
Pirâmide de Números

�Problema clássico das Olimpíadas 
Internacionais de Informática de 1994

Calcular a rota, que começa no topo 
da pirâmide e acaba na base, com 
maior soma . Em cada passo podemos 

Problema

Pedro Ribeiro9Programação Dinâmica

maior soma . Em cada passo podemos 
ir diagonalmente para baixo e para a 
esquerda ou para baixo e para a 
direita.



Pirâmide de Números

�Duas possíveis rotas

Pedro Ribeiro

�Limites: todos os números da pirâmide são inteiros 
entre 0 e 99 e o número de linhas do triângulo é no 
máximo 100.
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Soma = 21 Soma = 30



Pirâmide de Números

�Como resolver o problema?

�Ideia: Força Bruta!

� avaliar todos os caminhos possíveis e ver 
qual o melhor.
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�Mas quanto tempo demora isto?

� Quantos caminhos existem?
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Pirâmide de Números

�Análise da complexidade
� Em cada linha podemos tomar duas decisões 
diferentes: esquerda ou direita

� Seja n a altura da pirâmide. Uma rota é constituída por 
n–1 decisões diferentes.

� Existem 2n-1 caminhos diferentes. Então, um programa 
que calculasse todas rotas teria complexidade temporal 
O(2n): crescimento exponencial!

� Note-se que 299≈≈≈≈6,34x1029, que é um número 
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� Note-se que 2 ≈≈≈≈6,34x10 , que é um número 
demasiado grande!
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Pirâmide de Números

�Quando estamos no topo da pirâmide, temos 
duas decisões possíveis (esquerda ou direita):

�Em cada um dos casos, temos de ter em conta 

Pedro Ribeiro

�Em cada um dos casos, temos de ter em conta 
todas as rotas das respectivas subpirâmides 
assinaladas a amarelo.
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Pirâmide de Números

�Mas o que nos interessa saber sobre estas 
subpirâmides?

Apenas interessa o valor da sua melhor rota 
interna (que é um instância mais pequena 
do mesmo problema)!

Pedro Ribeiro

interna (que é um instância mais pequena 
do mesmo problema)!

�Para o exemplo, a solução é 7 mais o máximo 
entre o valor da melhor rota de cada uma das 
subpirâmides
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Pirâmide de Números

�Começar a partir do fim!

Pedro Ribeiro19Programação Dinâmica



Pirâmide de Números

�Começar a partir do fim!
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4 5 2 6 5



Pirâmide de Números

�Começar a partir do fim!

7 12 10 10
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4 5 2 6 5

7 12 10 10



Pirâmide de Números

�Começar a partir do fim!

30

7 12 10 10

20 13 10

23 21
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4 5 2 6 5

7 12 10 10



Pirâmide de Números

�Se fosse necessário saber constituição da 
melhor solução?
� Basta usar a tabela já calculada!

20 13 10

23 21

30
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4 5 2 6 5

7 12 10 10

20 13







































CHAPTER 6 

Optimal control for state-space 
models 

This chapter concerns optimal control problems for the state-space 
models discussed in Chapters 2 and 3. The state and observation 
processes Xk and Yk are given respectively by the equations 

Xk + 1 = A(k)Xk + B(k)uk + C(k)Wk 

Yk = H(k)Xk + G(k)wk 

(6.0.1) 

(6.0.2) 

where Wk is a white-noise sequence. We now wish to choose the 
control sequence Uk so that the system behaves in some desirable way. 
We have to settle two questions at the outset, namely what sort of 
controls are to be allowed (or, are admissible) and what the control 
objective is. 

The simplest class of controls is that of open-loop controls which are 
just deterministic sequences uo, U1 , .•. , chosen a priori. In this case the 
observation equation (6.0.2) is irrelevant since the system dynamics 
are entirely determined by the state equation (6.0.1). As we shall see in 
Section 6.1, open-loop controls are in some sense adequate for non
stochastic problems (Wk == 0). Generally, however, it is better to use 
some form of feedback control. Such a control selects a value of Uk on the 
basis of measurements or observations of the system. We have 
complete observations if the state vector Xk can be measured directly, 
and, since the future evolution of the system depends only on its 
current state and future controls and noise, the natural form of 
control is then state feedback: Uk = Uk(Xk). The functions ul), uz(-), . .. 
are sometimes described as a control policy since they constitute a 
decision rule: if the state at time k is x, then the control applied will be 
U = uk(x). Again, the observations Yk are irrelevant in this situation. In 
the case of noisy measurements or partial observations, however, Xk 
cannot be measured directly and only the sequence Yo, Yl'"'' Yk is 
available. Feedback control now means that Uk is determined on the 
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248 OPTIMAL CONTROL FOR STATE-SPACE MODELS 

basis of the available measurements: Uk = uk(Yo, Y 1, ... , Yk)' In this case, 
since Yk is not the state of the system, one generally does better by 
allowing dependence on all past observations, not just on the current 
observation Yk' Finally, we shall assume throughout that the control 
values are unconstrained. It would be perhaps more realistic to 
restrict the values of the controls by introducing constraints of the 
form Iukl s 1. While this causes no theoretical difficulties, it would 
make the calculation of explicit control policies substantially more 
difficult. 

We now turn to the control objective. In classical control system 
design the objectives are qualitative in nature: one specifies certain 
stability and transient response characteristics, and any design which 
meets the specification will be regarded as satisfactory. The 'pole 
shifting' controllers considered in Chapter 7 follow this general 
philosophy. Here, however, our formulation is in terms of optimal 
control. The idea is as follows: the class of admissible controls is 
specified precisely and a scalar performance criterion or cost function 
C(u) is associated with each control. We can then ask which control 
achieves the minimum cost; this control is optimal. Once the three 
ingredients (system dynamics, admissible controls and cost criterion) 
are specified, determination of the optimal control is in principle a 
purely mathematical problem involving no 'engineering judgement'. 
Indeed, optimal control theory has often been criticized precisely on 
these grounds. It may well be that a control which is theoretically 
optimal is subjectively quite unsatisfactory. If it is, this will be because 
the system model is inadequate or because the cost criterion fails to 
take account of all the relevant features of the problem. On the other 
hand, a more realistic model or a criterion which did include all the 
relevant features might well lead to an impossibly complicated 
optimization problem. As usual, the true situation is a trade-off 
between realistic modelling and mathematical tractability, and this is 
where the engineering judgement comes in. 

In this chapter we shall study linear regulator problems, where the 
cost criterion is given by 

(6.0.3) 

The number N of stages in the problem is called the time horizon and 
we shall consider both the finite-horizon (N < (0) and infinite
horizon (N = (0) cases. Further discussion of the cost function C N(U) 
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will be found in Section 6.1. It implies a general control objective of 
regulating the state Xk to 0 while not using too much control energy as 
measured by the quantity ul FT Fuk • Note that the quantity in square 
brackets in (6.0.3) is a random variable and we obtain a scalar cost 
function (as required for optimization) by taking its expected value, 
which is practical terms means that we are looking for a control policy 
which gives the minimum average cost over a long sequence of trials. 

