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6.3. Partial observations and the separation principle 

We now consider control problems associated with the full state
space model 

Xk+ I = A(k)Xk + B(k)uk + C(k)wk 

Yk = H(k)Xk + G(k)Wk· 

(6.3.1) 

(6.3.2) 

As before, the initial state Xo has mean and covariance mo, Po and 
is uncorrelated with Wk. In this case the state X k cannot be measured 
directly, but 'noisy observations' / = (Yo, YI'···' Yk) are available at 
time k. Thus the control Uk will be a feedback function of the form 

Uk = uk(/). (6.3.3) 

This is the 'full LQG problem'. The difficulty here is, of course, that 
knowledge of / does not (except in special cases) determine Xk exactly, 
and the current state X k is just what is needed for controlling the 
system at time k. We deal with this by replacing the state-space model 
(6.3.1), (6.3.2) by the corresponding innovations representation. As 
discussed in Section 3.4, this provides an equivalent model in the form 

Xk+ l1k = A(k)xk1k _ 1 + B(k)uk + K(k)Vk 

where the innovations process Vk is given by 

Vk = Yk - H(k)xk1k _1 

so that Yk satisfies 

( 6.3.4) 

(6.3.5) 

Yk = H(k)xk1k _1 + Vk· (6.3.6) 

The Kalman gain K(k) is given by (3.3.5). The new 'state' of the system 
is Xk1k _ I and this is determined exactly by /-1. We thus reduce the 
situation to one in which the state is known, and can then apply the 
results of the previous section to determine optimal control policies. 
First, however, the status of the innovations representation (6.3.4), 
(6.3.6) must be clarified. We do this before continuing with our 
discussion of optimal control problems in Section 6.3.2 below. 

6.3.1 The Kalman filter for systems with feedback control 

In the derivation of the Kalman filtering formulae in Section 3.3 it was 
assumed that {wk } was a weak-sense white noise (Wk and WI uncorrela
ted for k =I l) and that {Uk} was a deterministic sequence. Under these 
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conditions xklk - 1 given by (6.3.4) is the best linear (more precisely, 
affine) estimator of Xk given l-l, and the input/output properties of 
the model (6.3.4), (6.3.6) are identical to those of the original model 
(6.3.1), (6.3.2). Now, however, we wish to consider controls Uk which 
are not deterministic but which are feedback functions as in (6.3.3). 
Further, there is no reason why uk(l) should be a linear function of l. 
Suppose in fact that this function is nonlinear. Combining (6.3.3)
(6.3.5), we see that Xklk -1 satisfies 

xk+lIk = A(k)xklk _1 + B(k)uk(l) + K(k)(Yk - H(x)xklk _1)· (6.3.7) 

Given the sequence yj = (Yo, Yl,'" ,y), one can use this equation for 
k = 0, 1, ... ,j to compute Xj+ lIi' Thus xj + 1lj is a function of yi, say 

xj + Ilj = giyi)· 

Now gj is a nonlinear function, due to the nonlinearity of Uk in (6.3.7). 
So xj + Ilj cannot possibly be the best linear estimator of Xj+ I given yi, 
as it would be were Uk deterministic. To get round this apparently 
awkward fact, we use the alternative interpretation of the Kalman 
filter, namely that if the Wk are independent normal random vectors 
and Xo is normal, then xj + Ilj is the conditional expectation of xj + I 

given yj. The advantage of this formulation is that there is no 
requirement that a conditional expectation should be a linear function 
of the conditioning random variables. 

Theorem 6.3.1 

Suppose that, in the model (6.3.1), (6.3.2), Xo, Wo, WI'''' are normally 
distributed and that Uk is a feedback control as in (6.3.3). Let xklk - 1 be 
generated by the Kalman filter equation of Theorem (3.3.1). Then 

(6.3.8) 

The innovations process (6.3.5) is a normal white-noise sequence. 

