Piramide de Numeros

Problema classico das Olimpiadas
Internacionais de Informatica de 1994

7 Problema

3 8 Calcular a rota, que comeca no topo
8 1 0 da piramide e acaba na base, com
maior soma . Em cada passo podemos

y 2Ry AR B Bl i diagonalmente para baixo e para a

esquerda ou para baixo e para a
4 5 2 6 5

direita.

Programacao Dinamica 9 Pedro Ribeiro



Piramide de Numeros

Duas possiveis rotas

Soma = 21 Soma = 30

Limites: todos os numeros da piramide sao inteiros
entre 0 e 99 e o numero de linhas do triangulo é no
maximo 100.

Programacgao Dinamica 10 Pedro Ribeiro



Piramide de Numeros

Como resolver o problema?

Ideia: Forca Bruta!

avaliar todos os caminhos possiveis e ver
qual o melhor.

Mas quanto tempo demora isto?
Quantos caminhos existem?

Programacao Dindmica 11 Pedro Ribeiro



Piramide de Numeros

Analise da complexidade

Em cada linha podemos tomar duas decisoes
diferentes: esquerda ou direita

Seja n a altura da piramide. Uma rota € constituida por
n—1 decisbes diferentes.

Existem 2"-1 caminhos diferentes. Entdo, um programa
gue calculasse todas rotas teria complexidade temporal
O(2"): crescimento exponencial!

Note-se que 2%°~6,34x102%°, que € um numero
demasiado grande!

633825300114114700748351602688

Programacao Dindmica 12 Pedro Ribeiro



Piramide de Numeros

Quando estamos no topo da piramide, temos
duas decisoes possiveis (esquerda ou direita):

Em cada um dos casos, temos de ter em conta
todas as rotas das respectivas subpiramides
assinaladas a amarelo.

Programacgao Dinamica 13 Pedro Ribeiro



Piramide de Numeros

Mas o0 que nos interessa saber sobre estas
subpiramides?

Apenas interessa o valor da sua melhor rota
interna (que é um instancia mais pequena
do mesmo problema)!

Para o exemplo, a solugao € 7 mais o maximo
entre o valor da melhor rota de cada uma das
subpiramides

Programacao Dinamica 14 Pedro Ribeiro



Piramide de Numeros

Comecar a partir do fim!




Piramide de Numeros

Comecar a partir do fim!




Piramide de Numeros

Comecar a partir do fim!




Piramide de Numeros

Comecar a partir do fim!




Piramide de Numeros

Se fosse necessario saber constituicao da
melhor solucao?
Basta usar a tabela ja calculada!

Pedro Ribeiro
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CHAPTER 6

Optimal control for state-space
models

This chapter concerns optimal control problems for the state-space
models discussed in Chapters 2 and 3. The state and observation
processes X, and y, are given respectively by the equations

X+ 1= A(K)x, + B(k)u, + Clk)w, (6.0.1)
Vi = H(k)x, + G(k)w, (6.0.2)

where w, is a white-noise sequence. We now wish to choose the
control sequence u, so that the system behaves in some desirable way.
We have to settle two questions at the outset, namely what sort of
controls are to be allowed (or, are admissible) and what the control
objective is.

The simplest class of controls is that of open-loop controls which are
just deterministic sequences u,, Uy, . .. , chosen a priori. In this case the
observation equation (6.0.2) is irrelevant since the system dynamics
are entirely determined by the state equation (6.0.1). As we shall see in
Section 6.1, open-loop controls are in some sense adequate for non-
stochastic problems (w, = 0). Generally, however, it is better to use
some form of feedback control. Such a controlselectsa value of u, onthe
basis of measurements or observations of the system. We have
complete observations if the state vector x, can be measured directly,
and, since the future evolution of the system depends only on its
current state and future controls and noise, the natural form of
control is then state feedback: u, = u,(x,). The functions u,("), u,(),...
are sometimes described as a control policy since they constitute a
decision rule: if the state at time k is x, then the control applied will be
u = u,(x). Again, the observations y, are irrelevant in this situation. In
the case of noisy measurements or partial observations, however, x,
cannot be measured directly and only the sequence yq, yy,..., Vi 1S
available. Feedback control now means that u, is determined on the

247



248 OPTIMAL CONTROL FOR STATE-SPACE MODELS

basis of the available measurements: u, = u,(yo, ¥y, -, Vi) In thiscase,
since y, is not the state of the system, one generally does better by
allowing dependence on all past observations, not just on the current
observation y,. Finally, we shall assume throughout that the control
values are unconstrained. It would be perhaps more realistic to
restrict the values of the controls by introducing constraints of the
form |u,| < 1. While this causes no theoretical difficulties, it would
make the calculation of explicit control policies substantially more
difficult.

We now turn to the control objective. In classical control system
design the objectives are qualitative in nature: one specifies certain
stability and transient response characteristics, and any design which
meets the specification will be regarded as satisfactory. The ‘pole
shifting’ controllers considered in Chapter 7 follow this general
philosophy. Here, however, our formulation is in terms of optimal
control. The idea is as follows: the class of admissible controls is
specified precisely and a scalar performance criterion or cost function
C(u) 1s associated with each control. We can then ask which control
achieves the minimum cost; this control is optimal. Once the three
ingredients (system dynamics, admissible controls and cost criterion)
are specified, determination of the optimal control is in principle a
purely mathematical problem involving no ‘engineering judgement’.
Indeed, optimal control theory has often been criticized precisely on
these grounds. It may well be that a control which is theoretically
optimal is subjectively quite unsatisfactory. If it is, this will be because
the system model is inadequate or because the cost criterion fails to
take account of all the relevant features of the problem. On the other
hand, a more realistic model or a criterion which did include all the
relevant features might well lead to an impossibly complicated
optimization problem. As usual, the true situation is a trade-off
between realistic modelling and mathematical tractability, and this is
where the engineering judgement comes in.

