presence or absence of lane markings. Although it
is possible for road geometry to be incorrect glob-
ally, the local geometry is important to the estima-
tion scheme, as will be described below. If the road
geometry is not well known, the map must indicate
this. When the vehicle traverses parts of the map with
poor geometry, the road shape estimation algorithms
operate and the road map localization algorithms are
disabled.

4.3.2. Position Filtering

To transform the measurements provided by the
POS-LV to a smooth, road-network-registered frame,
we consider three potential sources of position error:

1. Position jumps. Despite the availability of in-
ertial information, the POS-LV will occasion-
ally generate position jumps.

2. Position drift. The correction signals, vari-
ation in satellite constellation, and iono-
spheric disturbances cause slowly various
changes to the position reported by the POS-
LV.

3. Road model errors. Our approach to creating
road maps is to manually extract road shapes
from aerial imagery. Modern aerial imagery
can provide quarter-meter or better image
resolution, but global registration is gener-
ally good only to a meter or worse. Distor-
tion in the imagery generally has a low spa-
tial frequency, so that the local shape of the
road is accurate, but the apparent global po-
sition may be inaccurate.

These three error sources are grouped into two
classes; discontinuous errors (such as jumps) and
continuous errors (drift and model errors). With
every new state measurement, the change in position
�x is checked for validity based on measured wheel
speed v, anticipated percentage velocity error ζ , al-
lowed position jitter ε, travel direction θ , and allow-
able travel direction error τ :

reject = |�x| > v(1 + ζ )�t + ε ∨{
(|�x| > ε) ∧ �x

|�x| ·
[

cos(θ )
sin(θ )

]
> τ

}
. (12)

In Eq. (12), the first term ensures that the reported
motion of the vehicle is not significantly greater than
the anticipated motion given the vehicle wheel speed.
The second term ensures that for any significant mo-
tion, the reported motion is in approximately the
same direction as the vehicle is pointed (which is ex-
pected for the speeds and conditions of the Urban
Challenge). If �x is rejected, a predicted motion is
calculated based on heading and wheel speed. The
residual between the prediction and the measured
change in position is accumulated in a running sum,
which is subtracted from position estimates reported
by the POS-LV. In practice, values of ζ = 0.05, ε = 0.02,
and τ = cos(30 deg) produce good performance.

Correcting for the continuous class of errors is
how localization to the road model is performed. The
localization process accumulates lane marker points
(LMP) generated by the laser lane marker detection
algorithms. After a short travel distance, 1 m during
the Urban Challenge, each LMP is associated with a
lane boundary described in the road model. The dis-
tance of the corrected global position p for each LMP
from the lane center is calculated, and the projection
point onto the lane center pc is noted. Half of the
lane width is subtracted from this distance, resulting
in the magnitude of the local error estimate between
the lane boundary position and the model of the lane
boundary position. This process is repeated for each
LMP, resulting in an error estimate:

eLMP = 1
nLMP

nLMP∑
1

[∣∣(pi − pi
c

)∣∣ − wi
l

2

]
·
(

pi − pi
c∣∣pi − pi
c

∣∣
)

.

(13)
This represents the error in the current filtered/
localized position estimate; thus the eLMP repre-
sents how much error there is between the current
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combination of the existing error estimate and posi-
tion. In practice, we further gate the error estimates,
discarding any larger than some predetermined max-
imum error threshold (3 m during the Urban Chal-
lenge). Over time, error estimates are accumulated
through a recursive filter:

ecur = eprev + αeLMP. (14)

This approach generates a smooth, road-network-
referenced position estimate, even in situations in
which GPS quality is insufficient to otherwise local-
ize within a lane. This solution proved to be effective.
During prechallenge testing, we performed several
tests with GPS signals denied (through the placement
of aluminum caps over the GPS antennas). In one rep-
resentative test, the vehicle was able to maintain po-
sition within a lane, while traveling more than 5.7 km
without GPS. During this test, the difference error in
the POS-LV position reached up to 2.5 m, more than
enough to put the vehicle either off the road or in an-
other lane if not compensated for.

4.4. Road Shape Estimation

To robustly drive on roads where the geometry is not
known a priori, the road shape estimator measures
the curvature, position, and heading of roads near the
vehicle. The estimator fuses inputs from a variety of
LIDAR sensors and cameras to composite a model of
the road. The estimator is initialized using available
prior road shape data and generates a best-guess road
location between designated sparse points where a
road may twist and turn. The road shape is repre-
sented as the Taylor expansion of a clothoid with an
offset normal to the direction of travel of the vehicle.
This approximation is generated at 10 Hz.

4.4.1. Sensor Inputs

Two primary features were used to determine road
location.

Curbs represent the edge of the road and are de-
tected using the Haar wavelet (see Static Obstacle
Detection and Mapping section). When curbs are de-
tected, the estimator attempts to align the edge of the
parametric model with the detections.

Obstacles represent areas where the road is un-
likely to exist and are detected using the obstacle de-
tection system. The estimator is less likely to pick a
road location where obstacle density is high.

4.4.2. State Vector

To represent the parameters of a road, the following
model is used:

s(t) = [x(t), y(t), ϕ(t), C0(t), C1(t),W (t)], (15)

where [x(t), y(t), φ(t)] represents the origin and orien-
tation of the base of the curve, C0(t) is the curvature
of the road, C1(t) is the rate of curvature, and W (t)
is the road width. A Taylor series representation of a
clothoid is used to generate the actual curve. This is
represented as

y(x) = tan[ϕ(t)]x + C0
t

2
x2 + C1

t

6
x3. (16)

4.4.3. Particle Filter

The road estimator uses an SIR (sample importance
resample) (Duda & Hart, 1972) filter populated by
500 particles. Each particle is an instantiation of the
state vector. During the sampling phase, each parti-
cle is propagated forward according to the following
set of equations, where ds represents the relative dis-
tance that the robot traveled from one iteration of the
algorithm to the next:

y = y + ϕds + (ds)2

2
C0 + (ds)3

6
C1, (17)

ϕ = ϕ + C0ds + (ds)2

2
C1 − dϕ, (18)

C0 = C0 + C1ds, (19)

C1 = (0.99)C1. (20)

The final C1 term represents the assumption that the
curvature of a road will always tend to head toward
zero, which helps to straighten out the particle over
time. After the deterministic update, the particle fil-
ter adds random Gaussian noise to each of the di-
mensions of the particle in an effort to help explore
sudden changes in the upcoming road curvature that
are not modeled by the curve parameters. In addition
to Gaussian noise, several more directed searches are
performed, in which the width of the road can ran-
domly increase or decrease itself by a fixed amount.
Empirically, this represents the case in which a road
suddenly becomes wider because a turn lane or a
shoulder has suddenly appeared.
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4.4.4. Sensor Data Processing

Because particle filtering requires the evaluation of
a huge number of hypotheses (more than 10,000 hy-
potheses per second in this case), it is desirable to be
able to evaluate road likelihoods very quickly. Eval-
uations are typically distributed over a large propor-
tion of the area around the vehicle and occur at a high
rate. Therefore, the likelihood evaluations were de-
signed to have low computational cost, on average
requiring one lookup per sample point along the road
shape.

The likelihood function for the filter is repre-
sented as a log-linear cost function:

L = 1
Z

e−C(shape, data). (21)

In Eq. (21), Z is a normalization constant that forces
the sum of the likelihoods over all road shapes to be
one and C is a cost function that specifies the em-
pirical “cost” of a road shape as a function of the
available sensor data. The cost function is the sum of
several terms represented by three subclasses of cost
function: distances, counts, and blockages.

The filter evaluates the number of obstacles NO

and number of curb points NC encountered inside the
road shape; the distance of the edge of the road to
the detected curb points DC ; the distance between the
observed lane markers and the model’s lane markers
DL; and the presence of blockage across the road B.
To scale the cost function, counts and distances are
normalized. The resulting cost function is

C =
N∑

i=0

(
Ni

o

σo

)2

+
(

Ni
C

σC

)2

+
(

DC

σC

)2

+
(

DL

σL

)2

.

(22)

4.4.5. Fast Convolutions and Distance Transforms

To exactly compute the cost function, we need to con-
volve each road shape with the cost map to sum
the detection counts and obstacle costs. This requires
tens of thousands of convolutions per second for each
count. Whereas fast methods exist to exactly compute
simple shapes (Viola & Jones, 2001), the shapes that
we wish to convolve are too complicated for these ap-
proaches. Instead, we approximate the road shape as
a set of overlapping disks centered on the road shape
(see Figure 12).

The disks have a diameter equal to the width
of the road and are spaced at 1.5-m samplings.