The optimization problem represented by equations (6.0.1 )-( 6.003)is 
known as the LQG problem since it involves a linear system (6.0.1), 
(6.0.2), a quadratic cost criterion (6.003) and gaussian or normal white
noise disturbances in the state-space model. (For reasons explained 
below, {wk } is assumed here to be a sequence of independent normal 
random variables rather than a 'wide-sense' white noise as generally 
considered in previous chapters.) It is sufficiently general to be 
applicable in a wide variety of cases and the optimal control is 
obtained in an easily implemented form. It also has, as we shall see, 
close relations with the Kalman filter. 

In addition to the standard linear regulator as defined above we 
shall study the same problem with discounted costs: 

CP(u) = E[:t: III DXk + FUk 112 + pNX~QXN ] 
where p is a number, 0 < p < 1. There are important technical reasons 
for introducing the discount factor p, but there is also a financial 
aspect to it. Suppose that money can be invested at a constant 
interest rate r% per annum and one has to pay bills of £ao, £a1 , ••• 

each year starting at the present time. What capital is needed to 
finance these bills entirely out of investment income? Since £ 1 now is 
worth £(1 + 0.01 r)k in k years' time, the amount required is Lk akl 
where p = (1 + 0.01 r) -1 and this is one's total debt capitalized at its 
present value. In particular, a constant debt of £ a/year in perpetuity 
can be financed with a capital of 

00 

£ L al=£a/(I-p). 
k=O 

An important feature of this result is that while the total amount of 
debt is certainly infinite, it nevertheless has a finite capital value. 
Similarly, in the control problems, the discount factor enables us to 
attach a finite cost (and therefore consider optimization) in cases 
where without discounting the cost would be + 00 for all control 
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policies. Of course it is not realistic to assume that interest rates will 
remain constant for all time, and a more subjective interpretation of 
CP(u) is simply to say that it attaches small importance to costs which 
have to be paid at some time in the distant future. 

In the three sections of this chapter we discuss the linear regulator 
problem in three stages. First, in Section 6.1 we consider the 
deterministic case when Wk = O. M any of the 'structural features' of the 
LQG problem are already present in this case, and the optimal 
control turns out to be linear feedback: Uk = - M(k)Xk for a precom
putable sequence of matrices M(k). This same control is shown in 
Section 6.2 to be optimal also in the stochastic case with complete 
observations, the effect of the noise being simply to increase the cost. 
Finally we consider the 'full' LQG problem in Section 6.3 and show 
that the optimal control is now - M(k)xk1k _ 1 where xk1k - 1 is the best 
estimate of the state given the observations, generated by the Kalman 
filter. This results demonstrates the so-called 'certainty-equivalence' 
principle: if the state cannot be observed directly, estimate it and use 
the estimate as if it were the true state. We also discuss an idea of 
somewhat wider applicability known as the 'separation principle'. 

6.1 The deterministic linear regulator 

6.1.1 Finite time horizon 

In this section we consider control of the linear system 

Xk+ 1 = A(k)Xk + B(k)uk (6.1.1) 

for k = 0,1, ... , N with a given initial conditionxo. We wish to choosea 
control sequence u=(uO,u1,oo.,UN- 1) so as to minimize the costt 

N-l 

IN(u)= L IID(k)Xk+F(k)UkI12+X~QXN' (6.1.2) 
k~O 

Here D(k), F(k) are matrices of dimensions p x n, p x m respectively 
and Q is a non-negative definite symmetric n x n matrix. It will 
be assumed throughout that the m x m matrices FT(k)F(k) are strictly 
positive definite, which implies in particular that we must have p ~ m. 

We shall also study various infinite-time problems related to 
(6.1.1)-(6.1.2), i.e. consider what happens as N ~ 00. 

tWe denote the cost by J N in the deterministic case, reserving eN for the average cost in 
the stochastic problem. 
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The cost function J N(U) is somewhat different from that convention
ally employed in treatments of this subject. The more usual form of 
cost function is 

where Q(k), R(k) are symmetric non-negative definite matrices (strictly 
positive definite in the case of R(k)). This has more intuitive appeal 
since the terms involving Xk penalize deviation of Xk from 0 while 
L ur R(k)uk is a measure of control energy. Thus the control problem is 
to steer Xk to zero as quickly as possible without expending too much 
control energy; energy expenditure can be penalized more or less 
heavily by appropriate specification of the matrices R(k). This cost 
function is, however, a special case of (6.1.2): take p = n + m and 

where Ql/2(k), Rl/2(k) are any 'square roots' of Q(k), R(k), i.e. satisfy 
(Ql/2(kW Ql/2(k) = Q(k)(and similarly for Rl/2(k)). Such square roots 
always exist for non-negative definite symmetric matrices, as shown 
in Appendix D, Proposition D.1.3. 

We prefer the cost function (6.1.2) because of its extra generality, 
but more importantly because it connects up naturally with the 
formulation of the Kalman filter given in Chapter 3. This will become 
apparent below. 

The control problem (6.1.1)-(6.1.2) can in principle be regarded as 
an unconstrained minimization problem. For a given sequence 
U = (uo, Ul , ... , UN-i) and initial condition xo, the corresponding Xk 
sequence can be computed from the state equations (6.1.1): 

Xl = A(O)xo + B(O)uo 

X 2 = A(l)xl + B(l)Ul 

= A(l)A(O)xo + A(l)B(O)uo + B(l)u l , etc. 

Substituting in (6.1.2), we obtain J N(U) explicitly as a function of 
the mN-vector u=col{uO'ul, .. ,UN - l } and one could now use 
'standard' hill-climbing techniques to find the vector u* which 
minimizes J N(U). This would, however, be a very unsatisfactory way of 
solving the problem. Not only is the dimension mN very large even for 
innocuous-looking problems, but also we have thrown away an 
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essential feature of the problem, namely its dynamic structure, and 
therefore calculation of the optimal u* would give us very little insight 
into what is really happening in the optimization process. 

A solution method which uses in an essential way the dynamic 
nature of the problem is R. Bellman's technique of dynamic pro
gramming. Introduced by Bellman in the mid-1950s, dynamic 
programming has been the subject of extensive research over the 
years and the associated literature is now enormous. We propose to 
discuss it here only to the extent necessary to solve the problem at 
hand. The basic idea is, like many good ideas, remarkably simple, and 
is known as Bellman's principle of optimality. Suppose that u* is an 
optimal control for the linear regulator problem (6.1.1 )-( 6.1.2), that is 
to say, 

for all other controls u = (uo, U1, . .. , UN -1)' Let x~ = xo, x!, .. . , xt be 
the corresponding state trajectory given by (6.1.1) with Uk = ut. Now 
fix an integer j, 0:::;; j < N, and consider the 'intermediate' problem of 
mllllmlzlllg 

N-l 

IN)uW)= L IID(k)Xk+F(k)ud2+X~QXN 
k = j 

over controls u(j) = (Uj,Uj + 1, ... , UN- 1), subject to the dynamics (6.1.1) 
as before with the 'initial condition' 

The intermediate problem is thus to optimize the performance of 
the system over the last N - j stages, starting at a point xj which 
is on the optimal trajectory for the overall optimization problem. 
The principle of optimality states that the control u*U) = 

(uj, uj+ 1" .. , ut _ 1) is optimal for the intermediate problem. Put 
another way, if u* is optimal for the overall problem then u*(j) is 
optimal over the last N - j stages starting at xj. The reason for this is 
fairly clear: if u*U) were not optimal for the intermediate problem then 
there would be some sequence u(j) = (uj , Uj + 1,···, UN -1) such that 

J (uU») < J .(u*U»). N,j\ N,} 

Now consider the control Uo defined as follows: 

k<j 
k?j 
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and let x2 be the corresponding trajectory. Then x2 = xt for k s} and 
hence 

j-l 

IN(UO) = L IID(k)xt + F(k)utI12 + I N.il7(j)) 
k=O 

j-l 

< L IID(k)xt + F(k)ut 112 + J N,/U*(j)) 
k=O 

= IN(u*). (6.1.3) 

But this contradicts the supposition that u* is optimal. Thus u*(j) 
must be optimal for the intermediate problem, as claimed. 