In this chapter we shall study linear regulator problems, where the
cost criterion is given by

Colu) = E[Nf | Dx, + Fu || + x,TvaN]. (6.0.3)
K=0

The number N of stages in the problem is called the time horizon and
we shall consider both the finite-horizon (N < o) and infinite-
horizon (N = o) cases. Further discussion of the cost function Cy(u)
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will be found in Section 6.1. It implies a general control objective of
regulating the state x, to 0 while not using too much control energy as
measured by the quantity uf FTFu,. Note that the quantity in square
brackets in (6.0.3) is a random variable and we obtain a scalar cost
function (as required for optimization) by taking its expected value,
which is practical terms means that we are looking for a control policy
which gives the minimum average cost over a long sequence of trials.

The optimization problem represented by equations(6.0.1)—(6.0.3)is
known as the LQG problem since it involves a linear system (6.0.1),
(6.0.2), a quadratic cost criterion (6.0.3) and gaussian or normal white-
noise disturbances in the state-space model. (For reasons explained
below, {w,} is assumed here to be a sequence of independent normal
random variables rather than a ‘wide-sense’ white noise as generally
considered in previous chapters.) It is sufficiently general to be
applicable in a wide variety of cases and the optimal control is
obtained in an easily implemented form. It also has, as we shall see,
close relations with the Kalman filter.

In addition to the standard linear regulator as defined above we
shall study the same problem with discounted costs:

N-1
C(u) = E[ Z p"|nyk+Fuk|2+pNx§QxN:|
K=

where p is a number, 0 < p < 1. There are important technical reasons
for introducing the discount factor p, but there is also a financial
aspect to it. Suppose that money can be invested at a constant
interest rate r% per annum and one has to pay bills of £a,, £a,,...
each year starting at the present time. What capital is needed to
finance these bills entirely out of investment income? Since £1 now is
worth £(1 4+ 0.01r)* in k years’ time, the amount required is Y, a,p*
where p = (1 +0.01 r)~! and this is one’s total debt capitalized at its
present value. In particular, a constant debt of £a/year in perpetuity
can be financed with a capital of

£ i ap*=£a/(1 — p).
k=0

An important feature of this result is that while the total amount of
debt is certainly infinite, it nevertheless has a finite capital value.
Similarly, in the control problems, the discount factor enables us to
attach a finite cost (and therefore consider optimization) in cases
where without discounting the cost would be + oo for all control
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policies. Of course it is not realistic to assume that interest rates will
remain constant for all time, and a more subjective interpretation of
C*(u) is simply to say that it attaches small importance to costs which
have to be paid at some time in the distant future.

In the three sections of this chapter we discuss the linear regulator
problem in three stages. First, in Section 6.1 we consider the
deterministic case when w, = 0. Many of the ‘structural features’ of the
LQG problem are already present in this case, and the optimal
control turns out to be linear feedback: u, = — M(k)x, for a precom-
putable sequence of matrices M(k). This same control is shown in
Section 6.2 to be optimal also in the stochastic case with complete
observations, the effect of the noise being simply to increase the cost.
Finally we consider the ‘full’ LQG problem in Section 6.3 and show
that the optimal control is now — M(k)X,,_, where X, , is the best
estimate of the state given the observations, generated by the Kalman
filter. This results demonstrates the so-called ‘certainty-equivalence’
principle: if the state cannot be observed directly, estimate it and use
the estimate as if it were the true state. We also discuss an idea of
somewhat wider applicability known as the ‘separation principle’.

6.1 The deterministic linear regulator

6.1.1 Finite time horizon

In this section we consider control of the linear system

xk+1 = A(k)xk + B(k)uk (6.11)
fork=0,1,..., N witha giveninitial condition x,. We wish to choose a
control sequence u = (g, Uy ,...,Uy_,) SO as to minimize the cost’

Z | D(k)x, + F(k)u||® + x5 Qxy. (6.1.2)

Here D(k), F(k) are matrices of dimensions p x n, p X m respectively
and Q is a non-negative definite symmetric n x n matrix. It will
be assumed throughout that the m x m matrices F'(k)F(k) are strictly
positive definite, which implies in particular that we must have p = m.

We shall also study various infinite-time problems related to
(6.1.1)—(6.1.2), i.e. consider what happens as N — co.

TWe denote the cost by J in the deterministic case, reserving Cy for the average cost in
the stochastic problem. .
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The cost function J (u) is somewhat different from that convention-
ally employed in treatments of this subject. The more usual form of
cost function is

T =Y, (000, +ul Rk + x50,

where Q(k), R(k) are symmetric non-negative definite matrices (strictly
positive definite in the case of R(k)). This has more intuitive appeal
since the terms involving x, penalize deviation of x, from O while
Zuy R(k)u, is a measure of control energy. Thus the control problem is
to steer x; to zero as quickly as possible without expending too much
control energy; energy expenditure can be penalized more or less
heavily by appropriate specification of the matrices R(k). This cost
function is, however, a special case of (6.1.2): take p=n + m and

2k 0

where Q'/2(k), R'/?(k) are any ‘square roots’ of Q(k), R(k), i.e. satisfy
(Q'%(k))*Q'/?(k) = Q(k) (and similarly for R'/?(k)). Such square roots
always exist for non-negative definite symmetric matrices, as shown
in Appendix D, Proposition D.1.3.

We prefer the cost function (6.1.2) because of its extra generality,
but more importantly because it connects up naturally with the
formulation of the Kalman filter given in Chapter 3. This will become
apparent below.