PROOF The proof relies on Proposition 1.1.6 which shows that 

if yj, yj are random vectors which are related to each other in a one-to
one way, i.e. there are functions hj' hj- I such that 

yj = h iyi), yi = h j- I (yj). 
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As in Section 3.4, let us write the state X k in (6.3.1) as X k = xk + xt, and 
correspondingly Yk = Yk + yt, where Xk' xt, Yk' yt satisfy: 

Xk+_l = A(k)~k + C(k)Wb Xo = Xo - rno} 

Yk = H(k)Xk + G(k)wk 

xt+ 1= A(k)xt + B(k)uk(yk), X6 = rno } 

yt = H(k)xt· 

(6.3.9) 

(6.3.1 0) 

Equations (6.3.9) are linear, so that Xk+ I' Yk are zero-mean normal 
random vectors for all k. xt+ I and yt are random vectors which 
depend on yk since uk(yk) = ukW + y*k). Applying the standard 
Kalman filter results from Section 3.3 we see that Xk+ Ilk: = E[Xk + lit] 

satisfies 

(6.3.11) 

where K(k) is given by (3.3.5). We cannot obtain (6.3.4) immediately by 
adding (6.3.11) to (6.3.10) because the conditioning random variable is 
t and not yk as required. However, yk and yk are equivalent in the 
sense mentioned earlier. Indeed, plainly from (6.3.10), xt, and hence 
yt, is determined by yk-l =(YO'YI""'Yk-I)' Thus 

Yk = Yk - yt =:hk(yk). 

Conversely, suppose yk = (Yo, Yl"'" Yk) is given; then Yk is deter
mined. We show this by induction. Suppose that for j = 0, 1, ... , k 
there are functions fj such that 

(6.3.12) 

Then given yk we can calculate Yj' 0 S j s k, and hence yt+ I, using 
(6.3.10). But now 

- * f (-k+l) Yk+1 =Yk+l + Yk+1 =:Jk+1 Y 

Thus (6.3.12) holds for j = k + 1. At time zero, 

Y6 = H(0)X6 = H(O)rno 

and rno is known, so that 

Yo = H(O)rno + Yo =:fo(Yo)· 

Thus (6.3.12) holds for all j, and f j = hj- 1 • 

This argument shows that yk and yk are obtained from each other in 
a one-to-one fashion, and hence that 

xk+ llk = E[xk+ llyk] = E[xk+ 11yk]. 
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Now xt+ 1 is a function of yk, so that 

E[xt+ Ill] = xt+ l' 

Combining these relations, we obtain 

E[Xk+ Ill] = E[xt+ 1 + xk+ Ill] 
* '" = X k + 1 + X k+1Ik ' 

Adding the equations (6.3.10) and (6.3.11) shows that Xk+ 1Ik : = 

E[xk + Ill] satisfies (6.3.4). Thus (6.3.4) is indeed the Kalman filter 
when Uk is afeedback control, as long as the disturbance process Wk is 
a normal white-noise process. As regards the innovations process Vk, 

note that 

Vk = Yk - H(k)xklk _ 1 

= Yk + yt - H(k)(xt + xklk - 1) 

= Yk - H(k)xklk _ 1• 

Thus Vk coincides with the innovations process corresponding to the 
control-free system (6.3.9). It is therefore a normal white-noise process 
with covariance 

as in Section 3.4. 

(6.3.13) 

D 

It is perhaps worth pointing out that, even if Wk is a normal white
noise process, the state process Xk is not necessarily normal, since 
(6.3.1), (6.3.2) determine X k as a possibly nonlinear function of W k - 1• 

However, the conditional distribution of X k given l-1 is normal, since 
Xk has the representation 

* '" ~ Xk = Xk + xklk - 1 + X klk - 1 

= xklk - 1 + xklk - 1 

where xklk - 1 = Xk - xklk - 1 is a normal random vector with mean 0 and 
covariance P(k) given by (3.3.6). Thus the conditional distribution of 
Xk given l -1 is N(xklk _ P P(k)). 