Figure 12. Example illustrating how road shape is approx-
imated by a series of disks.

Although this approach tends to overcount, we have
found that it is adequate for the purposes of tracking
the road and is more than fast enough for our pur-
poses.

To allow the width of the road to vary, we com-
pute convolutions for different-width disks ranging
from 2.2 to 15.2 m sampled at half-meter spacing. In-
termediate widths are interpolated.

Each width requires one convolution with a ker-
nel size that varies linearly with the width of the road.
Computing these convolutions for each frame is not
possible, and so the convolutions are computed iter-
atively. In the case of curb detections, curb points ar-
rive and are tested against a binary map, which in-
dicates whether a curb point near the new detection
has already been considered. If the location has not
been considered, then the point is added to the con-
volution result by adding a disk at each radius to the
map stack. In the case of an obstacle map, when a
new map arrives, a difference map is computed be-
tween the current map and the previous convolution
indicator. New obstacle detections are added into the
convolution result as in the case of the point detec-
tion, and obstacles that have vanished are removed.
The result of the convolutions is a set of cost maps
that represent the road configuration space for each
potential road width.

To evaluate the distance components of the cost
function, we employ a distance transform (Hutten-
locker & Felzenswalb, 2004). The distances from the
nearest curb location or lane marker location to a
given sample location are built into a distance map.
The distance map can then be examined at sample
points and evaluated like the cost counts. Summing
the overall cost function results in a minimum located
at the true location of the road.

A snapshot of the overall system performance is
illustrated in Figure 13. The example shows on an
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Figure 13. Example showing the road shape estimate (par-
allel curves) for an off-road scene. Obstacles and berms are
illustrated by pixels.

off-road stretch where some geometric features were
visible in terms of berms and shrubbery as obstacles.
The top of the figure shows the output from two cam-
eras mounted on the top of Boss. The particle filter
stretches forward from the vehicle, and the road is
represented as three lines.

5. MISSION PLANNING

To generate mission plans, the data provided in the
road network definition file (RNDF) are used to cre-
ate a graph that encodes the connectivity of the en-
vironment. Each way point in the RNDF becomes a
node in this graph, and directional edges (represent-
ing lanes) are inserted between way points and all
other way points that they can reach. For instance, a
way point defining a stop line at an intersection will
have edges connecting it to all way points leaving
the intersection that can be legally driven to. These
edges are also assigned costs based on a combination
of several factors, including expected time to traverse
the edge, distance of the edge, and complexity of the
corresponding area of the environment. The resultant
cost graph is the baseline for travel road and lane de-
cisions by the behavioral subsystem.

A value function is computed over this graph,
providing the path from each way point to the cur-

rent goal (e.g., the first checkpoint in a mission). In
addition to providing the executive more information
to reason about, computing a value function is useful
because it allows the navigation system to react ap-
propriately if an execution error occurs (e.g., if the ve-
hicle drives through an intersection rather than turn-
ing, the new best path to take is instantly available).

As the vehicle navigates through the environ-
ment, the mission planner updates its graph to in-
corporate newly observed information such as road
blockages. Each time a change is observed, the mis-
sion planner regenerates a new policy. Because the
size of the graph is relatively small, this replan-
ning can be performed quickly, allowing for near-
immediate response to detected changes.

To correctly react to these occurrences, the robot
must be able to detect when a road is impassable and
plan another route to its goal, no matter where the
goal is. Particularly difficult cases include planning
to a goal immediately on the other side of a newly
discovered blockage and behaving reasonably when
a one-way street becomes blocked. Road conditions
are fluid and highly variable, and road blockages may
not be permanent. Thus, a robot should eventually
revisit the site of a previously encountered blockage
to see whether it has been cleared away. In fact, the
robot must revisit a blockage if all other paths to a
goal have also been found to be blocked, hoping to
discover that a road blockage has been cleared.

5.1. Detecting Blockages

To determine whether there is a blockage, Boss can
either directly detect the blockage or infer it by a fail-
ure to navigate a lane. To directly detect a blockage,
the road in front of Boss is checked against a static
obstacle map to see whether lethal obstacles com-
pletely cross the road. Noise in the obstacle map is
suppressed by ignoring apparent blockages that have
been observed for less than a time constant (nomi-
nally 5 s). Blockages are considered to no longer exist
if the obstacle map shows a sufficiently wide corri-
dor through the location where a blockage previously
existed.

The direct detection algorithm generates obsta-
cles using an efficient but optimistic algorithm; thus,
there are configurations of obstacles that effectively
block the road but are not directly detected as a road
blockage. In these conditions, the on-road navigation
algorithm may report that the road is blocked, induc-
ing a virtual blockage. Because the behavior generation
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module works by picking the lowest cost path to its
goal, this is an elegant way for it to stimulate itself to
choose an alternate route. Because virtual blockages
induced by the behavior generation module are not
created due to something explicitly observed, they
cannot be removed by observation; thus, they are re-
moved each time the vehicle achieves a checkpoint.
Although heuristic, this approach works well in prac-
tice, as these blockages are often constructed due
to odd geometries of temporary obstacles. By wait-
ing until the current checkpoint is complete, this ap-
proach ensures that the vehicle will wait until its cur-
rent mission is complete before revisiting a location.
If the only path to a goal is through a virtual blockage
that cannot be detected as cleared, and the situation
that caused the blockage to be declared has been re-
solved, then forward progress will still occur, because
the virtual blockages decay in the same manner that
explicitly observed blockages do.

5.2. Blockages

Once a blockage has been detected, the extent along
affected lanes that the blockage occupies is de-
termined. Locations before and after the blockage
are identified where U-turn maneuvers can be per-
formed. At these locations, road model elements rep-
resenting legal places to make a U-turn are added.
Simultaneously, the corresponding traversal costs for
the U-turn maneuvers are set to low values, the costs
for crossing the blockages are increased by a large
amount, and the navigation policy is recomputed. Be-
cause Boss follows the policy, the high costs levied
on traversing a blockage cause the robot to choose an
alternate path. If Boss later detects that the blockage
is gone, the traversal costs for elements crossing the
blockage are restored to their defaults, and the traver-
sal costs for the added U-turn elements are effectively
removed from the graph.

Revisiting of previously detected blockages is im-
plemented by gradually reducing the traversal cost
applied to road elements crossing a blockage. If the
cost eventually drops below a predefined threshold,
the blockage is treated as if it were observed to be
gone. The U-turn traversal costs are not concomi-
tantly increased; instead, they are changed all at once
when the blockage is observed or assumed to be
gone. Decreasing the cross-blockage traversal costs
encourages the robot to return to check whether a
blockage is removed, whereas not increasing the U-
turn traversal costs encourages the robot to continue

to plan to traverse the U-turn if it is beneficial to do
so.

The cost c increment added by a blockage is de-
cayed exponentially:

c = p2−a/h, (23)

where a is the time since the blockage was last ob-
served, h is a half-life parameter, and p is the starting
cost penalty increment for blockages. To illustrate, if
the blockage is new, we have a = 0 and c = p. If the
blockage was last observed h time units in the past,
we have a = h and c = p/2. The cost continues to de-
cay exponentially as the blockage ages.

An exponential decay rate mitigates the problem
of a single blockage being interpreted as multiple
blockages (due to incomplete perception), causing a
cost of np, where n is the number of blockages. Un-
der this condition, a linear decay rate would cause an
unacceptably long delay before revisiting a blockage.

A weakness of this blockage handling approach
is that it is possible to waste time making multiple
visits to a blockage that never gets removed. A simple
solution of incrementing h for the blockage after each
new visit would make the traversal costs decay more
slowly each time the obstacle is observed.

On one-way roads, U-turn lanes are not created
in response to road blockages. However, traversal
costs across the blockage are increased, decreasing
the likelihood of reusing the road. To respond to one-
way road blockages, the zone navigation planner is
invoked as an error recovery mode, as discussed in
Section 6.3.

6. BEHAVIORAL REASONING

The behavioral architecture is responsible for execut-
ing the policy generated by the mission planner; mak-
ing lane-change, precedence, and safety decisions, re-
spectively, on roads, at intersections, and at yields;
and responding to and recovering from anomalous
situations.

The behavioral architecture is based on the con-
cept of identifying a set of driving contexts, each
of which requires the vehicle to focus on a reduced
set of environmental features. At the highest level
of this design, the three contexts are road, inter-
section, and zone, and their corresponding behav-
iors are, respectively, lane driving, intersection handling,
and achieving a zone pose. The achieving a zone pose
behavior is meant for unstructured or unconstrained
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Figure 14. High-level behaviors architecture.

environments, including parking lots and jammed in-
tersections. In practice this behavior’s function is per-
formed by the zone planner. Figure 14 shows a dia-
gram of behavioral subsystem architecture with the
subbehaviors corresponding to the high-level behav-
iors, along with two subbehaviors making up the
auxiliary goal selection behavior, which plays a cru-
cial role not only in standard operation but also in
error recovery. The function of each of these subcom-
ponents is described in Table III.