The control problem (6.1.1)—(6.1.2) can in principle be regarded as
an unconstrained minimization problem. For a given sequence
u=(ug,uy,...,uy_) and initial condition x,, the corresponding x,
sequence can be computed from the state equations (6.1.1):

x; = A0)xo + B(O)u,
x, =A(1)x; + B(1)u,
= A(1)A(0)xo + A(1)BO)uy + B(1)u,, etc.

Substituting in (6.1.2), we obtain Jy(u) explicitly as a function of
the mN-vector u=col{ug,u;,..,uy_,} and one could now use
‘standard’ hill-climbing techniques to find the vector u* which
minimizes J y(u). This would, however, be a very unsatisfactory way of
solving the problem. Not only is the dimension mN very large even for
innocuous-looking problems, but also we have thrown away an



252 OPTIMAL CONTROL FOR STATE-SPACE MODELS

essential feature of the problem, namely its dynamic structure, and
therefore calculation of the optimal u* would give us very little insight
into what is really happening in the optimization process.

A solution method which uses in an essential way the dynamic
nature of the problem is R. Bellman’s technique of dynamic pro-
gramming. Introduced by Bellman in the mid-1950s, dynamic
programming has been the subject of extensive research over the
years and the associated literature is now enormous. We propose to
discuss it here only to the extent necessary to solve the problem at
hand. The basic idea is, like many good ideas, remarkably simple, and
is known as Bellman’s principle of optimality. Suppose that u* is an
optimal control for the linear regulator problem (6.1.1)-(6.1.2), that is
to say,

INu*) < Jy(u)

for all other controls u = (ug,uy,...,uy_ ). Let x§ = xo, x¥,...,x% be
the corresponding state trajectory given by (6.1.1) with u, = u}. Now
fix an integer j, 0 < j < N, and consider the ‘intermediate’ problem of
minimizing

N u?) = Z k)x, + F(k)u, [|* + xyOxy
over controls u = (u;,u;, ..., uy_ ), subject to the dynamics (6.1.1)
as before with the ‘initial condition’
X;=x¥.

The intermediate problem is thus to optimize the performance of
the system over the last N — j stages, starting at a point x} which
is on the optimal trajectory for the overall optimization problem.
The principle of optimality states that the control u*Y =
(u¥,u¥yy,...,u¥_,) is optimal for the intermediate problem. Put
another way, if u* is optimal for the overall problem then u*“ is
optimal over the last N — j stages starting at x¥. The reason for this is
fairly clear: if u*Y) were not optimal for the intermediate problem then
there would be some sequence 4" = (ii;, ;4 y,..., dy—,) such that

JN,j(a(j)) < JN,j(u*(j))'
Now consider the control u° defined as follows:

o uf k<j
ug =+ . i
4y, k=]
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and let x} be the corresponding trajectory. Then x? = x} for k < jand
hence

izl _
In@®) =Y [ID(k)x + FkJuk |1 + Iy ()
k=0

-1 _
< 2 ID(R)xE + Fkyu |1 + Jy fu*)
k=0

= J\(u®). (6.1.3)

But this contradicts the supposition that u* is optimal. Thus y*V
must be optimal for the intermediate problem, as claimed.

In the preceding argument, the system started in a fixed but
arbitrary state x,. However, there is nothing special about the
imtial time zero: the same argument implies that if {x¥, u}, k> is
an optimal control-trajectory sequence for the intermediate problem
starting at x; = x (arbitrary) then {x},uf, k> j} is optimal for the
further intermediate problem starting at x; = x¥ for any ;' between j
and N — 1.

The principle of optimality is turned into a practical solution
technique as follows. Let V(x) be the minimum cost for the
intermediate problem starting at x; = x. This is known as the value
function at time j. Then taking j/=j+ 1, the above argument
indicates that V; ought to satisfy

Vi(x) = min [ D(j)x + F()ol? + Vs (AG)x + B()w)]  (6.1.4)
the minimum being taken over all m-vectors v. Essentially, this comes
from calculations similar to (6.1.3) above. If x; = x and control u; = v
is applied, then:

(@) The cost paid at time j is || D(j)x + F(j)v||>.

(b) The next state is x;, ; = A(j)x + B(j)v.

Thus V;, (A(j)x + B(j)v) is the minimal cost for the rest of the
problem if control value v is applied at stage j. So certainly

Vi) < ID(j)x + F(j)ol|® + Vys 1 (AG)x + B(jjo) — (6.1.5)

and this holds for any value of v. On the other hand, if {xj,uf} is
optimal over the last N — j stages starting at x* = x, then the principle
of optimality indicates that

N-1
Vixt)= ). ID(k)x + F(k)uf(|* + x§T Qxk
k=1
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where [ is either j or j+ 1, and this shows since x} = x that
Vi(x) = IDG)x + FGuf | + Vo (AGKx + BG)ud).  (6.1.6)

Now (6.1.5) and (6.1.6) together imply that (6.1.4) holds.

Equation (6.1.4) is known as the Bellman equation and is the basic
entity in discrete-time dynamic programming since it enables the
optimal control u* to be determined. Note that at the terminal time N
the value function is

Vy(x) = xTQx, (6.1.7)

since no further control is possible and one has no choice but to pay
the terminal cost of x"Qx. Applying (6.1.4) with j= N — 1 gives

Vy_.(x)=min[|D(N — 1)x + F(N — 1)o]|?