6.3.2 The linear regulator problem 

Let us now return to the control problem of choosing Uk to minimize 
the cost 

CN(u) = E( :t: IID(k)Xk + F(k)uk I1 2 + X~QXN ). (6.3.14) 
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This is the same form of cost as in Section 6.2 but a different class of 
controls is involved. In this section we shall consider feedback 
controls of the form 

( 6.3.15) 

rather than uk(/) as discussed above. Controls (6.3.15) are of course a 
sub-class of those previously considered - we are now insisting that 
the control Uk should depend on the observations Yj for times j up to, 
but not induding k, whereas previously dependence on Yk also was 
allowed. This restriction is introduced for two reasons. Practically, it 
means that 'instant' data processing is then not required: at time k we 
record the new observation Yk, and apply the control uk(l- 1) which 
can be computed somewhat in advance since it does not depend on Yk. 
Mathematically, controls (6.3.15) are related, as will be seen below, to 
our formulation of the Kalman filter as a predictor, giving the best 
estimate xk1k - 1 of X k given /- 1. Analogous results can be obtained for 
controls uk(l), but these involve the Kalman filter in the form which 
computes the current state estimate xk1k ' and this is somewhat more 
complicated. 

The cost CN(u) in (6.3.14) is expressed in terms involving the state 
variables X k ; we wish, however, to use the innovations representation 
(6.3.4) in which the state variable is xk1k - 1• The first task is therefore to 
re-express CN(u) in a way which involves xk1k - 1 rather than Xk, and 
this is done by introducing conditional expectations as follows: 

CN(u) = ECt~ E[ IID(k)Xk + F(k)ukI1 2 1/- 1 ] 

+ E[X~QXNlyN-l]). 

Now Xk can be expressed in the form 

Xk = xk1k - 1 + xk1k - 1 

(6.3.16) 

where xk1k - 1 is a function of /-1 and the estimation error xk1k - 1 is 
independent of /-1 with distribution N(O, P(k)). We can simplify the 
terms in (6.3.16) using this fact and properties of conditional 
expectations. The last term is: 

E[X~QXNlyN-l] = E[(xN1N _1 + XNIN_l)TQ(XNIN_l + XNIN_l)lyN-l] 

= x~IN-1QXNIN-l + E[x~IN_1QXNIN_1IyN-I] 
= x~IN-1QXNIN-l + tr[P(N)Q]. 
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Similarly the kth term in the sum becomes 

E[(D(k)xk1k _1 + F(k)Uk + D(k)xk1k _/ 

'(D(k)xk1k _1 + F(k)uk + D(k)Xklk_l)ll-l] 

= IID(k)xk1k _1 + F(k)uk 112 + tr [P(k)DT(k)D(k)] 

281 

where we have used the fact that Uk is a function of /-1. Thus 

N-l 
+ L tr[D(k)P(k)DT(k)] + tr[P(N)Q]. (6.3.17) 

k=O 

This expresses CN(u) in a way which involves the state xk1k - 1 of the 
innovations representation. The important thing to notice about this 
expression is that the first term is identical to the original expression 
(6.3.14) with Xk replaced by xk1k - 1' and that the remaining two terms 
are constants which do not depend in any way on the choice of Uk' 
Thus minimizing CN(u) is equivalent to minimizing 

E( :t: IID(k)xk1k _1 + F(k)uk I1 2 + X~IN-IQXNIN-l) (6.3.18) 

where the dynamics of xk1k - 1 are given by (6.3.4), namely 

xk1k - 1 = A(k)Xklk_l + B(k)uk + K(k)Vk' (6.3.19) 

Since the innovations process Vk is a sequence of independent normal 
random variables, the problem (6.3.18)-(6.3.19) is the standard 
'completely observable' regulator problem considered in the previous 
section. All coefficients are as before except for the 'noise' term K(k)Vk 
in (6.3.19). However, it was noted in Section 6.2 that the optimal 
control for the linear regulator does not depend on the noise 
covariance. Therefore the optimal control coefficients are the same as 
in the completely observable case. We have obtained the following 
result: 

Theorem 6.3.2 

The optimal control for the noisy observations problem (6.3.1), 
(6.3.2), (6.3.14) is 

uf = - M(k)Xklk_l (6.3.20) 
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where M(k) is given as before by (6.1.16). The cost of this policy is 

N-l 
CN(tJ1) = m'&S(O)mo + tr[P(N)Q] + L tr[D(k)P(k)DT(k) 

k=O 

+ G(k)GT(k))KT(k)S(k + 1)]. 