In the preceding argument, the system started in a fixed but 
arbitrary state XO' However, there is nothing special about the 
initial time zero: the same argument implies that if {xt, ut, k ~ j} is 
an optimal control-trajectory sequence for the intermediate problem 
starting at Xj = x (arbitrary) then {xt, ut, k ~ j'} is optimal for the 
further intermediate problem starting at Xj = xJ for any j' between} 
and N-1. 

The principle of optimality is turned into a practical solution 
technique as follows. Let Vj(x) be the minimum cost for the 
intermediate problem starting at Xj = x. This is known as the value 
function at time }. Then taking j' =} + 1, the above argument 
indicates that Vj ought to satisfy 

J.j(x) = min [IIDU)x + Fu)v1l2 + Vj + 1 (AU)x + BU)v)] (6.1.4) 
v 

the minimum being taken over all m-vectors v. Essentially, this comes 
from calculations similar to (6.1.3) above. If Xj = x and control uj = v 
is applied, then: 

(a) The cost paid at time} is IIDU)x + FU)v 112. 
(b) The next state is Xj+ 1 = AU)x + BU)v. 

Thus Vj + l(AU)x + BU)v) is the minimal cost for the rest of the 
problem if control value v is applied at stage }. So certainly 

Vj(x) s II D(j)x + F(j)v 112 + V;+ 1 (A(j)x + B(j)v) (6.1.5) 

and this holds for any value of v. On the other hand, if {xt, ut} is 
optimal over the last N - } stages starting at xj = x, then the principle 
of optimality indicates that 

N-l 

VI(x1) = L IID(k)xt + F(k)ut 112 + xtT Qxt 
k=/ 
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where I is either j or j + I, and this shows since xj = x that 

Jj(x) = IIDU)x + FU)uj112 + Vj + 1(AU)x + BU)uj). (6.1.6) 

Now (6.1.5) and (6.1.6) together imply that (6.1.4) holds. 
Equation (6.1.4) is known as the Bellman equation and is the basic 

entity in discrete-time dynamic programming since it enables the 
optimal control u* to be determined. Note that at the terminal time N 
the value function is 

(6.1.7) 

since no further control is possible and one has no choice but to pay 
the terminal cost of xTQx. Applying (6.1.4) with j = N - 1 gives 

VN- 1(X) = min [IID(N - l)x + F(N -1)v112 
v 

+ (A(N -I)x + B(N -I)V)TQ(A(N - l)x + B(N - l)v)] 

and hence determines VN- 1(X). Now using (6.1.4) again we can cal
culate VN - 2> VN - 3, ... , Yo· By definition, Vo(xo) is then the minimal 
cost for the overall problem starting at state xo. From (6.1.5) and (6.1.6), 
the optimal control uj isjust the value of v that achieves the minimum in 
(6.1.4) with x = xj. 

Before proceeding any further let us consolidate the discussion so far. 
We have used the principle of optimality to obtain the Bellman 
equation (6.1.4) and this suggests the procedure outlined above for 
obtaining an optimal control. Having arrived at this procedure, 
however, we can verify that it is correct by a simple and self-contained 
argument; this will be given below. Thus the principle of optimality is 
actually only a heuristic device which tells us why we would expect the 
Bellman equation to take theform it does; it does not appear in the final 
formulation of any results. One could present the theory without 
mentioning the principle of optimality at all, but this would involve 
pulling the Bellman equation out of the hat, and readers would be left 
wondering - at least, we hope they would be left wondering - where it 
came from. 

Theorem 6.1.1 (Verification theorem) 

Suppose VN- 1(X), VN- 2(X), ... , Vo(x) satisfy the Bellman equation 
(6.1.4) with terminal condition (6.1.7). Suppose that the minimum in 
(6.1.4) is achieved at v = uJ(x), i.e. 
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IIDU)x + F(j)uJ(x) 112 + Vj+ l(A(j)x + BU)uJ(x)) 

..:;; IID(j)x + F(j)vI12 + Vj+ l(A(j)x + BU)v) 

255 

for all m-vectors v. Now define (xt, un recursively as follows: 

X6 =Xo ( 6.1.8) 

ut = u~(xt) } 
X* A * + Bu* k = 0, 1, ... , N - 1. k+ 1 = xk k 

(6.1.9) 

Then u* = (U6,"" U~-l) is an optimal control and the minimum cost 
is Vo(xo). 

PROOF Let u=(uO,""UN- 1) be any control and XO, ... ,XN the 
corresponding trajectory, always with the same initial point Xo' Then 
from (6.1.4) we have 

Hence 

N-l 

VN(XN)- Vo(xo) = L (v,,+l(Xk+l)- Vk(Xk)) 
k=O 

N-l 

~ - L IID(j)xj+F(j)UJ2. 
k=O 

Since VN(XN) = X~QXN this shows that 

Vo(xo) ..:;; J N(U), 

(6.1.10) 

(6.1.11) 

(6.1.12) 

On the other hand, by definition, equality holds in (6.1.10) and hence in 
(6.1.11) when Xj=xj, uj=uj, so that 

(6.1.13) 

Now (6.1.1 2), (6.1.13) say that U* is optimal and that the minimal costis 
Vo(xo)· 0 

Two remarks are in order at this point: 
1. Note that the optimal control is obtained in feedback form, i.e. xt 

is generated by 

xt+ 1 = A(k)xt + B(k)u~(xn 
where u~(·) is a pre-determined function. (See Fig. 6.1(a).) One could in 
principle obtain the same cost Vo(xo) by calculating the ut sequence 
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(a) 

u: ~ System ~Xk* 
(b) 

Fig. 6.1 (a) Feedback control; (b) Open loop control. 

explicitly and applying it inopen 100p(Fig. 6.1(b)) but sucha procedure 
has serious disadvantages. Using the dynamic programming appro
ach, we have in fact not only solved the original overall control problem 
but have solved all the intermediate problems as well: an argument 
identical to that given above shows that the control ut generated by 
(6.1.9) with any initial condition xj = x is optimal for the control 
problem over the last N - j stages starting at Xj = x. Thus iffor some 
reason the system gets 'off course' the feedback controller continues to 
act optimally for the remaining stages of control. On the other hand, the 
values ut calculated for the open-loop control of Fig. 6.1 (b) are based 
on a specific starting point Xo and ifthis is erroneous or if an error occurs 
at some intermediate point then the ut sequence will no longer be 
optimal. 