+ (AN = Dx + B(N — 1)p)TQ(A(N — 1)x + B(N — 1)v)]

and hence determines Vy_,(x). Now using (6.1.4) again we can cal-
culate Vy_,, Vy_3,..., Vo. By definition, Vy(x,) is then the minimal
cost forthe overall problemsstarting atstate x,. From(6.1.5)and (6.1.6),
the optimal control u¥isjust the value of v that achieves the minimumin
(6.1.4) with x = x7¥.

Before proceedingany furtherlet us consolidate the discussionso far.
We have used the principle of optimality to obtain the Bellman
equation (6.1.4) and this suggests the procedure outlined above for
obtaining an optimal control. Having arrived at this procedure,
however, we can verify that it is correct by a simple and self-contained
argument; this will be given below. Thus the principle of optimality is
actually only a heuristic device which tells us why we would expect the
Bellmanequation to take the form it does; it does not appearin the final
formulation of any results. One could present the theory without
mentioning the principle of optimality at all, but this would involve
pulling the Bellman equation out of the hat, and readers would be left
wondering — at least, we hope they would be left wondering — where it
came from.

Theorem 6.1.1 (Verification theorem)

Suppose Vy_1(x), Vy—a(x),..., Vo(x) satisfy the Bellman equation
(6.1.4) with terminal condition (6.1.7). Suppose that the minimum in
(6.1.4) is achieved at v =uf(x), i.e.
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IDG)x + F(j)uf () |12 + V; 1 1(AG)x + B(j)uj (x))
= [IDG)x + F(])vll + Vi 1(4()x + B(j)v)

for all m-vectors v. Now define (x¥, uf) recursively as follows:

X5 = Xo (6.1.8)
uf = up(x¥)
XF = Axt+Bur( K=0L...N-1 (6.1.9)

Then u* = (uf,...,u¥_,) is an optimal control and the minimum cost
is Vy(xo)-

PROOF Let u=(uy,...,uy_,) be any control and x,,...,xy the
corresponding trajectory, always with the same initial point x,. Then
from (6.1.4) we have

Vi(xi) < [1DGi)x; + FU)“,‘HZ + Vie1(Xj41)- (6.1.10)

Hence
Va(xy) — Volxo) = Z (Ve+ 144 1) — Vix0)

_j IDG)x, + FGu | (6.1.11)
Since Vy(xy) = x§Oxy this shows that
Vo(xo) < J (). (6.1.12)

On the other hand, by definition, equality holdsin (6.1.10) and hence in
(6.1.11) when x; = x¥, u; = u¥, so that

Vo(xo) = J n(u*). (6.1.13)
Now (6.1.12),(6.1.13) say that u* is optimal and that the minimal cost is
Vo(xo)- |

Two remarks are in order at this point:
1. Notethat the optimal controlisobtainedin feedback form,i.e. x
is generated by

X1 = A(k)xE + B(k)uk (x¥)

where u(-)is a pre-determined function. (See Fig. 6.1(a).) One could in
principle obtain the same cost V(x,) by calculating the uj sequence
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System >x: yF—> System —>xt

{b)

0(,*
uplx¥)

(a)

Fig. 6.1 (a) Feedback control; (b) Open loop control.

explicitlyand applyingitinopenloop(Fig. 6.1(b)) butsucha procedure
has serious disadvantages. Using the dynamic programming appro-
ach,wehaveinfact notonly solved the original overall control problem
but have solved all the intermediate problems as well: an argument
identical to that given above shows that the control u} generated by
(6.1.9) with any initial condition x¥ = x is optimal for the control
problem over the last N — j stages starting at x; = x. Thus if for some
reason the system gets ‘off course’ the feedback controller continues to
actoptimally for the remainingstages of control. On the other hand, the
values u;f calculated for the open-loop control of Fig. 6.1(b) are based
onaspecificstarting point x, and if thisiserroneous orifanerror occurs
at some intermediate point then the uf sequence will no longer be
optimal.

2. Nothing so far depends on the quadratic nature of the cost
function (6.1.2). Similar results would be obtained for any scalar cost
function of the form

N-1
Jy(u) = k;) Ik, Xy, 1) + g(xy). (6.1.14)

We have seen above that the basic step in solving the optimal control
problem is to calculate the value functions Vy_(x),..., Vo(x). With
general cost functions J'(u) as in (6.1.14) this involves an immense
amount of work since the whole function V,(-) has to be calculated and
not just the value V,(x) at some specific point x. The advantage of the
quadratic cost (6.1.2) is that the value functions take a simple
parametric form and can be computed in an efficient way. Indeed, the
value functions are themselves quadratic forms, as the following
result shows.
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Theorem 6.1.2

The solution of the Bellman equation (6.1.4), (6.1.7) for the linear
regular problem (6.1.1), (6.1.2) is given by

V(x)=x"S(k)x  k=0,1,...,N (6.1.15)

where S(0),...,S(N) are symmetric non-negative definite matrices
defined by (6. 1 20) below. The optimal feedback control is

uj(x) = — M(j)x
where
M(j)=[B'(j)S( + 1)B() + FT()F()] ™
‘[BT()S(j + 1)A(j) + F'(j)D(j)]. (6.1.16)
We see that the optimal controller has a very simple structure,
namely linear feedback of the state variables. The notation u} for

optimal control is used for consistency with the discounted cost case
to be discussed below.