+ K(k)(H(k)P(k)HT(k) (6.3.21) 

PROOF Only the expression (6.3.21) for the optimal cost remains to 
be verified. We use the expression (6.2.9) for the completely observable 
case. First, note that the initial condition for (6.3.19) is deterministic: 
X01 _ 1 = O. Next, consider the contribution of the 'noise' term K(k)Vk' 
Define 

Vk = [H(k)P(k)HT(k) + G(k)GT(k)] -1/2Vk 

(the inverse exists since by our standing assumptions G(k)GT(k) > 0). 
From (6.3.13) we see that E[vkvn = 1, so that vk is a normalized white
noise process, and (6.3.19) can be written 

xk+l1k = A(k)xk1k _ 1 + B(k)Uk + K(k) [H(k)P(k)HT(k) + G(k)GT(k)]I/2Vk. 

This is now in the standard form of (6.2.1) with a new 'C-matrix' 
K[HPHT + GGT] 1/2 and we can read off the optimal cost from 
(6.2.9). Remembering that the two constant terms from (6.3.17) must 
also be included, we obtain (6.3.21). 0 

Let us summarize the computations needed in order to implement 
the control policy described in Theorem 6.3.2. They are as follows: 

(a) Solve the matrix Riccati equation of dynamic programming 
backwards from the terminal time to give matrices S(N), ... , S(O): 

S(k) = AT(k)S(k + l)A(k) + DT(k)D(k) 

- [AT(k)S(k + I)B(k) + DT(k)F(k)] 

[BT(k)S(k + l)B(k) + FT(k)F(k)]-1 

[BT(k)S(k + l)A(k) + FT(k)D(k)] 

S(N) = Q. 

This determines the feedback matrices 

M(k) = [BT(k)S(k + l)B(k) + FT(k)F(k)]-1 

[BT(k)S(k + I)A(k) + FT(k)D(k)]. 

(6.3.22) 

(b) Solve the matrix Riccati equation of Kalman filtering forwards 
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from the initial time to give matrices P(O), . .. , P(N): 

P(k + 1) = A(k)P(k)AT(k) + C(k)CT(k) - [A(k)P(k)HT(k) + C(k)GT(k)] 

H(k)P(k)HT(k) + G(k)GT(k)]-1 

[H(k)P(k)AT(k) + G(k)CT(k)] 

P(O) = Po. (6.3.23) 

This determines the Kalman gain matrices 

K(k) = [A(k)P(k)HT(k) + C(k)GT(k)] [H(k)P(k)HT(k) + G(k)GT(k)] -1. 

It is important to notice that these computations refer independ
ently to the control and filtering problems respectively, in that (a) 
involves the 'cost' parameters Q, D(k), F(k) but not the 'noise' 
parameters Po, C(k), G(k), whereas the converse is true in the case of 
(b). 

The property that the optimal control takes the form zF(k) = 

- M(k)x k1k _ 1 where M(k) is the same as in the deterministic or 
complete observation cases, expresses the so-called 'certainty
equivalence principle' which, put in another way, states that, 
optimally, the controller acts as if the state estimate xk1k - 1 were equal 
to the true state Xk with certainty. Of course, the controller knows that 
this is not the case, but no other admissible strategy will give better 
performance. 

That M(k) is unchanged in the presence of observation noise is 
entirely due to the quadratic cost criterion which ensures that the cost 
function for the problem in innovations form is, apart from a fixed 
constant, the same as that in the original form. On the other hand, the 
fact that the intermediate statistic to be computed is xk1k - 1' regardless 
of cost parameters, is a property which extends to more general forms 
of cost function. To see this, recall that whatever admissible control is 
applied, the conditional distribution of X k given i-I is N(x k1k _ 1, P(k)). 
Now suppose that the cost to be minimized takes a general form 
similar to (6.1.14), i.e. 