2. Nothing so far depends on the quadratic nature of the cost 
function (6.1.2). Similar results would be obtained for any scalar cost 
function of the form 

N-l 

J~(u) = L /(k, Xk, Uk) + g(XN)' (6.1.14) 
k=O 

We have seen above that the basic step in solving the optimal control 
problem is to calculate the value functions VV-l(X)"", Vo(x). With 
general cost functions J'(u) as in (6.1.14) this involves an immense 
amount of work since the whole function Vk(') has to be calculated and 
not just the value Vk(x) at some specific point x. The advantage of the 
quadratic cost (6.1.2) is that the value functions take a simple 
parametric form and can be computed in an efficient way. Indeed, the 
value functions are themselves quadratic forms, as the following 
result shows. 
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Theorem 6.1.2 
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The solution of the Bellman equation (6.1.4), (6.1.7) for the linear 
regular problem (6.1.1), (6.1.2) is given by 

k = 0, 1, ... ,N (6.1.15) 

where S(O), ... , S(N) are symmetric non-negative definite matrices 
defined by (6.1.20) below. The optimal feedback control is 

where 
uJ(x) = - MU)x 

MU) = [BTU)SU + l)BU) + FTU)FU)]-l 

. [BTU)SU + l)AU) + FTU)DU)]. ( 6.1.16) 

We see that the optimal controller has a very simple structure, 
namely linear feedback of the state variables. The notation uJ for 
optimal control is used for consistency with the discounted cost case 
to be discussed below. 

PROOF Note that the result is certainly true at k = N since VN(x) = 

xTQx. To show that it holds for k < N we use backwards induction: 
supposing (6.1.15) holds for k = j + 1 we show that it holds for k = j. 
Taking ~+ l(X) = xTS(j + l)x, the Bellman equation (6.1.4) becomes 

~(x) = min [IID(j)x + F(j)vI12 + (xT AT(j) + vTBT(j)) 
v 

'S(j + l)(A(j)x + B(j)v)]. (6.1.17) 

The quantity in square brackets on the right-hand side is equal to 

vT(BTS(j + l)B + FTF)v + 2XT(ATS(j + l)B + DTF)v 

+ xT(ATS(j + l)A + DTD)x (6.1.18) 

where we temporarily write B(j) = B, etc. Now if R is a symmetric 
positive definite matrix and a an m-vector then 

(v + a)TR(v + a) = vTRv + 2aTRv + aTRa 

i.e. 

vTRv + 2aTRv = (v + a)TR(v + a) - aTRa. 

Clearly this expression is minimized over v at v = - a and the 
minimum value is - aT Ra. In order to identify this with the first two 
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terms in (6.1.18) we require 

R = BTS(j + I)B + FTF 

Ra = (BTS(j + I)A + FTD)x. 

Now by assumption FT F, and hence R, is strictly positive definite, and 
therefore a is specified by 

a = R -l(BTS(j + I)A + FTD)x. 

Thus the right-hand side of(6.1.17) is equal to 

xT[ATS(j + l)A + DTD - (ATS(j + l)B + DTF) 

R-1(BTS(j+ l)A+FTD)]x. (6.1.19) 

Hence Vj(x) = xTSU)x where SU) is given by the expression in the 
square brackets in (6.1.19) and SU)zO by (6.1.17). Thus Vk(x) is a 
quadratic form, as in (6.1.15), for all k = 0, 1, ... , N. Note from the 
above analysis (specifically from (6.1.19)) that the matrices S(k) can be 
computed recursively backwards in time starting with S(N) = Q. In 
fact, writing out (6.1.19) in full we see that the S(k) are generated by 

S(N) = Q 
S(j) = AT(j)S(j + 1)A(j) + DT(j)D(j) - (AT(j)S(j + 1)B(j) 

+ DT(j)F(j))(BT(j)S(j + I)B(j) + pT(j)F(j))-l 

. (BT(j)S(j + l)A(j) + FT(j)D(j)) 

j = N - 1, N - 2, ... , O. (6.1.20) 

Applying the dynamic programming results, the optimal feedback 
control is the value of v that achieves the minimum in (6.1.16), and this 
is equal to - a, so that 

u](x) = _[BT(j)S(j+ I)B(j) + FT(j)F(j)]-l 

. [BT(j)S(j + l)A(j) + FT(j)D(j)]x. 

This completes the proof. 

Filtering/control duality 

D 

A very important feature of the above result is its close connection to 
the Kalman filter discussed in Section 3.3. Equation (6.1.20) is a 
Riccati equation of exactly the same type as that appearing in the 
Kalman filter equations, with the distinction that (6.1.20) evolves 
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backwards from a terminal condition at time N whereas the filtering 
Riccati equation (3.3.6) for the estimation error covariance P(j) 
evolves forward from an initial condition at j = O. The Kalman gain 
K(j) is related to P(j) in exactly the same way that the control gain 
M(j) is related to S(j), except for transposition. Specifically, the 
correspondence between the two problems is as shown in Table 6.1. 

Table 6.1 

Filtering 

(time) j 
A(j) 
H(j) 
C(j) 
G(j) 
P(j) 
K(j) 

Control 

This means that if we take the filtering Riccati equation (3.3.6), make 
the time substitutionj --+ N - j and relabel A, H, C, G as AT, BT, DT, pT 

respectively, then we get precisely (6.1.20). The same relabelling 
applied to the expression (3.3.5) for K(j) produces MT(j). Thus the 
Riccati equations (6.1.20) and (3.3.6) are the same in all but notation. 
This will be very important when we come to consider various 
properties of the Riccati equation, since its solution can be regarded 
interchangeably as the value function for a control problem or the 
error covariance for a filtering problem, and various facts can be 
deduced from one or other of these interpretations. 

Discounted costs 

Let us now specialize to the time-invariant system 

Xk+ 1 = AXk + BUk (6.1.21) 

(i.e. A(k) = A, B(k) = B for all k) and consider minimizing a discounted 
cost of the form 

N-l 

J~(u) = L pkllDxk + PUkl12 + pNX~QXN (6.1.22) 
k=O 

where D, P, Q are fixed matrices and p is the discount factor 
(0 < p ~ 1). This is actually a special case of the preceding problem (take 
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D(k) = l12D, F(k) = ll2F and replace Q by pNQ); but there is another 
way of looking at it which provides a little more insight. Write 

N-1 
J~(u).= L lllDxk + FUkll2 + pNX~QXN 

k=O 

N-1 
= L IIDpkl2xk + Fll2ukll 2 + pNX~QXN 

k=O 

N-1 
= L IIDxf + Fufll 2 + X~TQX~ 

k=O 

where we have defined 
xf:= ll2Xk 

uf:= ll2Uk · 

Multiplying (6.1.21) by p(k+ 1)/2 gives 

p(k+1)/2 Xk+1 = pl/2All2Xk + p1/2Bll2Uk 
I.e. 

(6.1.23) 

(6.1.24) 

(6.1.25) 

where AP: = p1/2 A, BP: = p1/2 B. But (6.1.23)-(6.1.25) constitute a time
invariant linear regulator problem in standard non-discounted form. 
The optimal control is therefore 

uf= -(BpTSP(k+ l)BP + FTF)-1(BpTSP(k+ l)AP+FTD)xf 

=: - MP(k)xf 

where SP(k) is the solution of (6.1.20) with A replaced by p1/2 A and B 
replaced by pI/2 B. In view of (6.1.24) the optimal control Uk is 
expressed in terms of the 'real' state Xk by 

Uk = - MP(k)Xk' 

Thus the discounted cost problem is solved simply by taking the 
undiscounted problem and making the substitutions A ---. p1/2 A, 
B ---. pI/2 B. 