6.1. Intersections and Yielding

The precedence estimator is most directly responsible
for the system’s adherence to the Urban Challenge
rules (DARPA, 2007) including obeying precedence,
not entering an intersection when another vehicle is
in it, and being able to merge into and across moving
traffic. To follow the rules, the precedence estimator
combines data from the rest of the system to deter-
mine whether it is clear to go. This state is used as a
gate condition in the transition manager and triggers

the issuance of the motion goal to proceed through
the intersection.

The precedence estimator uses a combination of
the road model and moving obstacle information to
determine whether it is clear to go. The road model
provides static information about an intersection, in-
cluding the set of lane exit way points that compose
the intersection and the geometry of their associated
lanes. The moving obstacle set provides dynamic in-
formation about the location, size, and speed of esti-
mated nearby vehicles. Given the problem of spatial
uncertainty, false positives and false negatives must
be accounted for in the precedence estimation system.

The road model provides important data, includ-
ing the following:

• The current intersection of interest, which is
maintained in the world model as a group of
exit way points, some subset of which will
also be stop lines.

• A virtual lane representing the action the sys-
tem will take at that intersection.
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Table III. Components of the behavioral subsystem.

Goal selection components Drive down road Handle intersection

State estimator: combines the vehi-
cle’s position with the world model
to produce a discrete and semanti-
cally rich representation of the vehi-
cle’s logical position with the RNDF.
Goal selector: uses the current logical
location as reported by state estima-
tor to generate the next series of lo-
cal goals for execution by the motion
planner; these will be either lane goals
or zone goals.

Lane selector: uses the surrounding
traffic conditions to determine the op-
timal lane to be in at any instant and
executes a merge into that lane if it is
feasible.
Merge planner: determines the feasi-
bility of a merge into a lane proposed
by lane selector.
Current scene reporter: the current
scene reporter distills the list of
known vehicles and discrete obsta-
cles into a few discrete data elements,
most notably the distance to and ve-
locity of the nearest vehicle in front of
Boss in the current lane.
Distance keeper: uses the surround-
ing traffic conditions to determine the
necessary in-lane vehicle safety gaps
and govern the vehicle’s speed ac-
cordingly.
Vehicle driver: combines the outputs
of distance keeper and lane selector
with its own internal rules to generate
a so-called “motion parameters” mes-
sage, which governs details such as
the vehicle’s speed, acceleration, and
desired tracking lane.

Precedence estimator: uses the list of
known other vehicles and their state
information to determine precedence
at an intersection.
Pan-head planner: aims the pan-head
sensors to gain the most relevant in-
formation for intersection precedence
decisions.
Transition manager: manages the
discrete-goal interface between the
behavioral executive and the motion
planner, using the goals from goal se-
lector and the gating function from
precedence estimator to determine
when to transmit the next sequence of
goals.

• A set of yield lanes1 for that virtual lane.
• Geometry and speed limits for those lanes

and any necessary predecessor lanes.

These data are known in advance of arrival at the in-
tersection, are of high accuracy, and are completely
static. Thus, the precedence estimator can use them
to preprocess an intersection’s geometry.

The moving obstacle set is received periodically
and represents the location, size, and speed of all
detected vehicles around the robot. In contrast to
the information gleaned from the road model, these
data are highly dynamic, displaying several proper-
ties that must be accounted for in the precedence es-
timation system: tracked vehicles can flicker in and
out of existence for short durations of time; sensing
and modeling uncertainties can affect the estimated

1Yield lanes are lanes of moving traffic for which a vehicle must
wait for a clear opportunity to execute the associated maneuver.

shape, position, and velocity of a vehicle; and the
process of determining moving obstacles from sensor
data may represent a vehicle as a small collection of
moving obstacles. Among other things, this negates
the usefulness of attempting to track specific vehicles
through an intersection and requires an intersection-
centric (as opposed to vehicle-centric) precedence es-
timation algorithm.

6.1.1. Intersection-Centric Precedence Estimation

Within the road model, an intersection is defined as a
group of lane exit way points. That is, an intersection
must contain one or more lane exit way points, and
each lane exit way point will be a part of exactly one
intersection. The next intersection is thus determined
as the intersection containing the next lane exit way
point that will be encountered. This excludes exits
that Boss will cross but not stop at (e.g., crossing the
top of a tee intersection that has only one stop sign).
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Figure 15. Typical exit occupancy polygon and examples of vehicles at an exit.

Precedence between any two exit way points is
determined first by whether the exit way points are
stop lines. Nonstop exit way points automatically
have precedence over exit way points that have stop
lines. Among stop line exit way points, precedence
is determined by arrival times, where earlier arrivals
have precedence over later arrivals.

The robust computation of arrival time is critical
to the correct operation of the precedence estimator.
Given the dynamic and noisy nature of the moving
obstacle set, the algorithm uses a purely geometric
and instantaneous notion of way point occupancy for
computing arrival times. An exit way point is con-
sidered to be occupied when any vehicle’s estimated
front bumper is inside or intersects a small polygon
around the way point, called its occupancy polygon.
Boss’s front bumper is added to the pool of estimated
front bumpers and is treated no differently for the
purposes of precedence estimation.

Occupancy polygons are constructed for each
exit way point and for the whole intersection. The oc-
cupancy polygons for each exit way point are used to
determine precedence, where the occupancy polygon
constructed for the intersection is used to determine
whether the intersection is clear of other traffic. The
size of the polygon for an exit way point determines
several factors:

• The point at which a vehicle gains its prece-
dence ordering, which is actually some length
along the lane backward from the stopline.

• The system’s robustness to spatial noise,
where larger polygons are generally more ro-
bust than smaller ones at retaining the prece-
dence order.

• The system’s ability to discriminate two cars
moving through the intersection in sequence,

where larger polygons are more likely to treat
two discrete cars as one for the purposes of
precedence ordering.

Figure 15 shows a typical exit occupancy polygon
extending 3 m back along the lane from the stop line
and with 1 m of padding on all sides. This is the con-
figuration that was used on race day.

The estimated front bumper of a vehicle must be
inside the occupancy polygon as shown in Figure 15
to be considered to be an occupant of that polygon.

A given occupancy polygon maintains its asso-
ciated exit way point, its occupancy state, and two
pieces of temporal data:

1. The time of first occupancy, which is used to
determine precedence ordering.

2. The time of most recent (last) occupancy,
which is used to implement a temporal hys-
teresis around when the polygon becomes
unoccupied.

To account for (nearly) simultaneous arrival, ar-
rival times are biased for the sake of precedence es-
timation by some small time factor that is a function
of their position relative to Boss’s exit way point. Exit
way points that are to the right receive a negative bias
and are thus treated as having arrived slightly earlier
than in actuality, encoding an implicit yield-to-right
rule. Similarly, exit way points that are to the left re-
ceive a positive bias, seeming to have arrived later
and thus causing the system to take precedence from
the left. (Empirically, 0.5 s worked well for this value.)
The result is considered to be the exit way point’s
modified arrival time.

With these data available, the determination
of precedence order becomes a matter of sorting
the occupied polygons in ascending order by their
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Figure 16. Typical tee intersection with yield lanes.

modified arrival time. The resulting list is a direct rep-
resentation of the estimated precedence ordering, and
when the front of that list represents Boss’s target exit
way point, Boss is considered to have precedence at
that intersection.

6.1.2. Yielding

Beyond interacting with stopped traffic, the prece-
dence estimator is also responsible for merging into
or across moving traffic from a stop. To support this,
the system maintains a next intersection goal, which is
invariably a virtual lane that connects the target exit
way point to some other way point, nominally in an-
other lane or in a parking or obstacle zone. That vir-
tual lane has an associated set of yield lanes, which are
other lanes that must be considered for moving traf-
fic in order to take the next intersection action. The
yield lanes are defined as the real lanes that overlap a
virtual lane. Overlapped virtual lanes are not consid-
ered because they must already have a clearly estab-
lished precedence order via stop lines. Intersections
that fail this requirement (e.g., an intersection with
four yield signs) are considered ill formed and are
not guaranteed to be handled correctly. Thus, yield

cases are considered only for merges into or across
real lanes. Figure 16 shows an example tee intersec-
tion, highlighting the next intersection goal and the
associated yield lanes.