PROOF Note that the result is certainly true at k = N since Vy(x) =
x"Qx. To show that it holds for k < N we use backwards induction:
supposing (6.1.15) holds for k =j + 1 we show that it holds for k =}.
Taking Vj,,(x) = x"S(j + 1)x, the Bellman equation (6.1.4) becomes

Vi) = min [ D(j)x + F(j)ol* + (xTAT(j) + v"B'(j))

-S(j + 1)(A(j)x + B(j)v)]. (6.1.17)

The quantity in square brackets on the right-hand side is equal to
v"(B"S(j + 1)B + F'F)v + 2x"(A"S(j + 1)B + D"F)v

+ xT(A"S(j + 1)A + D'D)x (6.1.18)

where we temporarily write B(j) = B, etc. Now if R is a symmetric
positive definite matrix and a an m-vector then

(v+a)"R(v +a)=v"Rv +2a"Rv+ a"Ra
1.e.
v"Rv+ 2a"Rv = (v + a)"R(v + a) — a"Ra.

Clearly this expression is minimized over v at v= —a and the
minimum value is — a"Ra. In order to identify this with the first two
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terms in (6.1.18) we require
R=B"S(j+ 1)B+ F'F
Ra=(B"S(j + 1)A + F™D)x.
Now by assumption FTF, and hence R, is strictly positive definite, and
therefore a is specified by
a=R™YB'S(j+ 1)A + F'D)x.
Thus the right-hand side of (6.1.17) is equal to
x"[A"S(j + 1)A + D™D — (A"S(j + 1)B + D"F)
R™YB™S(j+ 1)A + F'D)] x. (6.1.19)
Hence Vj(x)=x"S(j)x where S(j) is given by the expression in the
square brackets in (6.1.19) and S(j)=0 by (6.1.17). Thus V,(x) is a
quadratic form, as in (6.1.15), for all k=0,1,..., N. Note from the
above analysis (specifically from (6.1.19)) that the matrices S(k) can be
computed recursively backwards in time starting with S(N)=Q. In
fact, writing out (6.1.19) in full we see that the S(k) are generated by
S(N)=0
S(j) = AT()S(j + DA()) + DT()D(j) — (AT()S(j + 1)B()
+ DT()HF()N)BT()S(j + DB()) + FT()F(j))
“(BT()S(j + DA + FT(j)D(j))
j=N-1,N-2,...,0. (6.1.20)
Applying the dynamic programming results, the optimal feedback
control is the value of v that achieves the minimum in (6.1.16), and this
is equal to — q, so that
uj(x) = — [B"()S(j + DB(j) + FT(HF(j)]~*
-[BY()S(j + DA() + FT(j)D(j)] x.
This completes the proof. O

Filtering/control duality

A very important feature of the above result is its close connection to
the Kalman filter discussed in Section 3.3. Equation (6.1.20) is a
Riccati equation of exactly the same type as that appearing in the
Kalman filter equations, with the distinction that (6.1.20) evolves
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backwards from a terminal condition at time N whereas the filtering
Riccati equation (3.3.6) for the estimation error covariance P(j)
evolves forward from an initial condition at j = 0. The Kalman gain
K{()) is related to P(j) in exactly the same way that the control gain
M(j) is related to S(j), except for transposition. Specifically, the
correspondence between the two problems is as shown in Table 6.1.

Table 6.1
Filtering Control
(time) j N—j
A(j) AT(j)
H()) B'(j)
C(j) D(j)
G(j) F'(j)
P(j) S(j)
K()) M(j)

This means that if we take the filtering Riccati equation (3.3.6), make
the time substitution j—» N — j and relabel 4, H, C, Gas A", BT, D, FT
respectively, then we get precisely (6.1.20). The same relabelling
applied to the expression (3.3.5) for K(j) produces M'(j). Thus the
Riccati equations (6.1.20) and (3.3.6) are the same in all but notation.
This will be very important when we come to consider various
properties of the Riccati equation, since its solution can be regarded
interchangeably as the value function for a control problem or the
error covariance for a filtering problem, and various facts can be
deduced from one or other of these interpretations.

Discounted costs
Let us now specialize to the time-invariant system
Xk+1 :AXk+Buk (6.121)

(i.e. A(k) = A, B(k) = B for all k) and consider minimizing a discounted
cost of the form
N-1
Jh@ =Y pMIDx,+ Ful®+p"xi0xy  (6.122)
k=0
where D,F,Q are fixed matrices and p is the discount factor
(0 < p < 1).Thisisactually aspecial case of the preceding problem (take
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D(k) = p*'*D, F(k) = p"'*F and replace Q by p*Q); but there is another
way of looking at it which provides a little more insight. Write

N-1
JRG)= 3 pHIDx, + Ful* +p"x] Qxy
ot k k/2
= L I1Dp"x+ Fpu|)* + p"xy Qxy

N-1
= X IDxg+ Fuf|* + xTQxf (6.1.23)

where we have defined

xgi= pH2x,

uf:= pty,. (6.1.24)
Multiplying (6.1.21) by p** /2 gives

p 2y = pt 2 Ap 2 x, + p' 2 Bp*Pu,

1.e.

xf,, = A’x{ + Buf (6.1.25)
where A”:= p'/? A, B*: = p*/?B. But (6.1.23)—(6.1.25) constitute a time-
invariant linear regulator problem in standard non-discounted form.
The optimal control is therefore

uf = — (B*'S?(k + 1)B? 4+ F'F)~Y(B*'S?(k + 1)A? + FTD)x?{
=: — M*(k)x§

where S?(k) is the solution of (6.1.20) with A replaced by p'/*4 and B

replaced by p!/?B. In view of (6.1.24) the optimal control u, is
expressed in terms of the ‘real’ state x, by

u, = — M?(k)x,.

Thus the discounted cost problem is solved simply by taking the
undiscounted problem and making the substitutions A—p'/24,
B-p'?B.

6.1.2 Infinite-time problems

In this section we will continue to assume that the system and costs
are time-invariant, i.e. the matrices 4, B, D, F do not depend on the
time, k.