6.1.2 Infinite-time problems 

In this section we will continue to assume that the system and costs 
are time-invariant, i.e. the matrices A, B, D, F do not depend on the 
time, k. 

In many control problems no specific terminal time N is involved 
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and one wishes the system to have good 'long-run' performance. This 
suggests replacing (6.1.2) by a cost 

00 

J oo(u) = L IIDxk + FukV (6.1.26) 
k=O 

It is not obvious that the problem of minimizing J oo(u) subject to 
the dynamics (6.1.1) makes sense: it might be the case that J oo(u) = 
+ 00 for all controls u. Note, however, that the problem does make 
sense as long as there is at least one control u such that J CX)(u) < 00. A 
simple sufficient condition for this is that the pair (A, B) be stabilizable, 
i.e. there exists an m x n matrix M such that A - BM is stable. Taking 
for u the feedback control Uk = - Mxk , the system dynamics become 

X k + 1 = (A - BM)xk · 

Now since A - BM is stable, it follows from Proposition D.3.1, 
Appendix D, that there exist constants c > ° and aE(O, 1) such that 

II X k II S; cak II Xo II 
Since II (D - F M)x II S; K II x II for some constant K, the cost using 
control U is 

00 

J oo(u) = L II (D - FM)xk 11 2 

k=O 

00 

S; K2 L IIxkl12 
k=O 

00 

S; c2 K211 Xo 112 I a2k 

k=O 

= c2K211 Xo 11 2/(1- a2 ). 

Thus with any stabilizing control, the norm of Xk decays sufficiently 
fast to give a finite total cost. We will therefore assume henceforth that 
the pair (A, B) is stabilizable. 

If ~(x) is the value function at time k for the infinite-time problem 
then it seems likely that ~ does not actually depend on k, since, there 
being no 'time horizon' and the coefficients being time-invariant, the 
problem facing the controller is the same at time k as at time zero, 
except for some change in the initial state. Recalling the Bellman 
equation (6.1.4), this suggests that the value function V == ~ should 
satisfy 

V(X) = min [IIDx + Fvl12 + V(Ax + Bv)]. (6.1.27) 
v 
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Note this is no longer a recursion but is an implicit equation which 
mayor may not be satisfied by a particular function V. 

Proposition 6.1.3 

Suppose that Vis a solution of (6. 1.27) such that Vis continuous and 
V(O) = O,t and that u1(x) achieves the minimum on the right, i.e. for all 
vectors v, 

II Dx + Fu 1(x) 112 + V(Ax + Bu 1(x)) ~ II Dx + Fv 112 + V(Ax + Bv). 

Suppose also that u1 is a stabilizing control in the sense that II X k II 
-+ 0 as k -+ 00, where Xk is the trajectory corresponding to ul, i.e. 

Xk+ 1 = AXk + Bu1(Xk)· 

Then u1(x) is optimal in the class of stabilizing controls. Equation 
(6.1.27) has the quadratic solution V(x) = xTSx if and only if S satisfies 
the algebraic Riccati equation (6.1.29) below, and in this case the 
corresponding control is 

where 
(6.1.28) 

PROOF Let {Xk,Uk} be any control/trajectory pair such that Ilxkll 
-+ 0 as k -+ 00 and write 

Thus 

N-1 

V(XN) - V(xo) = L V(Xk+ 1) - V(Xk) 
k=O 
N-1 

~ L IIDxk + Fukl1 2 

o 

N-1 

(from (6.1.27)). 

V(xo) ~ L IIDxk + Fuk l1 2 + V(XN)· 
k=O 

Now by the assumptions on V and Xb V(xN) -+ 0 as N -+ 00 and hence 

00 

V(xo)~ L IIDxk + Fukl1 2 = Joo(u). 
k=O 

The same calculations hold with = replacing ~ when U = u1, and this 

t A natural requirement since if x = 0 the control Uk = 0 is plainly optimal. 
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shows that 

V(xo) = J oo(U 1) = min J oo(u). 
u 
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Thus u1 is optimal in the class of stabilizing controls (those for which 
II Xk 11--+ 0 as k --+ 00, Xk being the corresponding trajectory.) 

Since the value function for the finite-horizon problem is a 
quadratic form, let us try a solution to (6.1.27) of the form xTSx where 
S is a symmetric non-negative definite matrix. From (6.1.19), the 
minimum value on the right of (6.1.27) is then 

xT[ATSA + DTD - (ATSB + DTF)(BTSB + FTF)-l(BTSA + FTD)Jx 

and V(x) = xTSx is therefore a solution of (6.1.27) if and only if S 
satisfies the so-called algebraic Riccati equation (ARE): 

S = ATSA + DTD - (ATSB + DTF)(BTSB + FTF( l(BTSA + fID). 
(6.1.29) 

If S satisfies this then certainly V(x) = xTSx is continuous and 
V(O) = O. The corresponding minimizing u1 is given as before by 

u1(x) = - Mx 
where 

M = (BTSB + PF)-l(BTSA + FTD). D 

If the matrix A - BM is stable then Ilxkll--+O as k --+ 00 where 

xk+ 1 = AXk + Bu 1(Xk) = (A - BM)xk· 

The above proof thus shows that if S satisfies (6.1.29) and A - BM is 
stable then the control u l(Xk) = - M Xk is optimal in the class of all 
stabilizing controls. An important feature of this result is that the 
optimal control is time-invariant (does not depend explicitly on k), 
although time varying controls are not in principle excluded. 

It is evident from Proposition 6.1.3 that the infinite time problem 
hinges on properties of the algebraic Riccati equation. These are 
somewhat technical and a full account will be found in Appendix B. 
Let us summarize the main results. The conditions required on the 
coefficient matrices A, B, D, F are as follows: 

(a) The pair (A, B) is stabilizable. 
(b) The pair (15, A) is detectable, where 

A = A - B(P Fr 1 FT D 

15 = [I - F(PF)-l PJD. 

(6.1.30) 
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The first of these conditions is a natural one since, as remarked before, 
it ensures the existence of at least one control giving finite cost. The 
motivation for condition (b) is less obvious, though it does seem clear 
that some condition involving D and F, in particular concerning the 
relation between states X k and 'output' Dxk , is required to justify 
limiting attention to stabilizing controls. Condition (b) takes the 
simpler form 

(b') (D, A) is detectable, 

when PD = 0; this is the case alluded to at the beginning of this 
section, in which the cost takes the form 

IIDxk + Fuk l1 2 = xlDTDxk + ulFTFuk · 

Under conditions (6.1.30), the argument given in Appendix B shows 
that there is a unique non-negative definite matrix S satisfying the 
algebraic Riccati equation, that A - BM is stable, where M is given by 
(6.1.28), and that the control U l(Xk) = - M Xk is optimal in the sense of 
minimizing 1 «)(u) over all control-trajectory pairs (Xk' Uk) satisfying 
the dynamic equation (6.1.1). (The less precise argument summarized 
in Proposition 6.1.3 only shows that U1(X) minimizes 1 <Xl(u) over all such 
pairs satisfying Ilxkll->O as k-> 00.) 