First, temporal requirements are derived for the
next intersection goal as follows:

1. Taction is computed as the time to traverse the
intersection and get into the target lane us-
ing conservative accelerations from a start-
ing speed of zero.

2. Taccelerate is computed as the time for accel-
erating from zero up to speed in the des-
tination lane using the same conservative
acceleration.

3. Tdelay is estimated as the maximum system
delay.

4. Tspacing is defined as the minimum re-
quired temporal spacing between vehicles,
where 1 s approximates a vehicle length per
10 mph.

Using these values, a required temporal window
Trequired is computed for each yield lane as

Trequired = Taction + Tdelay + Tspacing (24)
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for lanes that are crossed by the next intersection ac-
tion. In the case of merging into a lane, the required
window is extended to include the acceleration time,
if necessary, as

Trequired = max(Taction, Taccelerate) + Tdelay + Tspacing.

(25)

This temporal window is then used to construct
a polygon similar to an exit occupancy polygon back-
ward along the road network for a distance of

�yield polygon = vmaxlane Trequired + dsafety. (26)

These yield polygons, shown in Figure 16, are
used as a first pass for determining cars that are rele-
vant to the yield window computations.

Any reported vehicle that is inside or overlaps
the yield polygon is considered in the determination
of the available yield window. Yield polygons are also
provided to a panhead planner, which performs cover-
age optimization to point long-range sensors along
the yield lanes and thus at oncoming traffic, increas-
ing the probability of detection for these vehicles at
long range.

For each such vehicle in a yield lane, a time of
arrival is estimated at the near edge of the overlap
area, called the crash point and illustrated in Figure 16
as follows:

1. Compute a worst-case speed vobstacle along
the yield lane by projecting the reported ve-
locity vector, plus one standard deviation,
onto the yield lane.

2. Compute dcrash as the length along the road
network from that projected point to the
leading edge of the overlap area.

3. Compute an estimated time of arrival as

Tarrival = dcrash

vobstacle
. (27)

4. Retain the minimum Tarrival as Tcurrent over all
relevant vehicles per yield lane.

The yield window for the overall intersection ac-
tion is considered to be instantaneously open when
Tcurrent > Trequired for all yield lanes. To account for the
possibility of tracked vehicles being lost momentar-
ily, as in the exit way point precedence determination,
this notion of instantaneous clearance is protected by

a 1-s hysteresis. That is, all yield windows must be
continuously open for at least 1 s before yield clear-
ance is passed to the rest of the system.

6.1.3. Gridlock Management

With exit precedence and yield clearance in place, the
third and final element of intersection handling is the
detection and prevention of gridlock situations. Grid-
lock is determined simply as a vehicle (or other obsta-
cle) blocking the path of travel immediately after the
next intersection goal such that the completion of the
next intersection goal is not immediately feasible (i.e.,
a situation that would cause Boss to become stopped
in an intersection).

Gridlock management comes into effect once the
system determines that Boss has precedence at the
current intersection and begins with a 15-s timeout to
give the problematic vehicle an opportunity to clear.
If still gridlocked after 15 s, the current intersection
action is marked as locally high cost, and the mission
planner is allowed to determine whether an alternate
path to goal exists. If so, Boss will reroute along that
alternate path; otherwise, the system jumps into error
recovery for intersection goals, using the generalized
pose planner to find a way around the presumed-
dead vehicle. This is discussed in greater detail in the
section describing error recovery.

6.2. Distance Keeping and Merge Planning

The distance-keeping behavior aims simultaneously
to zero the difference between Boss’s velocity and
that of the vehicle in front of Boss and the difference
between the desired and actual intervehicle gaps. The
commanded velocity is

vcmd = Kgap(dactule − ddesired), (28)

where vtarget is the target-vehicle velocity and Kgap is
the gap gain. The desired gap is

ddesired = max
(

�vehicle

10
vactual, dmingap

)
, (29)

where the �vehicle term represents the one-vehicle-
length-per-10-mph minimum-separation require-
ment and dmingap is the absolute minimum gap
requirement. When Boss’s velocity exceeds the target
vehicle’s, its deceleration is set to a single config-
urable default value; when Boss’s velocity is less than
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Figure 17. Two-lane merging.

the target vehicle’s, for safety and smoothness, Boss’s
commanded acceleration is made proportional to
the difference between the commanded and actual
velocities and capped at maximum and minimum
values (amax = 4.0 and amin = 1.0 m/s2 on race day)
according to

acmd = amin + Kaccvvmd(amax − amin). (30)

The merge, or lane-change, planner determines
the feasibility of changing lanes. It is relevant not only
on a unidirectional multilane road but also on a bidi-
rectional two-lane road in order to handle passing a
stopped vehicle after coming to a stop. Feasibility is
based on the ability to maintain proper spacing with
surrounding vehicles and to reach a checkpoint in the
lane to merge into (the “merge-to” lane) while meet-
ing a velocity constraint at the checkpoint. The two-
lane unidirectional case is depicted in Figure 17. The
merge planner performs the following steps:

1. Check whether it is possible to reach the
checkpoint in the merge-to lane from the ini-
tial position given velocity and acceleration
constraints and the “merge distance,” i.e., the
distance required for Boss to move from its
current lane into an adjacent lane. For sim-
plicity’s sake, the merge distance was made
a constant parameter whose setting based on
experimentation was 12 m on race day.

2. Determine the merge-by distance, i.e., the al-
lowable distance in the current lane in or-
der to complete the merge. The merge-by dis-

tance in the case of a moving obstacle in front
of Boss is

dobst = v0dinitial

v0 − v1
, (31)

where dinitial is the initial distance to the mov-
ing obstacle. Note that this reduces to dinitial if
the obstacle is still, i.e., if v1 = 0.

3. For each of the obstacles in the merge-to lane,
determine whether a front-merge (overtak-
ing the obstacle and merging into its lane in
front of it with proper spacing) is feasible and
whether a back-merge (dropping behind the
obstacle and merging behind it with proper
spacing) is feasible.

For either a front- or back-merge, first de-
termine whether proper spacing is already
met. For a front merge, this means

x0 − �vehicle − x1 ≥ max
(

v1�vehicle

10
, dmingap

)
.

(32)
For a back merge,

x1 − �vehicle − x1 ≥ max
(

v0�vehicle

10
, dmingap

)
.

(33)
If proper spacing is met, check whether the
other vehicle’s velocity can be matched by
acceleration or deceleration after the merge
without proper spacing being violated. If
so, the merge is so far feasible; if not, the

Journal of Field Robotics DOI 10.1002/rob



Urmson et al.: Autonomous Driving in Urban Environments: Boss and the Urban Challenge • 451

merge is infeasible. Otherwise, determine the
acceleration profile to accelerate or deceler-
ate respectively to, and remain at, either the
maximum or minimum speed until proper
spacing is reached.

4. Check whether it is possible to reach and
meet the velocity constraint at the checkpoint
in the merge-to lane starting from the merge
point, i.e., the position and velocity reached
in the previous step after proper spacing has
been met. If so, the merge is feasible.

5. Repeat the above steps for all n obstacles in
the merge-to lane. There are n + 1 “slots” into
which a merge can take place, one each at
the front and rear of the line of obstacles and
the rest between obstacles. The feasibility
of the front and rear slots is associated with
a single obstacle and therefore already de-
termined by the foregoing. A “between” slot
is feasible if the following criteria are met:
1) the slot’s front-obstacle back-merge and
rear-obstacle front-merge are feasible; 2) the
gap between obstacles is large enough for
Boss plus proper spacing in front and rear;
3) the front obstacle’s velocity is greater than
or equal to the rear obstacle’s velocity, so
the gap is not closing; 4) the merge-between
point will be reached before the checkpoint.

Boss determines whether a merge is feasible in
all slots in the merge-to lane (there are three in the
example: in front of vehicle 1, between vehicles 1 and
2, and behind vehicle 2) and targets the appropriate
feasible merge slot depending on the situation. For
a multilane unidirectional road, this is generally the
foremost feasible slot.

Once feasibility for all slots is determined, ap-
propriate logic is applied to determine which slot to
merge into depending on the situation. For a multi-
lane unidirectional road, Boss seeks the foremost fea-
sible slot in order to make the best time. For a two-
lane bidirectional road, Boss seeks the closest feasible
slot in order to remain in the wrong-direction lane for
the shortest time possible.

Determination of the merge-by distance is the
smallest of the distances to the 1) next motion goal
(i.e., checkpoint), 2) end of the current lane, 3) clos-
est road blockage in the current lane, and 4) projected
position of the closest moving obstacle in the current
lane.