CN(u) = E( :t: I(k, Xk , Uk) + g(XN)) 

where I and g are, say, bounded functions. Introducing intermediate 
conditional expectations, we can express CN(u) as 

CN(u) = E( :t~ E[I(k, Xk' uk)li- 1] + E[g(xN)lyN-l] ). 
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The conditional expectation can now be evaluated by integrating 
with respect to the conditional distribution. This gives 

and 

where 

Thus 

E[l(k, xk , uk)ll- 1 ] = ~k, xk1k - 1' Uk) 

~k, X, u) = f ~n l(k, z, u) (2n)nI2(de:(p(k)))1/2 

·exp((z - X)Tp-1(k)(z - x)) dz 

A A f 1 
g(x) = ~n g(z) (2n)"/2(det(P(N)))1/2 

·exp((z - X)TP-1(N)(z - x)) dz. 

(6.3.24) 

The problem (6.3.19), (6.3.24) is now in innovations form and can be 
solved by dynamic programming. Define functions Wo, ... , WN by 

WN(x) = g(x) 

Wk(x) = min {~k, x, v) + E(V)Wk(Ax + Bv + K(k)vk) 
v 

k= N -1, ... ,0 (6.3.25) 

where E(v) denotes expectation taken over the distribution ofvk , which 
is N(O,HP(k)HT + GGT). Let a1(k,x) be a value of v which achieves 
the minimum in (6.3.25). Then the optimal control is 

af = a1(k, xk1k - 1) 

with minimal cost 

CNW) = Wo(mo)· 

This can be checked by the same sort of 'verification theorem' proved 
earlier. Thus is this general problem the 'data processing' still consists 
of calculating Xk1k - 1 via the Kalman filter, but the control function 
a1(k, x) is not related in any simple way to the control function u1(k, x) 
which is optimal in the case of complete observations. 
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r-------,----.~ 
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I ~ I 

4-14--1 Kalman filter 

L - - - - - - - __ J Controller 

Fig. 6.2 

In summary, we see that the optimal controller separates into two 
parts, a filtering stage and a control stage as shown in Fig. 6.2. The 
filtering stage is always the same regardless of the control objective. 
This is the separation principle. The certainty-equivalence principle 
applies when a1(k, Xk) is the optimal completely observable control, 
but this is a much more special property which holds only in the 
quadratic cost case. 

These results point to a general cybernetic principle, namely that 
when systems are to be controlled on the basis of noisy measurements 
the true 'state' of the system which is relevant for control is the 
conditional distribution of the original state given the observations. 
Note that in the LQG problem this is completely determined by xk1k - t 

since the conditional distribution is N(xk1k_1' P(k)) and P(k) does not 
depend on the observations. Thus the Kalman filter in effect updates 
the conditional distribution of X k given yk- 1. The problem can be 
solved in an effective way because ofthe simple parametrization of the 
conditional density and the fact that there is an efficient algorithm -
the Kalman filter - for updating the parameter x k1k - 1• More general 
problems typically involve extensive computation due to the lack of 
any low-dimensional statistic characterizing the conditional 
distributions. 

6.3.3 Discounted costs and the infinite-time problem 

In this section we will assume that the system matrices A, B, H, C, G 
are time-invariant, that D(k) = l/2 D, F(k) = l/2 F, and that Q is 
replaced by pNQ for some p < 1, so that the cost function becomes 

C~(u) = E[ :t~ III DXk + FUk 112 + pNX~QXN 1 
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In view of the 'separation property', the Kalman filter matrices P(k), 
K(k) are unaffected by the discount factor p. By specializing the 
preceding results, or by using an argument involving x~, u~ as in 
Section 6.2, one can verify that the control which minimizes C~(u) is 

Ap _ MP(k) A Uk - - xklk~l 

with MP(k) as before. The cost corresponding to uP is 

C~(uP) = m'6SP(O)mo + pN tr[P(N)Q] 
N~ 1 

+ L pktr[DP(k)DT 

k=O 

Thus if a discount factor is introduced, the filtering computation (b) is 
unchanged while, in the control computation (a), A and B are replaced 
by p1/2 A, p1/Z B respectively. 