The relation between the finite and infinite-time problems is also 
elucidated in Appendix B. In fact it is shown that under conditions (a) 
and (b), 

S = lim S( - k) (6.1.31) 
k---+ ex:: 

where S( - 1), S( - 2), ... is the sequence of matrices produced by the 
Riccati equation (6.1.19) with S(O) = Q where Q is an arbitrary non
negative definite matrix. Now xTS( - k)x is the minimal cost for the k
stage control problem (6.1.1 )-(6.1.2) with terminal cost xl Qxk . In view 
of (6.1.31) we see that as the time horizon recedes to infinity, the cost of 
the finite-horizon problem approaches that of the infinite horizon 
problem, whatever the terminal cost matrix Q. Q is unimportant 
because II X k II will be very small for large k when the optimal control is 
applied. 

Generally, in the finite-horizon case, the optimal control Uk = 

- M(k)Xk is time-varying. If, however, one selects Q = S as the 
terminal cost, where S satisfies the algebraic Riccati equation, then 
S(k) = S for all k, so that the time-invariant control Uk = - MXk is 
optimal, and this is the same control that is optimal for the infinite
horizon problem. The situation is somewhat analogous to that of a 
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transmission line terminated by a matched impedance. With this 
termination the line is indistinguishable from one of infinite length. In 
the control case, if the terminal cost is xr SXk the controller is 
indifferent between paying it and stopping, or continuing optimally 
ad irifinitum. In either case the total cost is the same, so it is reasonable 
to describe S as the 'matched' terminal cost matrix. 

Finally, let us consider the infinite-time discounted cost problem, 
where the cost function is 

00 

J~(u) = L lllDxk + FUk11
2 • 

k=O 

Proceeding exactly as in the finite-horizon discounted case, we 
conclude that the optimal control is 

Ut:(Xk) = - MPxk · 
Here 

MP = (BPTSPBP + FTF)-l(BPTSPAP + FTD) 

and SP is the solution of the algebraic Riccati equation with A and B 
replaced by AP and BP respectively, where 

The conditions for existence of a solution SP to the modified equation 
are the appropriately modified version of (6.1.30) above, namely 

(c) (AP, BP) is stabilizable. 
(d) (15,AP) is detectable (AP = p1/2 Ii). 

(6.1.32) 

Note that if U is any n x n matrix with eigenvalues )'1"'" An then the 
eigenvalues of p1/2 U are p1/2 A1, . .. , p1/2 An since if Xi is an eigenvector 
corresponding to Ai then 

(6.1.33) 

Thus AP - BP M = p1/2(A - BM) is stable if A - BM is stable. 
Similarly lip - (p 1/2 N)15 = p 1/2(A - N D) is stable if A - N 15 is stable. 
Thus conditions (6.1.30) imply conditions (6.1.32), so that SP exists for 
any p ~ 1 if conditions (6.1.30) are satisfied. However, taking U = A 
and U = A in (6.1.33) we see that,for sufficiently small p, AP and AP are 
both stable and, a fortiori, (AP, BP) and (15, AP) are stabilizable and 
detectable respectively. Thus an optimal solution to the discounted 
cost infinite-time problem always exists if the discount factor p 
sufficiently small. An optimal control with finite cost can, however, be 
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obtained without discounting if the rather mild conditions (6.1.30) are 
met. This contrasts with the situation in the stochastic case consi
dered in the next section, where discounting is always necessary to 
obtain finite costs in infinite-time problems. 

This concludes our discussion of the deterministic optimal regu
lator problem. We need it as a stepping-stone to the stochastic case 
and also to isolate the duality relationships which connect the Riccati 
equations which arise here and in the Kalman filter. In Appendix B, 
the asymptotic behaviour of the Riccati equation is investigated by 
methods which rely heavily on its control-theoretic interpretation. 
But, thanks to the duality properties, these results apply equally to tell 
us something about asymptotic behaviour of the estimation error in 
the Kalman filter. 

In recent years, techniques based on the linear/quadratic optimal 
regulator have become an important component of multivariable 
control system design methodology. It is outside the scope of this 
book to discuss such questions, but some references will be found in 
the Notes and References at the end of this chapter. The essential 
advantage of the linear/quadratic framework in this connection is 
that arbitrary dimensions m and p of input Uk and output DXk are 
allowed, whereas techniques which attempt to generalize the classical 
single-input, single-output methods are seriously complicated by the 
combinatorial fact that there are rp transfer functions to consider, one 
from each input to each output. A subsidiary advantage of the 
linear/quadratic framework is that time-varying systems are handled 
with relative ease. 

6.2 The stochastic linear regulator 

In this section we consider problems of optimal regulation when the 
state equation includes additive noise, as in the state-space stochastic 
model discussed in Section 2.4. Thus Xk satisfies 

(6.2.1) 

where {wd is a sequence of I-vector random variables with mean 0 and 
covariance I. We will assume in this section that Wk and Wj are 
independent (rather than merely uncorrelated) for k =1= j. The initial 
state Xo is a random vector independent of Wk with mean and 
covariance mo, Po respectively. We suppose that the state Xk can be 
measured directly by the controller, so that controls will be feedback 
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functions of the form Uk = Uk(Xk). The obJectlve 1s to m1n1m1ze the cost 
criterion 

CN(U) = E[:t~ IID(k)Xk + F(k)ukI1 2 + X~QXN 1 
The value function Jt}(x) at time j for this problem is the minimum 
value of 

Ej •x [:t; IID(k)Xk + F(k)uk I1 2 + X~QXN ] 
where E j.x denotes the expectation given that the process starts off at 
Xj = x (a fixed vector in [R"). If Xj = x and the control value uj = v is 
applied then the next state is 

xj+ 1 = A(j)x + B(j)v + C(j)Wj 

and, by definition, the minimal remaining cost for the rest of the 
problem from timej + 1 to N is Jt}+ l(Xj+ 1)' This, however, is now a 
random variable since xj+ 1 is determined partly by Wj' The expected 
minimal remaining cost is obtained by averaging this over the 
distribution of Wj' giving a value of 

EWj+ l(A(j)x + B(j)v + C(j)w). 

Thus the minimum expected cost starting at Xj = x, if control uj = v is 
used, is the sum of this and the cost IID(j)x + F(j)vI12 paid at time j. 
This suggests that Jt}(x) should satisfy the stochastic Bellman 
equation 

Jt}(X) = mine IID(j)x + F(j)vI1 2 + EJt}+ 1 (A(j)x + B(j)v + C(j)w)] 
v 

(6.2.2) 

where again E means averaging over the distribution of Wj with x,v 
fixed. At the final time N no further control or noise enters the system, 
so that 

(6.2.3) 

As before, (6.2.2)-(6.2.3) determine a sequence of functions 
WN, WN - 1, .•• , Wo by backwards recursion. And, also as before, we do 
not rely on the above heuristic argument to conclude that these 
functions are indeed the value functions for the control problem, but 
provide independent direct verification. 