6.3. Error Recovery

One of the most important aspects of the behavioral
reasoning system is its responsibility to detect and
address errors from the motion planner and other
aberrant situations. To be effective, the recovery sys-
tem should

• be able to generate a nonrepeating and novel
sequence of recovery goals in the face of re-
peated failures ad infinitum.

• be able to generate different sets of recovery
goals to handle different contexts.

• be implemented with minimal complexity so
as to produce as few undesirable behaviors as
possible.

To reduce interface complexity, the goal selection
system follows the state graph shown in Figure 18.

Each edge represents the successful completion
(Success) or the failed termination (Failure) of the cur-
rent motion goal. Goal failure can be either directly
reported by the motion planner or triggered inter-
nally by progress monitoring that declares failure if
sufficient progress is not made within some time. All
edge transitions trigger the selection of a new goal
and modify the recovery level:

• Success resets recovery level to zero but
caches the previous recovery level.

• Failure sets the recovery level to one greater
than the maximum of the cached and current
recovery level.

Figure 18. Goal selection state graph.
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The recovery level and the type and parameters
of the original failed goal are the primary influences
on the recovery goal algorithms. The general form of
the recovery goals is that an increasing recovery level
results in higher risk attempts to recover, meaning
actions that are generally farther away from the cur-
rent position and/or the original goal. This process
ensures that Boss tries low-risk and easy-to-execute
maneuvers initially while still considering more
drastic measures when necessary. If the recovery
process chooses an obviously infeasible goal, the
motion planner will signal failure immediately and
the recovery level will increment. Otherwise, to
complement explicit failure reports from the motion
planner, forward progress is monitored such that the
robot must move a minimum distance toward the
goal over some span of time. If it does not, the current
goal is treated as a failure, and the recovery level is
incremented. The progress threshold and time span
were determined largely by experimentation and set
to 10 m and 90 s on race day. Generally speaking,
these represent the largest realistic delay the system
was expected to encounter during operation.

In general, the successful completion of a re-
covery goal sets the system back to normal op-
eration. This eliminates the possibility of complex
multimaneuver recovery schemes, at the benefit of
simplifying the recovery state tracking. In situations
in which the vehicle oscillates between recovery and
normal operation, the recovery system maintains suf-
ficient state to increase the complexity of recovery
maneuvers.

6.3.1. On-Road Failures

The most commonly encountered recovery situation
occurs when the on-road planner generates an error
while the vehicle is driving down a lane. Any number

of stimuli can trigger this behavior, including

• small or transient obstacles, e.g., traffic cones
that do not block the entire lane but are suf-
ficient to prevent the planner from finding a
safe path through them

• larger obstacles such as road barrels, K-rails,
or other cars that are detected too late for nor-
mal distance keeping to bring the system to a
graceful stop

• low-hanging canopy, which is generally de-
tected late and often requires additional cau-
tion and careful planning

• lanes whose shape is kinematically infeasible.

The algorithm for lane recovery goal selection,
called shimmy and illustrated in Figure 19, selects an
initial set of goals forward along the lane with the dis-
tance forward described by

dshimmy = dinitial + Rdincremental. (34)

Empirically, dinitial = 20 m and dincremental = 10 m
worked well. The 20-m initial distance was empiri-
cally found to give the planner sufficient room to get
past stopped cars in front of the vehicle.

These forward goals (Goals 1–3 in Figure 19)
are selected out to some maximum distance, roughly
40 m and corresponding to our high-fidelity sensor
range, after which a goal is selected 10 m behind the
vehicle (Goal 4) with the intent of backing up and get-
ting a different perspective on the immediate imped-
iment.

After backing up, the sequence of forward goals
is allowed to repeat once more with slight (less than
5 m) alterations, after which continued failure causes
one of two things to happen:

Figure 19. Example shimmy error recovery goal sequence.
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1. If a lane is available in the opposing direc-
tion, mark the segment as locally blocked
and issue a U-turn (Goal 5). This is supple-
mental to the external treatment of total seg-
ment blockages discussed in Section 5.2 and
presumes that a U-turn has not yet been de-
tected and generated.

2. If no lanes are available in the opposing di-
rection (i.e., Boss is stuck on a one-way road),
then the goal selection process is allowed to
continue forward infinitely beyond the 40-
m limit with the additional effect of remov-
ing an implicit stay near the lane constraint
that is associated with all previous recov-
ery goals. Removing this constraint gives the
pose planner complete freedom to wander
the world arbitrarily in an attempt to achieve
some forward goal.

6.3.2. Intersection Failures

Error cases in intersections are perhaps the most diffi-
cult to recover from. These errors happen when an at-
tempt to traverse an intersection is not possible due to
obstacles and/or kinematic constraints or else as part
of the gridlock resolution system. A simplified ex-
ample sequence from this recovery algorithm, called
jimmy, is show in Figure 20.

The first step in the jimmy algorithm is to try the
original failed goal over again as a pose goal, instead

of a road driving goal (e.g., goal), giving the motion
planner the whole intersection as its workspace in-
stead of just the smooth path between the intersec-
tion entry and exit. This generally and quickly recov-
ers from small or spurious failures in intersections
as well as compensating for intersections with turns
that are tighter than the vehicle can make in a sin-
gle motion. Should that first recovery goal fail, its as-
sociated entry way point is marked as blocked, and
the system is allowed an opportunity to plan an alter-
nate mission plan to the goal. If there is an alternate
path, that alternate intersection goal (e.g., Goals 2, 3)
is selected as the next normal goal and the cycle is al-
lowed to continue. If that alternate goal fails, it is also
marked as blocked, and the system is allowed to re-
plan and so forth, until all alternate routes to the goal
are exhausted, whereupon the system will select un-
constrained pose goals (i.e., pose goals that can drive
outside of the intersection and roads) incrementally
farther away from the intersection along the original
failed goal.

6.3.3. Zone Failures

The case in which specifics do matter, however, is the
third recovery scenario, failures in zones. The pose
planner that executes zone goals is general and pow-
erful enough to find a path to any specific pose if such
a path exists, so a failure to do so implies one of the
following:

Figure 20. Example jimmy recovery goal sequence.
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Figure 21. Example shake recovery goal sequence.

1. The path to the goal has been tran-
siently blocked by another vehicle. Although
DARPA guaranteed that a parking spot in a
zone will be free, they made no such guaran-
tees about traffic accumulations at zone ex-
its or about the number of vehicles between
the current position and the target parking
spot. In either case, a retry of the same or a
selection of a nearby similar goal should af-
ford the transient blockage time to pass.

2. Owing to some sensor artifact, the system be-
lieves that there is no viable path to goal. In
this case, selecting nearby goals that offer dif-
ferent perspectives on the original goal area
may relieve the situation.

3. The path to the goal is actually blocked.

The goal selection algorithm for failed zone goals,
called shake, selects goals in a regular, triangular pat-
tern facing the original goal, as shown in Figure 21.

On successful completion of any one these goals,
the original goal is reattempted. If the original goal
fails again, the shake pattern picks up where it left off.
If this continues through the entire pattern, the next
set of actions is determined by the original goal. Park-
ing spot goals were guaranteed to be empty, so the
pattern is repeated with a small incremental angular
offset ad infinitum. For zone exit way point goals, the
exit is marked as blocked and the system attempts to
reroute through alternate exits similar to the alternate
path selection in the jimmy algorithm. In the case of
no other exits, or no other path to goal, the system
issues completely unconstrained goals to logical suc-

cessors of the zone exit way point in a last-ditch effort
to escape the zone.

If these goals continue to fail, then farther succes-
sors are selected in a semirandom breadth-first search
along the road network in a general last-ditch recov-
ery algorithm called bake. Increasing values of recov-
ery level call out farther paths in the search algorithm.
The goals selected in this manner are characterized
by being completely unconstrained, loosely specified
goals that are meant to be invoked when each of the
other recovery goal selection schemes has been ex-
hausted. In addition to shake goals at a zone exit,
these are selected for shimmy goals that run off the
end of the lane and similarly for jimmy goals when
all other attempts to get out of an intersection have
failed.

Through these four recovery algorithms
(shimmy, jimmy, shake, and bake), many for-
ward paths are explored from any single location,
leaving only the possibility that the system is stuck
due to a local sensor artifact or some other strange
local minima that requires a small local adjustment.
To address this possibility, a completely separate
recovery mechanism runs in parallel to the rest of
the goal monitoring and recovery system with a very
simple rule: if the system has not moved at least 1 m
in the last 5 min, override the current goal with a
randomized local goal. When that goal is completed,
pretend that there was a completely fresh wakeup
at that location, possibly clearing the accumulated
state, and try again.