Turning now to the minimization of the infinite-time cost, 

C~(u) = E[Jolll DXk + FUkII Z } 

we have to consider the asymptotic properties of both Riccati 
equations (6.3.32) and (6.3.23). The conditions required are as follows 

where 

(~'~)} stabilizable 
(A,C) (6.3.26) 

(15, A)} 
(H,A) 

A = A - CGT(GGT)~ 1 H 

C = C[I - GT(GGT)~1G] 

detectable 

A = A - B(FTF)~ 1 FTD 

15 = [I - F(FTF)~ 1 FT]D. 

These conditions simplify under the additional conditions, assumed 
at the outset in most treatments of LQG control, that CGT = 0 (no 
correlation between state and observation noise) and FTD = 0 (no 
'cross-term' in the cost criterion). Under these conditions, A = A = A, 
C = C and 15 = D; thus conditions (6.3.26) stipulate that the system be 
stabilizable from either the control or the noise input, and that it be 
detectable either via the output HXk or via the 'output' DXk appearing 
in the cost function. 
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According to the results in Appendix B, conditions (6.3.26) 
guarantee that the algebraic Riccati equations corresponding to 
(6.3.22), (6.3.23) have unique non-negative definite solutions S, P 
respectively and that the solutions of (6.3.22), (6.3.23) converge to S, P 
for arbitrary non-negative definite terminal condition Q and initial 
condition Po respectively. The optimal control for the infinite-time 
problem can now be obtained by applying the results of Section 6.2 
concerning the completely observable case. Indeed, the innovations 
representation is, as above, 

Xk+ 11k = AXk1k _ 1 + BUk + C(k)Vk (6.3.27) 

where Vk is the normalized innovations process and 

C(k) = K(k) [HP(k)HT + GGT]1/2. 

Note that, as k -t 00, 

C(k) -t C = K[HPHT + GGT]1/2. 

where P is the solution of the algebraic Riccati equation and K the 
corresponding Kalman gain. As in (6.3.17) the cost expressed in terms 
of xk1k - 1 is 

C~(u) = E[k~/k II DXk1k - 1 + FUk 112] + k~/k tr[DP(k)DT] 

(6.3.28) 

and the final sum is finite since tr[DP(k)DT] -ttr[DPDT] as k-t 00. 

We now apply the results of Section 6.2 to the infinite-time completely 
observable problem constituted by (6.3.27), (6.3.28), and conclude that 
the optimal control is 

(6.3.29) 

with cost, as in (6.2.16), 

00 00 

m'6SPmo + I pH 1 tr[CT(k)SPC(k)] + I pktr[DP(k)DTJ. 
k=O k=O 

Substituting for C(k) gives the final cost expression 

00 

C~(ap) = m'6SPmo + I l[DP(k)DT 

k=O 
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Appearances to the contrary, uf given by (6.3.29) is not a constant
coefficient controller since the gain K(k) in the Kalman filter depends 
on P(k) which is not constant unless Po happens to be equal to the 
stationary value P. A simpler control algorithm is obtained if K(k) is 
replaced by its stationary value K = [APHT + CGT] [HPHT + 
GGT] - 1, that is we apply the control value 

(6.3.30) 

where Zk is generated by 

zk+ 1 = AZk - BMPZk + K(Yk - Hzk) 

(6.3.31) 

(this is the Kalman filter algorithm with P(k) replaced by P). Of 
course, Zk is in general not equal to xk1k - 1• Control vP is not optimal for 
the discounted cost problem, but VI is optimal in the sense of 
minimizing the average cost per unit time, 

(6.3.32) 

As remarked earlier, this criterion is insensitive to the behaviour ofthe 
process for small k; and, for large K, Zk and xk1k - 1 are practically 
indistinguishable. 