268 OPTIMAL CONTROL FOR STATE-SPACE MODELS 

Proposition 6.2.1 

Suppose that WN, ... , Wo are given by (6.2.2), (6.2.3) and that uJ(x) is 
the value of v that achieves the minimum in (6.2.2). Then the feedback 
control ut = U~(Xk) minimizes the cost CN(u) over the class of all 
feedback control policies. 

PROOF Let Uk(Xk) be an arbitrary feedback control and let Xk be the 
process given by (6.2.1) with Uk = Uk(Xk). Then 

N-1 

WN(XN) - Wo(xo) = L (~+ 1 (Xk+ 1) - ~(Xk)) 
k=O 

so that 

N-1 

E[WN(XN) - Wo(Xo)] = L E[~+ l(Xk+ 1) - ~(Xk)] (6.2.4) 
k=O 

In calculating the expectations on the right we are entitled to 
introduce any intermediate conditional expectation. We therefore 
write 

E[Wk+ l(Xk+ 1) - Wk(Xk)] = E{ E[Wk+ l(Xk+ d - Wk(xk)lxk]}· 
(6.2.5) 

Now, given Xk, Wk(Xk) is known and xk+ 1 is given by 

Xk+ 1 = A(k)Xk + B(k)Uk(Xk) + C(k)wk· 

The first two terms on the right are known and the third is a random 
vector independent of Xk. The conditional expectation of Wk+ l(Xk+ 1) 
is therefore given by 

E[Wk+ l(Xk+ l)lxk] = EWk+ l(A(k)Xk + B(k)Uk(Xk) + C(k)Wk) 

where the expectation on the right is taken over the distribution of Wk 
for fixed Xk. Now, using (6.2.2) we obtain 

E[Wk+ l(Xk+ 1) - Wk(xk)lxk] = EWk+ 1 (A (k)Xk + B(k)Uk(Xk) 

+ C(k)wd - Wk(Xk) 

;:::: - II D(k)Xk + F(k)Uk(Xk) 112. (6.2.6) 

Combining (6.2.4)-(6.2.6) shows that 

N-1 
E[WN(XN) - Wo(Xo)] ;:::: - E L IID(k)xk + F(k)uixk) 112 

k=O 
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and hence, since WN(XN) = X~QXN' that 

EWo(xo)::;; CN(u). 
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(6.2.7) 

On the other hand, the same argument holds with equality instead of 
inequality in (6.2.6) when uk(x) = u~(x), so that 

EWo(xo) = CN(U 1 ). (6.2.8) 

Now (6.2.7) and (6.2.8) say that u1 is optimal. o 
The proof actually shows a little more than is claimed in the 
proposition statement. Indeed, since Wo(xo) is only a function of xo, 
the expectation in (6.2.8) only involves the (arbitrary) distribution of 
the initial state Xo. In particular, if Xo takes a fixed value, say xo, with 
probability one, then the corresponding optimal cost is just Wo(.xo). 
Thus Wo(xo) should be interpreted as the conditional optimal cost 
given the initial state Xo. The overall optimal cost is then obtained by 
averaging over xo, as in (6.2.8). A similar interpretation applies to Wkl 

namely Wk(x) is the optimal cost over stages k, k + I, ... , N con
ditional on an initial state Xk = x. 

The solution of (6.2.2) is related in a simple way to that of the 
'deterministic' Bellman equation (6.1.4). In fact, 

Wk(x) = xTS(k)x + lJ.k 

where S(N) = Q, S(N - 1), ... , S(O) are given by the Riccati equation 
(6.1.20) as before, and rxk is a constant, to be determined below. Note 
that if Wk+ t(x) = xTS(k + l)x + ()(k+ t then for fixed x, v, 

EWk+1(A(k)x + B(k)v + C(k)wk) 

= (A(k)x + B(k)v)TS(k + I)(A(k)x + B(k)v) 

+ 2E(A(k)x + B(k)v)TS(k + 1)C(k)wk 

+ Ewl CT(k)S(k + 1 )C(k)wk + ()(k + 1 

= (A(k)x + B(k)v)TS(k + I)(A(k)x + B(k)v) 

+ tr[CT(k)S(k + 1)C(k)] + lJ.k+ 1 

where the last line follows from the facts that EWk = 0, cov(wk) = I. 
Notice that the final expression is identical to that obtained in the 
deterministic case except for the term tr[CT(k)S(k + 1)C(k)] + ()(k+ 1, 

which does not depend on x or v and hence does not affect the 
minimization on the right-hand side of (6.2.2). Thus if Wk+ 1 (x) = 
xTS(k + l)x + ()(k+ 1 then the induction argument as used in the 
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deterministic case shows that 

Wb) = xTS(k)x + lik + 1 + tr[CT(k)S(k + 1)C(k)]. 

But WN(x) = XTQX, i.e. liN = 0, so working backwards from k = n we 
see that 

N-l 

lik = L tr[CTU)SU + I)CU)]' 
j=k 

Summarizing, we have the following result. 

Theorem 6.2.2 

For the stochastic linear regulator with complete observations, the 
optimal control is 

where M(k) is given by (6.1.16), i.e. is the same as in the deterministic 
case. The minimal cost is 

N-l 

CN(UO) = ml;S(O)mo + tr[S(O)PoJ + I tr[CT(k)S(k + l)C(k)]. 
k=O 

(6.2.9) 

PROOF The optimality of u1 follows from Proposition 6.2.1. As to 
the cost, we note that 

Wo(x) = xTS(O)x + lio 

is the conditional minimal cost given that the process starts at Xo = x. 
Taking the expectation over the distribution of Xo, and usmg 
Proposition 1.1.3(b), we obtain (6.2.9). D 

Note that only the mean mo and covariance Po of the initial state 
are needed to compute the optimal cost, so it is not necessary to 
suppose that Xo is normally distributed. The important feature of the 
above result is that the matrices S(k) and M(k) do not depend on the 
noise coefficients C(k), so that in particular the optimal control is the 
same as in the deterministic case. Thus adding noise to the state 
equation as in (6.2.1) makes no difference to the optimal policy, but 
simply makes that policy more expensive. Indeed, if the system starts 
at a fixed state Xo (so that mo = Xo and Po = 0) then the additional cost 
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is precisely 

N-1 

L tr[CT(k)S(k + l)C(k)]. 
k=O 
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Let us now consider the discounted cost case. We will assume for 
simplicity of notation that the coefficient matrices A, B, D, F are time 
invariant but, with later applications in mind, time variation will be 
retained for C(k). Thus the problem is to minimize 

E( :t: lllDxk + Fuk l1 2 + pNX~QXN). 
We use the same device as before, namely rewriting the cost as 

ECt: IIDxf + Fufl1 2 + xf QX~) (6.2.10) 

where xf = ll2Xb uf = ll2Uk . Multiplying (6.2.1) by p(k+ 1)/2 shows 
that xf, uf satisfy 

(6.2.11) 

where AP = pl/2 A, BP = pl/2 B, CP(k) = p(k+ 1)/2C(k). Now (6.2.10) and 
(6.2.11) give the problem in non-discounted form. As noted above, the 
optimal control does not depend on CP(k); applying our previous 
results it is given by 

uf(x) = - MP(k)x 

where MP(k) is defined as in Section 6.1 above. The corresponding 
cost is, from (6.2.9) 