In many control problems no specific terminal time N is involved
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and one wishes the system to have good ‘long-run’ performance. This
suggests replacing (6.1.2) by a cost

J ()= kzo IDx, + Fu, 2. (6.1.26)

It is not obvious that the problem of minimizing J () subject to
the dynamics (6.1.1) makes sense: it might be the case that J (u) =
+ oo for all controls u. Note, however, that the problem does make
sense as long as there is at least one control u such that J (u) < co. A
simple sufficient condition for this is that the pair (4, B) be stabilizable,
i.e. there exists an m x n matrix M such that 4 — BM is stable. Taking
for u the feedback control i, = — Mx,, the system dynamics become

Xgt1= (A4 —BM)x,.

Now since 4 — BM is stable, it follows from Proposition D.3.1,
Appendix D, that there exist constants ¢ >0 and a€(0, 1) such that

x| < ca*[l x|l

Since ||(D — FM)x| < K| x|| for some constant K, the cost using
control i is
Jo@ =Y [(D—FM)x,?

k=0

0
<K Y Ix?
k=0

o0
<K |xo|? Y a*
k=0
= KXo |11 — a).

Thus with any stabilizing control, the norm of x, decays sufficiently
fast to give a finite total cost. We will therefore assume henceforth that
the pair (4, B) is stabilizable.

If V,(x) is the value function at time k for the infinite-time problem
then it seems likely that ¥, does not actually depend on k, since, there
being no ‘time horizon’ and the coefficients being time-invariant, the
problem facing the controller is the same at time k as at time zero,
except for some change in the initial state. Recalling the Bellman
equation (6.1.4), this suggests that the value function V =V, should
satisfy

V(x)=min[||Dx + Fv||* + V(Ax + Bv)]. (6.1.27)
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Note this is no longer a recursion but is an implicit equation which
may or may not be satisfied by a particular function V.

Proposition 6.1.3

Suppose that V is a solution of (6.1.27) such that V is continuous and
V(0) = 0," and that u'(x) achieves the minimum on the right, i.e. for all
vectors v,

| Dx + Fu'(x)||? + V(Ax + Bu'(x)) < | Dx + Fv||* + V(Ax + Bv).

Suppose also that u' is a stabilizing control in the sense that | x, ||
—0 as k— o0, where X, is the trajectory corresponding to u', i.e.

xk+1 = AXk + Bul(xk).

Then u'(x) is optimal in the class of stabilizing controls. Equation
(6.1.27) has the quadratic solution V(x) = x"Sx if and only if S satisfies
the algebraic Riccati equation (6.1.29) below, and in this case the
corresponding control is

ul(x)= — Mx
where
M = (BTSB + F'F)~{(B"SA + F'D) (6.1.28)
PROOF Let {x,,u,} be any control/trajectory pair such that | x, ||
—0 as k— oo and write
N-1

Vixy) = V(xo) = Z Vixgs1) — V(xi)

N-1

> Y |IDx,+ Fu|*  (from (6.1.27)).
0

Thus

N-1
V(xo) < kZO | Dx, + Fuy||* + V(xy).

Now by the assumptions on V and x,, V(xy) — 0 as N — co and hence
Vixo) < kZO IDx + Fuy||? = J ().

The same calculations hold with = replacing > when u = u', and this

A natural requirement since if x =0 the control u, =0 is plainly optimal.
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shows that
V(xo) = J ,(u') =minJ ,(u).

Thus u' is optimal in the class of stabilizing controls (those for which
|l =0 as k— o0, x, being the corresponding trajectory.)

Since the value function for the finite-horizon problem is a
quadratic form, let us try a solution to (6.1.27) of the form x"Sx where
S is a symmetric non-negative definite matrix. From (6.1.19), the
minimum value on the right of (6.1.27) is then

xT[ATSA + D™D — (ATSB + D'F)(B'SB + F'F)" }(BTSA + FTD)]x

and V(x)= x"Sx is therefore a solution of (6.1.27) if and only if S
satisfies the so-called algebraic Riccati equation (ARE):

S=A"SA+ D™D —(A"SB + D'F)(B'SB + F'F)"{(B"SA4 + F'D).
(6.1.29)

If S satisfies this then certainly V(x)=x"Sx is continuous and
V(0) = 0. The corresponding minimizing u! is given as before by

u'(x)= — Mx
where
M = (B'SB + F'F)"Y(B"SA + F'D). O

If the matrix A — BM is stable then | x,|| =0 as k — co where
Xp+1 = Ax, + Bul(x,) = (4 — BM)x,.

The above proof thus shows that if S satisfies (6.1.29) and 4 — BM is
stable then the control u'(x;) = — Mx, is optimal in the class of all
stabilizing controls. An important feature of this result is that the
optimal control is time-invariant (does not depend explicitly on k),
although time varying controls are not in principle excluded.

It is evident from Proposition 6.1.3 that the infinite time problem
hinges on properties of the algebraic Riccati equation. These are
somewhat technical and a full account will be found in Appendix B.
Let us summarize the main results. The conditions required on the
coefficient matrices A, B, D, F are as follows:

(a) The pair (4, B) is stabilizable.
(b) The pair (D, A) is detectable, where (6.1.30)
— A — B(FTF)"'FTD

A
D =[I— F(FTF)"'FTID.
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The first of these conditions is a natural one since, as remarked before,
it ensures the existence of at least one control giving finite cost. The
motivation for condition (b) is less obvious, though it does seem clear
that some condition involving D and F, in particular concerning the
relation between states x, and ‘output’ Dx,, is required to justify
limiting attention to stabilizing controls. Condition (b) takes the
simpler form

(b") (D, A) 1s detectable,

when FTD = 0; this is the case alluded to at the beginning of this
section, in which the cost takes the form

|Dx, + Fu,||> = xYD"Dx, + u} F'Fu,.