The goals selected by this algorithm, called
wiggle, are illustrated in Figure 22. The goals are
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Figure 22. Example wiggle recovery goals.

pseudo-random and approximately kinematically
feasible and can be either in front of or behind the
vehicle’s current pose. The algorithm is, however, bi-
ased somewhat forward of the robot’s position so that
there is statistically net-forward motion if the robot is
forced to choose these goals repeatedly over time in a
behavior similar to the “wander” behavior described
by 0.

The composite recovery system provides a nec-
essary line of defense against failures in the planning
and perceptive systems. This robustness was a key el-
ement of winning the Urban Challenge.

7. SOFTWARE INFRASTRUCTURE

The software infrastructure is a toolbox that provides
the basic tools required to build a robotic platform.
The infrastructure takes the form of common libraries
that provide fundamental capability, such as inter-
process communication, common data types, robotic
math routines, data log/playback, and much more.
Additionally, the infrastructure reinforces a standard
mechanism for processes in the system to exchange,
log, replay, and visualize data across any interface in
the system, thereby reducing the time to develop and
test new modules.

The following is a list of the tools provided by the
infrastructure:

Communications library. Abstracts around ba-
sic interprocess communication over UNIX Do-
main Sockets, TCP/IP, or UDP; supports the
boost::serialization library to easily marshal data
structures across a communications link and then un-
marshal on the receiving side. A key feature is anony-

mous publish/subscribe, which disconnects a con-
sumer of data from having to know who is actually
providing the data, enabling the easy interchange of
components during testing and development.

Interfaces library. Each interface between two pro-
cesses in the system is added to this library. Each in-
terface fits into a plug-in framework so that a task,
depending on its communications configuration, can
dynamically load the interfaces required at run time.
For example, this enables a perception task to abstract
the notion of a LIDAR source and at run time be con-
figured to use any LIDAR source, effectively decou-
pling the algorithmic logic from the nuts-and-bolts
of sensor interfacing. Furthermore, interfaces can be
built on top of other interfaces in order to produce
composite information from multiple sources of data.
For example, a pointed LIDAR interface combines a
LIDAR interface and a pose interface.

Configuration library. Parses configuration files
written in the Ruby scripting language in order to
configure various aspects of the system at run time.
Each individual task can add parameters specific to
its operation, in addition to common parameters such
as those that affect the loggers’ verbosity, and the con-
figuration of communications interfaces. The Ruby
scripting language is used in order to provide a more
familiar syntax, to provide ease of detecting errors in
syntax or malformed scripts, and to give the user sev-
eral options for calculating and deriving configura-
tion parameters.

Task library. Abstracts around the system’s main()
function, provides an event loop that is triggered at
specified frequencies, and automatically establishes
communication with other tasks in the system.

Debug logger. Provides a mechanism for applica-
tions to send debug messages of varying priority to
the console, operator control station, log file, etc., de-
pending on a threshold that varies verbosity accord-
ing to a priority threshold parameter.

Log/playback. The data log utility provides a
generic way to log any interface in the system. Ev-
ery data structure that is transmitted through the in-
terprocess communication system can inherently be
captured using this utility. The logged data are saved
to a Berkeley database file along with a time stamp.
The playback utility can read a Berkeley database
file, seek to a particular time within the file, and
transmit the messages stored in the file across the
interprocess communication system. Because the in-
terprocess communication system uses an anony-
mous publish/subscribe scheme, the consuming
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processes will receive the played-back messages,
without realizing that data are not coming from a live
sensor. This feature is useful in order to replay inci-
dents that occurred on the vehicle for offline analysis.

Tartan Racing Operator Control Station (TROCS).
A graphical user interface (GUI) based on QT that
provides an operator, engineer, or tester a convenient
tool for starting and stopping the software, viewing
status/health information, and debugging the vari-
ous tasks that are executing. Each developer can de-
velop custom widgets that plug into TROCS in order
to display information for debugging and/or moni-
toring purposes (Figure 23).

8. TESTING

Testing was a central theme of the research program
that developed Boss. Over the 16 months of devel-
opment, Boss performed more than 3,000 km of au-
tonomous driving. The team used time on two test
vehicles, a simulation and data replay tool, and mul-
tiple test sites in three states to debug, test, and eval-
uate the system.

Testing and development were closely inter-
twined, following the cyclic process illustrated in
Figure 24. Before algorithm development began, the
team assembled requirements that defined the capa-
bilities that Boss would need to be able to complete

Figure 23. The TROCS is an extensible GUI that enables developers to both monitor telemetry from Boss while it is driving
and replay data offline for algorithm analysis.

Figure 24. The requirements and testing process used in the development of Boss.
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the challenge. Requirements drove the development
of algorithms and selection of components. Algo-
rithms and approaches were tested offline either in
simulation or by using data replay. Once an algo-
rithm became sufficiently mature, it would move
to on-vehicle testing, in which system and environ-
mental interactions could be fully evaluated. These
tests would often uncover algorithmic problems or
implementation bugs that were not obvious during
offline testing, often resulting in numerous cycles of
rework and further offline debugging. Once the de-
velopers were satisfied that the algorithm worked,
testing of the algorithm was added to the formal,
regularly scheduled system test. Independent testing
of algorithms would often uncover new deficiencies,
requiring some rework. In other cases, testing and
postanalysis would cause the team to modify the re-
quirements driving the development, limiting or ex-
tending scope as appropriate. Eventually, the tech-
nology would be deemed accepted and ready for the
Urban Challenge.

Regressive system testing was the cornerstone of
the development process. Following the cyclic devel-
opment process, each researcher was free to imple-
ment and test as independently of the overall system
as possible, but to judge overall capability and to ver-
ify that component changes did not degrade overall

system performance, the team performed regressive
system testing.

System testing was performed with a frequency
proportionate to system readiness. Between February
and October 2007, the team performed 65 days of sys-
tem testing. Formal testing time was adjusted over
the course of the program to ensure relevance. As an
example, during February the team performed less
than 16 km of system testing. In contrast, during the
first 3 weeks of October, the team performed more
than 1,500 km of autonomous testing.

In general, the team tested once a week, but lead-
ing up to major milestones (the midterm site visit
and NQE) the team moved to daily regressive testing.
During regressive testing, the team would evaluate
Boss’s performance against a standard set of plays (or
scenarios) described in a master playbook. The play-
book captures more than 250 different driving events
that are important to evaluate. Figure 25 illustrates
what a page from the playbook looks like. Each play
is annotated with priority (ranked 1–3), how thor-
oughly it has been tested, how it relates to require-
ments, and a description of how Boss should behave
when encountering this scenario. The 250 plays cover
the mundane (correctly stopping at a stop sign) to the
challenging (successfully navigating a jammed inter-
section), enabling the team to have confidence that

Figure 25. A representative page from the testing playbook.
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even the most coupled software changes were not
damaging overall system performance.

Feedback from system tests was rapidly passed
to the development team through a hot wash after
each system test, and a test report was published
within 48 h. Whereas the hot wash was delivered by
the test software operator, who conveyed first-hand
experience of code performance, the test report pro-
vided a more black-box understanding of how well
the system met its mission requirements. Software
bugs discovered through this and other testing were
electronically tracked, and formal review occurred
weekly. The test report included a gap analysis show-
ing the requirements that remained to be verified un-
der system testing. This gap analysis was an essential
measure of the team’s readiness to compete at the Ur-
ban Challenge.

In addition to regressive testing, the team per-
formed periodic endurance tests designed to con-
firm that Boss could safely operate for at least 6 h
or 60 miles (96 km) (the stated length of the Urban
Challenge). This was the acid test of performance, al-
lowing the team to catch intermittent and subtle soft-
ware and mechanical defects by increasing time on
the vehicle. One of the most elusive problems discov-
ered by this testing process was an electrical shorting

problem that was the result of a 2-mm gash in a sig-
nal line on the base vehicle Tahoe bus. The problem
caused Boss to lose all automotive electrical power,
killing the vehicle. Had the team not performed en-
durance testing, it is plausible that this defect would
have never been encountered before the UCFE and
would have caused Boss to fail.

9. PERFORMANCE AT THE NATIONAL
QUALIFICATION EVENT AND URBAN
CHALLENGE FINAL EVENT

The NQE and UCFE were held at the former George
Air Force Base (see Figure 26), which provided a
variety of roads, intersections, and parking lots to
test the vehicles. The NQE allowed DARPA to as-
sess the capability and safety of each of the competi-
tors. The teams were evaluated on three courses. Area
A required the autonomous vehicles to merge into
and turn across dense moving traffic. Vehicles had
to judge the size of gaps between moving vehicles,
assess safety, and then maneuver without excessive
delay. For many of the vehicles, this was the most dif-
ficult challenge, as it involved significant reasoning
about moving obstacles. Area B was a relatively long
road course that wound through a neighborhood.