N-1 

C~(uP) = mI;SP(O)mo + tr[SP(O)Po] + L tr[CPT(k)SP(k + l)CP(k)] 
k=O 

N-1 

= mI;SP(O)mo + tr[SP(O)Po] + L l+ltr[CT(k)SP(k + l)C(k)]. 
k=O 

The importance of the discount factor becomes apparent when we 
consider infinite-horizon problems. Suppose that conditions (6.1.30) 
are met and that SP is the solution to the algebraic Riccati equation 
with coefficient matrices AP, BP. Such a solution exists for any p ~ 1. 
Now consider the N-stage problem as above, with terminal cost 
matrix Q = SP. This is the 'matched impedance' case, discussed at the 
end of Section 6.1, for which SP(k) = SP for all k. Thus the optimal 
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control is the time-invariant feedback 

UP(Xk) = - MPXk 

and the cost over N stages is 

N-l 

(6.2.12) 

C~(uP)=m6SPmo+tr[SPPo]+ L pk+ltr[CT(k)SPC(k)]. 
k=O 

(6.2.13) 

Note that if p = 1 (no discounting) and C(k) == C is constant, then 
C~ -t 00 as N -t 00 and hence the infinite-time problem has no 
solution (all controls give cost + (0). This is not surprising. The 
reason that finite costs could be obtained in the deterministic case was 
that Ilxkll converged to zero sufficiently fast that 

was finite. However, in the present case Ilxkll does not converge to zero 
because at each stage it is being perturbed by the independent noise 
term Cwk , and the controller has continually to battle against this 
disturbance to keep II X k II as small as possible. If, however, p < 1, then 

lim C~ = m6SPmo + tr[SPPo] + ~-tr[CTSPC]. (6.2.14) 
N~oo 1-p 

Thus any amount of discounting, however little, leads to a finite 
limiting cost. One can show, by methods exactly analogous to those 
used in the previous section, that the time-invariant control uP given 
by (6.2.12) does in fact minimize the cost 

C~(u) = EC~o lllDxk + FUk112) (6.2.15) 

and that the minimal cost is precisely the expression given in (6.2.14). 
As to the conditions required, recall that if (A, B) is stabilizable then 
(AP, BP) is stabilizable for any p::; 1; thus 

(a) If conditions (6.1.30) are satisfied then the infinite time discounted 
problem is well-posed, and has the above solution, for any p < 1. 

(b) If either of conditions (6.1.30) fails then we must take P < Po where 
Po is such that (AP, BP), (15, AP) are stabilizable and detectable 
respectively for any P < Po. Generally, Po < 1. 
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If C(k) is not constant then exactly similar results apply as long as 

00 

L pk+ltr[CT(k)SPC(k)J < 00 
k=O 

and this will certainly be the case for any p < 1 as long as the elements 
of CT(k) are uniformly bounded, i.e. there is some constant Cl such that 
for all i,j, k, 

lC(k)i) ~ cl · 

This, in turn, is always true if the C(k) sequence is convergent, i.e. 
there is a matrix C such that C(k) -+ C as k -+ 00. The same control is 
optimal but there is in general no closed-form expression, as in 
(6.2.14), for the minimal cost, which is now 

00 

m&SPmo + tr[SP P oJ + L pk+ 1 tr[CT(k)SPC(k)]. (6.2.16) 
k=O 

Let us now consider minimizing the average cost per unit time, 

(6.2.17) 

As before we assume that all coefficients are constant except for the 
noise matrices C(k) which are supposed to be convergent: C(k) -+ Cas 
k -+ 00. This is needed in the next section. 

The limit in (6.2.17) mayor may not exist for any particular control 
u, but it certainly does exist for all constant, stabilizing controls, i.e. 
controls of the form uf = - KXk where A: = A - BK is stable. For 
then the closed-loop system is 

xk+ 1 = AXk + C(k)wk 

and we know by a slight extension of results in Section 2.4 that 
Q(k): = cov(xk) -+ Q where Q satisfies 

Q = AQAT + CCT. 

Thus 
1 N 

CaJuK ) = lim - L tr[(D - FK)Q(k)(D - FK)TJ 
N-->oo N k=O 

= tr[(D - FK)Q(D - FK)T]. 

If the pair (A, B) is stabilizable then a stabilizing K exists and the 
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problem of minimizing Caiu) is meaningful. We now show that Cav(u) 
is minimized by the control Uk = - MXk where M is given by (6.1.28). 
This is the same control policy that is optimal for the deterministic 
infinite-time problem. 

Theorem 6.2.3 

Suppose conditions (6.1.30) hold. Then, among all controls u for 
which Caiu) exists and Ell Xk 112 remains bounded, the minimal 
cost is achieved by the control ui(x) = - Mx where M is given by 
(6.1.28). The minimal value of the cost is 

Cav(u1) = tr[CTSC] 

where S is the unique solution of the algebraic Riccati equation 
(6.1.29). 

PROOF It is shown in Appendix B that A - BM is stable, so that 
Jav(u 1) exists. Let S be the solution of the ARE (6.1.29) and consider 
the N-stage problem of minimizing 

CN(u) = E[ :t~ IIDxk + Fukl1 2 + X~SXN ] 
This is the 'matched terminal cost' problem for which, from 
Theorem 6.2.2, control u1 is optimal. Thus for any control u, 

N-l 

CN(u) ~ CN(U 1) = m6Smo + tr[SPo] + L tr[CT(k)SC(k)]. 
k=O 

(6.2.18) 
Thus 

as long as the left-hand limit exists. But if Cav(u) exists and Ellxkl12 is 
bounded, then 

lim ~CN(U) = Cav(u) + lim ~E[X~SXN] = Cav(u), 
N-+ooN N-+ooN 

This shows that u1 is optimal. From (6.2.18) its cost is 

1 N-l 

Cav(u1) = lim - L tr[CT(k)SC(k)] = tr[CTSC]. 0 
N-+oo N k=O 
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The control ut = - MXk is not the only optimal control for the 
average cost per unit time problem. Indeed, for any integer j we can 
write 

Now for any given control Uk' 

E[jtlIIDXk+FUkIIZ] 

is a fixed number not depending on N. Thus the first limit is zero, and 
since (N - j)/N -> 1 as N -> 00, 

Cav(u) = lim --.E L IIDxk + Fuk l1 2 • 
1 [N-l J 

N~ooN-J k=j 

The expression on the right is the average cost from time j onwards 
starting in state x j , and its minimal value does not depend at all on 
what controls Uk were used for k < j. Thus any control of the form 

Uk = {arbitrary, 
-Mxk , 

k<j 
k >· -J 

is optimal. Thus the average cost criterion is only relevant when one is 
mainly concerned with 'long-run performance'; the idea is that the 
system settles down to a statistically stationary state in which an 
average of precisely tr[CTSC] is added to the cost at each stage, 
and this is minimal. There is, however, nothing in the cost criterion 
which specifies just how long this settling-down period is supposed 
to last. The discounted cost formulation has the opposite effect: it 
emphasizes performance during some initial interval the length of 
which is effectively specified by the discount factor. In this case the 
optimal control is unique. Another advantage of discounted costs 
is that the stabilizability /detectability conditions can always be met 
by sufficiently rapid discounting, whereas with average costs little 
can be said if the original system matrices (A, B, D) do not satisfy 
these conditions. 