Under conditions (6.1.30), the argument given in Appendix B shows
that there is a unique non-negative definite matrix S satisfying the
algebraic Riccati equation, that A — BM is stable, where M is given by
(6.1.28), and that the control u!(x,) = — Mx, is optimal in the sense of
minimizing J ,(u) over all control-trajectory pairs (x,, u,) satisfying
the dynamic equation (6.1.1). (The less precise argument summarized
in Proposition 6.1.3 only shows that u!(x) minimizes J , (u) over all such
pairs satisfying | x,|| =0 as k— o0.)

The relation between the finite and infinite-time problems is also
elucidated in Appendix B. In fact it is shown that under conditions (a)

d (b),
and (©) S = lim S(— k) (6.1.31)

k— o

where S(— 1), S(— 2),... is the sequence of matrices produced by the
Riccati equation (6.1.19) with S(0) = Q where Q is an arbitrary non-
negative definite matrix. Now x"S(— k)x is the minimal cost for the k-
stage control problem (6.1.1)—(6.1.2) with terminal cost xf Qx,. In view
of (6.1.31) we see that as the time horizon recedes to infinity, the cost of
the finite-horizon problem approaches that of the infinite horizon
problem, whatever the terminal cost matrix Q. Q is unimportant
because || x, | will be very small for large k when the optimal control is
applied.

Generally, in the finite-horizon case, the optimal control u, =
— M(k)x, is time-varying. If, however, one selects Q =S as the
terminal cost, where S satisfies the algebraic Riccati equation, then
S(k) =S for all k, so that the time-invariant control u, = — Mx, is
optimal, and this is the same control that is optimal for the infinite-
horizon problem. The situation is somewhat analogous to that of a
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transmission line terminated by a matched impedance. With this
termination the line is indistinguishable from one of infinite length. In
the control case, if the terminal cost is x; Sx, the controller is
indifferent between paying it and stopping, or continuing optimally
ad infinitum. In either case the total cost is the same, so it is reasonable
to describe S as the ‘matched’ terminal cost matrix.

Finally, let us consider the infinite-time discounted cost problem,
where the cost function is

TG0 = 3. oD%+ Fu

Proceeding exactly as in the finite-horizon discounted case, we
conclude that the optimal control is

uf(x,) = — M*x,.
Here

M? = (B°TS’B* + F'F)™'(B*"S°A* + F'D)

and S” is the solution of the algebraic Riccati equation with 4 and B
replaced by 4” and B respectively, where

A?=p'?4, B =p'’B.

The conditions for existence of a solution S” to the modified equation
are the appropriately modified version of (6.1.30) above, namely

(c) (A%, B®) is stabilizable.

(d) (D, A?) is detectable (4° = p'/24). (6.1.32)

Note that if U is any n x n matrix with eigenvalues 4,,..., 4, then the
eigenvalues of p'/2U are p!/?A,, ..., p1/?A, since if x; is an eigenvector
corresponding to 4; then

p?Ux; = p'?h.x;. (6.1.33)

Thus A” — B°M = p''?(4 — BM) is stable if A— BM is stable.
Similarly A% — (p*/2N)D = p'/*(A — ND) is stable if A — ND is stable.
Thus conditions (6.1.30) imply conditions (6.1.32), so that S” exists for
any p <1 if conditions (6.1.30) are satisfied. However, taking U = 4
and U = 4in (6.1.33) we see that, for sufficiently small p, A? and A” are
both stable and, a fortiori, (A?, B?) and (D, A*) are stabilizable and
detectable respectively. Thus an optimal solution to the discounted
cost infinite-time problem always exists if the discount factor p
sufficiently small. An optimal control with finite cost can, however, be
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obtained without discounting if the rather mild conditions (6.1.30) are
met. This contrasts with the situation in the stochastic case consi-
dered in the next section, where discounting is always necessary to
obtain finite costs in infinite-time problems.

This concludes our discussion of the deterministic optimal regu-
lator problem. We need it as a stepping-stone to the stochastic case
and also to isolate the duality relationships which connect the Riccati
equations which arise here and in the Kalman filter. In Appendix B,
the asymptotic behaviour of the Riccati equation is investigated by
methods which rely heavily on its control-theoretic interpretation.
But, thanks to the duality properties, these results apply equally to tell
us something about asymptotic behaviour of the estimation error in
the Kalman filter.

In recent years, techniques based on the linear/quadratic optimal
regulator have become an important component of multivariable
control system design methodology. It is outside the scope of this
book to discuss such questions, but some references will be found in
the Notes and References at the end of this chapter. The essential
advantage of the linear/quadratic framework in this connection is
that arbitrary dimensions m and p of input u, and output Dx, are
allowed, whereas techniques which attempt to generalize the classical
single-input, single-output methods are seriously complicated by the
combinatorial fact that there are rp transfer functions to consider, one
from each input to each output. A subsidiary advantage of the
linear/quadratic framework is that time-varying systems are handled
with relative ease.