Figure 26. The NQE took place in three areas, each emphasizing different skills. Area A tested merging with moving
traffic, area B tested navigation, and area C tested rerouting and intersection skills.
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Figure 27. Of the 11 vehicles that qualified for the UCFE, 3 completed the challenge without human intervention. Three
additional teams finished the course with minor interventions.

Vehicles were challenged to find their way through
the road network while avoiding parked cars, con-
struction areas, and other road obstacles but did not
encounter moving traffic. Area C was a relatively
short course but required autonomous vehicles to
demonstrate correct behavior with traffic at four-way
intersections and to demonstrate rerouting around an
unexpectedly blocked road.

For the final event, the field was reduced to 11
teams (see Figure 27). Traffic on the course was pro-
vided by not only the 11 qualifying vehicles but 50
human-driven vehicles operated by DARPA. While
primarily on-road, the course also included a pair of
relatively short dirt roads, one of which ramped its
way down a 50-m elevation change.

Despite the testing by each of the teams and a
rigorous qualification process, the challenge proved
to be just that. Of the 11 teams that entered, 6 were
able to complete the 85-k course, 3 of them without
human intervention. Boss finished the challenge ap-
proximately 19 min faster than the second-place ve-
hicle, Junior (from Stanford University) and 26 min
ahead of the third-place vehicle, Odin (from Virginia
Tech). The vehicles from Cornell, MIT, and the Uni-
versity of Pennsylvania rounded out the finishers.

Overall, the vehicles that competed in the chal-
lenge performed admirably, with only one vehicle-to-
vehicle collision, which occurred at very low speeds
and resulted in no damage. Although the vehicles
drove well, none of them was perfect. Among the
foibles: Boss twice incorrectly determined that it
needed to make a U-turn, resulting in its driving an
unnecessary 2 miles (3.2 km); Junior had a minor bug
that caused it to repeatedly loop twice through one
section of the course; and Odin incurred a significant
GPS error that caused it to drive partially off the road

for part of the challenge. Despite these glitches, these
vehicles represent a new state of the art for urban
driving.

The following sections describe a few incidents
during the qualifications and final event when Boss
encountered some difficulties.

9.1. National Qualification Event Analysis

Boss performed well at each component of the NQE,
consistently demonstrating good driving skills and
overall system robustness. Through the NQE test-
ing, Boss demonstrated three significant bugs, none
of which was mission ending.

The first significant incident occurred in area A,
the course that tested a robot’s ability to merge with
traffic. During Boss’s first run on this course, it ap-
proached a corner and stopped for about 20 s before
continuing, crossing the centerline for some time be-
fore settling back into the correct lane and continuing.
This incident had two principal causes: narrow lanes
and incorrect lane geometry. In preparing the course,
DARPA arranged large concrete Jersey barriers im-
mediately adjacent to the lane edges to prevent vehi-
cles from leaving the course and injuring spectators.
This left little room for navigational error. When con-
figuring Boss for the run, the team adjusted the geom-
etry defined in the RNDF, with the intention of repre-
senting the road shape as accurately as possible given
the available overhead imagery. During this process,
the team incorrectly defined the shape of the inner
lanes. Whereas this shape was unimportant for Boss’s
localization and navigation, it was used to predict the
motion of the other vehicles on the course. The incor-
rect geometry caused Boss to predict that the other
vehicles were coming into its lane (see Figure 28). It
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Figure 28. Data replay shows how the incorrectly extrapolated path of a vehicle (shaded rectangles) and the wall (pixels
to the right of Boss) create a space that Boss believes is too narrow to drive through (indicated by the arrow).

thus stopped and an error recovery mode (shimmy)
kicked in. After shimmying down the lane, Boss re-
verted to normal driving and completed the test.

The second significant incident occurred during
testing in area C. This course tested the autonomous
vehicle’s ability to handle traffic at intersections and
replan for blocked roads. For most of this course,
Boss drove well and cleanly, correctly making its
way through intersections and replanning when it
encountered a blocked road. The second time Boss
encountered a blocked road it began to U-turn, get-
ting two of its wheels up on a curb. As it backed down
off the curb, it caused a cloud of dust to rise and then
stopped and appeared to be stuck, turning its wheels
backward and forward for about a minute. Then Boss
started moving again and completed the course with-
out further incident.

Posttest data analysis revealed that Boss per-
ceived the dust cloud as an obstacle. In addition,
an overhanging tree branch behind Boss caused it
to believe there was insufficient room to back up.
Normally, when the dust settled, Boss would have
perceived that there was no longer an obstacle in
front of it and continued driving, but in this case the
dust rose very close to Boss, on the boundary of its

blind spot (see Figure 29). The obstacle detection al-
gorithms treat this area specially and do not clear
obstacles within this zone. Eventually Boss wiggled
enough to verify that the cell where it had previously
seen the dust was no longer occupied. Once again,
Boss’s consistent attempts to replan paid off, this time
indirectly. After this test, the obstacle detection algo-
rithms were modified to give no special treatment to
obstacles within the blind spot.

The third significant incident during qualifica-
tions occurred in area B, the course designed to test
navigation and driving skills. During the test, Boss
came up behind a pair of cars parked along the edge
of the road. The cars were not sufficiently in the road
to be considered stopped vehicles by the perception
system, so it fell to the motion planning system to
avoid them. Owing to pessimistic parameter settings,
the motion planner believed that there was insuffi-
cient room to navigate around the obstacles without
leaving the lane, invoking the behavioral error recov-
ery system. Because of a bug in the error handling
system, the goal requested by the behavioral engine
was located approximately 30 m behind Boss’s cur-
rent position, causing it to back up. During the back-
up maneuver DARPA paused Boss. This cleared the
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Figure 29. The false obstacles generated by dust and the bush behind Boss prevented Boss from initially completing its
U-turn.

error recovery stack, and upon restart, Boss contin-
ued along the lane normally until it encountered the
same vehicles, at which point it invoked the recovery
system again, but due to the pause clearing state in
the behavioral system, the new recovery goal was in
a correct, down-road location.

Despite these foibles, after completion of the
qualification events, Boss was ranked as the top per-
former and was given pole position for the final
event.

9.2. Final Event Analysis

Immediately before Boss was to begin the final event,
the team noticed that Boss’s GPS receivers were not
receiving GPS signals. Through equipment tests and
observation of the surroundings, it was determined
that the most likely cause of this problem was jam-
ming from a Jumbotron (a large television commonly
used at major sporting events) newly positioned near
the start area. After a quick conference with the
DARPA officials, the Jumbotron was shut down and
Boss’s GPS receivers were restarted and ready to go.
Boss smoothly departed the launch area to commence
its first of three missions for the day.

Once launched, Boss contended with 10 other
autonomous vehicles and approximately 50 other
human-driven vehicles. During the event Boss per-
formed well but did have a few occurrences of un-
usual behavior.

The first incident occurred on a relatively bumpy
transition from a dirt road to a paved road. Instead of
stopping and then continuing normally, Boss stopped
for a prolonged period and then hesitantly turned
onto the paved road. Boss’s hesitation was due to
a calibration error in the Velodyne LIDAR, used for
static obstacle detection. In this case, the ground slope
combined with this miscalibration was sufficient for
the laser to momentarily detect the ground, calling
it an obstacle (see Figure 30). Boss then entered an
error recovery mode, invoking the zone planner to
get to the road. With each movement, the false ob-
stacles in front of Boss would change position, caus-
ing replanning and thus hesitant behavior. Once Boss
made it off the curb and onto the road, the false ob-
stacles cleared and Boss was able to continue driving
normally.

The next incident occurred when Boss swerved
abruptly while driving past an oncoming robot. The
oncoming vehicle was partially in Boss’s lane but

Journal of Field Robotics DOI 10.1002/rob



462 • Journal of Field Robotics—2008

Figure 30. False obstacles that caused Boss to stutter when leaving a dirt road.

not sufficiently that Boss needed to maneuver to
avoid it. The oncoming vehicle partially occluded its
chase vehicle and momentarily caused Boss’s percep-
tion system to estimate the vehicle with an incorrect
orientation such that it was perceived to be entering
Boss’s travel lane (see Figure 31). At this point, Boss
swerved and braked to try and avoid the perceived
oncoming vehicle, moving it very close to the Jersey
barrier wall. While this was happening, DARPA or-
dered a full course pause due to activity elsewhere on
the course. This interrupted Boss midmotion, causing
it to be unable to finish its maneuver. Upon awaken-
ing from the pause, Boss felt it was too close to the
wall to maneuver safely. After a minute or so of near-
stationary wheel turning, its pose estimate shifted lat-
erally by about 2 cm, just enough that it believed that
it had enough room to avoid the near wall. With a
safe path ahead, Boss resumed driving and continued
along its route.

