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Tt is important to grasp the remarkable fact that (ii) asserts: the optimal control
uy 48 exactly the same as it would be if all unknowns were known and took values egual
to their linear least square estimnates (equivalently, their conditional means) based upon
observations up to time t. This is the idea known as certainty equivalence. As we
have seen in the previous section, the distribution of the estimation error £; — @ does
not, depend on Uy—1. The fact that the problems of optimal estimation and optimal
control can be decoupled in this way is known as the separation principle.

Proof. The proof is by backward induction. Suppose (11.8) holds at ¢. Recall that

§p = Afy—y + Bug—1 + HiGe, Apq = F—1 — Te—1-

Then with a quadratic cost of the form c(z,u) = 2T Rz + 2uT Sz + u' Qu, we have

F(W;—1) = min E [e{ze—1, ue-1) + #IL#e + -0 | Wio1, 1]

Ut—1

=min & —ﬂﬁwwlw = Dﬁluvﬁ:lwu
Up—1

+ (A%y—1 + Bug—1 + Hy () T (Ad¢—1 + Bug—1 + HiG) | Wi, e 1]

= min [e(#e-1,u-1) + (B2 + Bug_1) Ts(A&e_y + Bug-1)] +-+
where we use the fact that conditional on Wi_1, ts—1, both Ay_q and G have zero
means and are policy independent. This ensures that when we expand the quad
in powers of A;; and H,(; the expected value of the linear terms in these q
are zero and the expected value of the quadratic terms (represented by + -+ ) are
independent. M

11.4 Example: inertialess rocket with noisy position sensing

Consider the scalar case of controlling the position of a rocket by inertialess control of
its velocity but in the presence of imperfect position sensing.

Ty = Tg—1 + U1, Y = &t + Tty

where 7 is white noise with variance 1. Suppose it is desired to minimize
h—1

E MU up + D}
t=0

Notice Lhat the observational relation differs from the usual model of 3 = Cxe_1 + M
To derive a Kalman filter formulae for this variation we argue inductively from scratch.
Suppose £4—1 — Te—1 ~ N(0,V;—1). Consider a linear estimate of x¢,

Fp = Fp-1 T Ut-1+ Hi(y — &e—1 — Up—1) -
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(The relevant innovation process is now g = y¢ — Ly—1 — us_1.) Subtracting the plant
equation and substituting for ; and y; gives

Ky = Byt + Hele — By=1)-
The variance of A; is therefore
var Ay = Vi1 — 2H Vi1 + mwwﬁH + Siuv S

Minimizing this with respect to H, gives Hy = Vi1(1+ Vi—1)71, so the variance in the
least squares estimate of z; obeys the recursion,

Vi = Vit = V2401 4 Vi)t = Viea/ (14 Vea).

Hence
—3 = -
Vi HS|H+HH...H5H+?

[f there is complete lack of information at the start, then d\oL =0,V =1/t and

&y = By U1+

Vie1(ye — Bo-1 —Ue—1) _ (6 — 1) (-1 +ue—1) T
1+Via t .

As far at the optimal control is concerned, suppose an inductive hypothesis that
(W) = &700 + -+, where - ' denotes policy independent terms. Then

F(Wi1) = mwm {v* + El&s—1 +u+ Hyly, — $1—1 — )T+ }
._ﬂm AT.% + (#-1+ w)?T0; + E[He(ne — AT + - ¥

Minimizing over u we obtain the usual Riceati recursion of
g =10 — I2/(1+10;) = I /(1 + Ih) -

Hence I, = D/(1+D(h—t)) and the optimal control is the certainty equivalence control
ug = —Di/(1 + D(h —t)). This is the same control as in the deterministic case, but
with x; replaced by #:.

44