Theorem 6.3.3 

Suppose conditions (6.3.26) hold. Then the control VI given by 
(6.3.30), (6.3.31) with p = 1 minimizes CaJu) in the class of all output 
feedback controls such that Cav(u) exists and Ell xk 112 is bounded. The 
minimal cost is 

(6.3.33) 

PROOF It follows from the arguments above and Theorem 6.3.2 
that the control u1 of (6.3.20) is optimal for Cay and that its cost is 
given by the expression in (6.3.33). Thus it remains to show that VI is 
admissible and that its cost coincides with that of 11 1. 

Define ~k: = X k - Zk' Recalling that Yk = HXk + GWk and hence that 
Yk - HZk = H(xk - Zk) + GWb we see that the joint process (Zb ~k) 
satisfies: 
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[Zk+1J [A - BM KH J[ZkJ [ KG ] 
~k+l = 0 A-KH ~k + C+KG Wk 

-[ZkJ -=:A ~k + Cwk • (6.3.34) 

Under conditions (6.3.26) both A - BM and A - KH are stable. This 
implies that A is stable since the eigenvalues of A are those of 
(A - BM) together with those of (A - KH). Thus the covariance 
matrix Bk of (Xk' ~k) is convergent to B satisfying B = ABAT + CCT. 
Since Xk = ~k + Zk> this shows that Ell Xk 112 is bounded and CavW) 
exists. Note that 

DXk + FIJi = D[ ~:J 
where D = (D - FM, D), so that 

CavW) = tr[DBDT]. 

The process 11k: = col {x k1k -\, xk1k - 1} satisfies (6.3.34) with A and C 
replaced by A(k) and C(k) obtained by substituting K(k) for K in A 
and C. Denote r(k): = cov (11k). Then r(k) satisfies 

r(k + 1) = A(k)r(k)AT(k) + C(k)CT(k) 

We know that r: = lim r(k) exists and that 

Cav(U') = tr[DrDT]. 

(6.3.35) 

Taking the limit as k -+ 00 in (6.3.35) we see that r satisfies r = 
Ar AT + CCT, i.e. r = B. This completes the proof. 0 

Finally, a remark on the stabilizability and detectability conditions 
(6.3.26). The conditions on (A, B), (15, A) ensure that SP, the solution to 
the 'discounted' algebraic Riccati equation, exists for any P < 1, but if 
these conditions are not met then SP may only exist for P < Po for 
some Po < 1. According to the separation principle, however, 
discounting has no effect on the Riccati equation (6.3.23) generating 
P(k) so that no weakening of the conditions on (A, C) and (H,A) is 
possible. The reason for this minor asymmetry in the problem is of 
course that, while we are free to select the cost function coefficients D, 
F in any manner we choose, their counterparts C and G in the filtering 
problem are part of the system specification. 
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As in the complete observations case, little can be said about the 
average cost problem if conditions (6.3.26) are not met. 

Notes 

Dynamic programming was introduced in its modern form by 
Bellman (1957). Recent texts describing various aspects of it include 
Bertsekas (1976) and Whittle (1981). The linear regulator problem 
was solved by Kalman (1960) who also noted the filtering/control 
duality. For references on properties of the Riccati equation and the 
algebraic Riccati equation, see Chapter 3. The use of linear/quadratic 
control as a design methodology for multivariable systems has been 
pioneered by Harvey and Stein (1978); see also Kwakernaak (1976). 

The 'certainty-equivalence principle' was first enunciated in the 
economics literature, by Simon (1956). The 'separation principle' is 
clearly presented (for continuous-time systems) in Wonham (1968) 
and is also discussed in Fleming and Rishel (1975). The stochastic 
linear regulator is discussed in one form or another in most texts on 
stochastic control, including Bertsekas (1976) and Whittle (1981). 
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