Later in the first mission Boss was forced to
queue behind a vehicle already waiting at a stop line.
Boss began queuing properly, but when the lead ve-
hicle pulled forward, Boss did not. After an excessive
delay, Boss performed a U-turn and drove away from
the intersection, taking an alternative route to its next
checkpoint.

Analysis revealed a minor bug in the planning
system, which did not correctly update the location
of moving vehicles. For efficiency, the zone planner
checks goal locations against the location of obstacles
before attempting to generate a path. This check can
be performed efficiently, allowing the planning sys-
tem to report that a goal is unreachable in much less
time than it takes to perform an exhaustive search.
A defect in this implementation caused the planning
system to not correctly update the list of moving ob-
stacles prior to performing this check. Thus, after the
planner’s first attempt to plan a path forward failed,
every future attempt to plan to the same location
failed, because the planner erroneously believed that
a stopped vehicle was in front of it. The behavioral
error recovery system eventually selected a U-turn
goal, and Boss backed up and went on its way. This
reroute caused Boss to drive an additional 2.7 km, but
it was still able to complete the mission.

Despite these incidents, Boss was able to fin-
ish the challenge in 4 h, 10 min, and 20 s, roughly
19 min faster than the second-place competitor. Boss
averaged 22.5 km/h during the challenge (while en-
abled) and 24.5 km/h when moving. Through offline
simulation, we estimated that the maximum average
speed Boss could have obtained over the course was
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Figure 31. This incorrect estimate of an oncoming vehicle’s orientation caused Boss to swerve and almost to become
irrevocably stuck.
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Figure 32. Boss averaged 22.5 km/h during the challenge; this figure shows a distribution of the vehicle’s speed while
moving.

26.2 km/h. Figure 32 shows the distribution of Boss’s
moving speeds during the challenge. The large peak
at 9–10 m/s is due to the course speed limits. This
spike implies that Boss was limited by these speed
limits, not by its capability.

The roadmap localization system played an im-
portant role during the challenge. For a majority of
the challenge, the error estimate in the roadmap lo-
calization system was less than 0.5 m, but there was
more than 16 min when the error was greater than
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0.5 m, with a peak error of 2.5 m. Had the road map
localization system not been active, it is likely that
Boss would have been either off the road or in a
wrong lane for a significant amount of time.

In general, Boss drove well, completing a large
majority of the course with skill and precision. As
demonstrated in this brief analysis, one of Boss’s
strengths was its robustness and ability to recover
from unexpected error cases autonomously.

10. LESSONS LEARNED

Through the development of Boss and competition in
the Urban Challenge, the team learned several valu-
able lessons:

Available off-the-shelf sensors are insufficient for ur-
ban driving. Currently no single sensor is capable of
providing environmental data to sufficient range and
with sufficient coverage to support autonomous ur-
ban driving. The Velodyne sensor used on Boss (and
other Urban Challenge vehicles) comes close but has
insufficient angular resolution at long ranges and is
unwieldy for commercial automotive applications.

Road shape estimation may be replaced by estimat-
ing position relative to the road. In urban environments,
the shape of roads changes infrequently. There may
be local anomalies (e.g., a stopped car or construc-
tion), but in general, a prior model of road shape can
be used for on-road navigation. Several Urban Chal-
lenge teams took this approach, including our team,
and demonstrated that it was feasible on a small to
medium scale. Whereas this may not be a viable ap-
proach for all roads, it has proven to be a viable
method for reducing complexity in common urban
driving scenarios. The next step will be to apply the
same approach on a large or national scale and au-
tomate the detection of when the road has changed
shape from the expected.

Human-level urban driving will require a rich repre-
sentation. The representation used by Boss consists of
lanes and their interconnections, a regular map con-
taining large obstacles and curbs, a regular map con-
taining occlusions, and a list of rectangles (vehicles)
and their predicted motions. Boss has a very primi-
tive notion of what is and is not a vehicle: if it is ob-
served to move within some small time window and
is in a lane or parking lot, then it is a vehicle; oth-
erwise it is not. Time and location are thus the only
elements that Boss uses to classify an object as a vehi-
cle. This can cause unwanted behavior; for example,
Boss will wait equally long behind a stopped car (ap-

pearing reasonable) and a barrel (appearing unrea-
sonable), while trying to differentiate between them.
A richer representation including more semantic in-
formation will enable future autonomous vehicles to
behave more intelligently.

Validation and verification of urban driving systems is
an unsolved problem. The authors are unaware of any
formal methods that would allow definitive state-
ments about the completeness or correctness of a ve-
hicle interacting with a static environment, much less
a dynamic one. Although subsystems that do not in-
teract directly with the outside world can be proven
correct and complete (e.g., the planning algorithm),
verifying a system that interacts with the world (e.g.,
sensors/world model building) is as of yet impossi-
ble.

Our approach of generating an ad hoc, but large,
set of test scenarios performed relatively well for the
Urban Challenge, but as the level of reliability and
robustness approaches that needed for autonomous
vehicles to reach the marketplace, this testing process
will likely be insufficient. The real limitation of these
tests is that it is too easy to “teach to the test” and
develop systems that are able to reliably complete
these tests but are not robust to a varied world. To re-
duce this problem, we incorporated free-for-all testing
in our test process, which allowed traffic to engage
Boss in a variety of normal, but unscripted, ways. Al-
though this can increase robustness, it can in no way
guarantee that the system is correct.

Sliding autonomy will reduce the complexity of au-
tonomous vehicles. In building a system that was able
to recover from a variety of failure cases, we intro-
duced significant system complexity. In general, Boss
was able to recover from many failure modes but
took considerable time to do so. If, instead of attempt-
ing an autonomous recovery, the vehicle were to re-
quest assistance from a human controller, much of the
system complexity would be reduced and the time
taken to recover from faults would decrease dramat-
ically. The critical balance here is to ensure that the
vehicle is sufficiently capable that it does not request
help so frequently that the benefits of autonomy are
lost. As an example, if Boss was allowed to ask for
help during the 4-h Urban Challenge, there were
three occasions on which it might have requested as-
sistance. Human intervention at these times would
likely have reduced Boss’s overall mission time by
approximately 15 min.

Driving is a social activity. Human driving is a
social activity consisting of many subtle and some
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not-so-subtle cues. Drivers will indicate their will-
ingness for other vehicles to change lanes by vary-
ing their speed and the gap between themselves and
another vehicle, by small amounts. At other times it
is necessary to interpret hand gestures and eye con-
tact in situations when the normal rules of the road
are violated or need to be violated for traffic to flow
smoothly and efficiently. For autonomous vehicles
to seamlessly integrate into our society, they would
need to be able to interpret these gestures.

Despite this, it may be possible to deploy au-
tonomous vehicles that are unaware of the subtler
social cues. During our testing and from anecdotal
reports during the final event, it became clear that
human drivers were able to quickly adapt and infer
(perhaps incorrectly) the reasoning within the auton-
omy system. Perhaps it will be sufficient and easier to
assume that we humans will adapt to robotic conven-
tions of driving rather than the other way around.

11. CONCLUSIONS

The Urban Challenge was a tremendously exciting
program to take part in. The aggressive technol-
ogy development timeline, international competition,
and compelling motivations fostered an environment
that brought out a tremendous level of creativity and
effort from all those involved. This research effort
generated many innovations:

• a coupled moving obstacle and static obstacle
detection and tracking system

• a road navigation system that combines road
localization and road shape estimation to
drive on roads where a priori road geometry
both is and is not available

• a mixed-mode planning system that is able to
both efficiently navigate on roads and safely
maneuver through open areas and parking
lots

• a behavioral engine that is capable of both
following the rules of the road and violating
them when necessary

• a development and testing methodology that
enables rapid development and testing of
highly capable autonomous vehicles

Although this article outlines the algorithms and
technology that made Boss capable of meeting the
challenge, there is much left to do. Urban environ-
ments are considerably more complicated than what

the vehicles faced in the Urban Challenge; pedestri-
ans, traffic lights, varied weather, and dense traffic all
contribute to this complexity.

As the field advances to address these problems,
we will be faced with secondary problems, such as,
How do we test these systems and how will society
accept them? Although defense needs may provide
the momentum necessary to drive these promising
technologies, we must work hard to ensure our that
work is relevant and beneficial to a broader society.
Whereas these challenges loom large, it is clear that
there is a bright and non-too-distant future for au-
tonomous vehicles.
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