6.2 The stochastic linear regulator

In this section we consider problems of optimal regulation when the
state equation includes additive noise, as in the state-space stochastic
model discussed in Section 2.4. Thus x, satisfies

Xt 1 = A(K)x, + B(k)u, + C(k)w, (6.2.1)

where {w, } is a sequence of I-vector random variables with mean 0 and
covariance I. We will assume in this section that w, and w; are
independent (rather than merely uncorrelated) for k # j. The initial
state x, is a random vector independent of w, with mean and
covariance mg, P, respectively. We suppose that the state x, can be
measured directly by the controller, so that controls will be feedback
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functions of the form u, = u,(x,). The objective is to minimize the cost
criterion

Cyw=E [Nil ID()x, + F(kyuy || + x§ szv]-
k=0

The value function W{x) at time j for this problem is the minimum
value of

N-1
E[ 3 1Dy + F(ku >+ x§ QxN]

where E; . denotes the expectation given that the process starts off at
x; = x (a fixed vector in R"). If x; = x and the control value u; = v is
applied then the next state is

Xj41=A(j)x + B(j)v + C(j)w;

and, by definition, the minimal remaining cost for the rest of the
problem from time j + 1 to N is W, ;(x;, ). This, however, is now a
random variable since x; ., , is determined partly by w;. The expected
minimal remaining cost is obtained by averaging this over the
distribution of w;, giving a value of

EW; . 1(A()x + B(j)v + C(j)w)).

Thus the minimum expected cost starting at x; = x, if control u; = vis
used, is the sum of this and the cost || D(j)x + F(j)v|? paid at time j.
This suggests that W{(x) should satisfy the stochastic Bellman

equation
Wj(x) = min[|[D(j)x + F(j)vll 2+ EW,1(A()x + B(jo + C(jw)]
(6.2.2)

where again E means averaging over the distribution of w; with x,v
fixed. At the final time N no further control or noise enters the system,
so that

Wy(x) = xTQx. (6.2.3)

As before, (6.2.2)—(6.2.3) determine a sequence of functions
Wy, Wy 1,-.., Wy by backwards recursion. And, also as before, we do
not rely on the above heuristic argument to conclude that these
functions are indeed the value functions for the control problem, but
provide independent direct verification.
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Proposition 6.2.1

Suppose that Wy, ..., W, are given by (6.2.2), (6.2.3) and that u?(x) is
the value of v that achieves the minimum in (6.2.2). Then the feedback
control uf = ul(x,) minimizes the cost Cy(u) over the class of all
feedback control policies.

PROOF Let u,(x,;) be an arbitrary feedback control and let x, be the
process given by (6.2.1) with u, = u,(x,). Then

N-1

Z (Wees 1(xg 4 1) — Wilxy)

k=

Wi(xy) — Wo(xo)
so that

N-1
E[Wy(xy) — Wy(xo)] = kZO E[W s 1(Xk+1) — Wilx)]  (6.2.4)

In calculating the expectations on the right we are entitled to
introduce any intermediate conditional expectation. We therefore
write

E[W, i 1(xk 1) — Wilx)] = E{E[Wk+ (X4 1) — Wk(xk)lxk]}'
(6.2.5)

Now, given x,, W(x,) is known and x,_, is given by
X+1 = A(k)x; + B(k)uy(x,) + C(k)wy.

The first two terms on the right are known and the third is a random
vector independent of x,. The conditional expectation of W, ;(x;. )
is therefore given by

E[W, i 1(xk+ DX ] = EW, o ((A(K)x, + B(k)uy(x,) + C(k)wy)

where the expectation on the right is taken over the distribution of w,
for fixed x,. Now, using (6.2.2) we obtain

E[W, 11X+ 1) — Wilxi)1xi ] = EWe i (A(K)x, + B(k)uy(x,)
+ Ck)wy) — Wilxi)
2 — || D(k)x, + F(k)uy(x,) |12, (6.2.6)
Combining (6.2.4)—(6.2.6) shows that

N-1
E[Wy(xy) — Wy(x0)]1= — E kZO ID(K)x + Fkyuy(x,) I
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and hence, since Wy(xy) = xxQxy, that
EW,y(xo) < Cplu). (6.2.7)

On the other hand, the same argument holds with equality instead of
inequality in (6.2.6) when u,(x) = ui(x), so that

EWo(xo) = Cy(u'). (6.2.8)
Now (6.2.7) and (6.2.8) say that u' is optimal. O

The proof actually shows a little more than is claimed in the
proposition statement. Indeed, since W(x,) is only a function of x,,
the expectation in (6.2.8) only involves the (arbitrary) distribution of
the initial state x,. In particular, if x, takes a fixed value, say X, with
probability one, then the corresponding optimal cost is just W(x,).
Thus Wy(x,) should be interpreted as the conditional optimal cost
given the initial state x,. The overall optimal cost is then obtained by
averaging over x,, asin (6.2.8). A similar interpretation applies to W,
namely W,(x) is the optimal cost over stages k, k+ 1,...,N con-
ditional on an initial state x, = x.

The solution of (6.2.2) is related in a simple way to that of the
‘deterministic’ Bellman equation (6.1.4). In fact,

W(x) = x"S(k)x + o,

where S(N) = Q, S(N —1),...,5(0) are given by the Riccati equation
(6.1.20) as before, and o, is a constant, to be determined below. Note
that if W, (x)=xTS(k + 1)x + «,, , then for fixed x, v,
EW, . (A(k)x + B(k)o + C(k)w,)
= (A(k)x + B(k)v)"S(k + 1)(A(k)x + B(k)v)
+ 2E(A(k)x + B(k)v)"S(k + 1)C(k)w,
+ Ewy CT(k)S(k + 1)C(k)wy + 04 4 4
= (A(k)x + B(k)v)"S(k + 1)(A(k)x + B(k)v)
+ tr[CT(k)S(k + 1)C(k)] + o 4
where the last line follows from the facts that Ew, =0, cov(w,) =1.
Notice that the final expression is identical to that obtained in the
deterministic case except for the term tr[CT(k)S(k + 1)C(k)] + % 4 1,
which does not depend on x or v and hence does not affect the

minimization on the right-hand side of (6.2.2). Thus if W,,(x)=
x'S(k +1)x + o, then the induction argument as used in the
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deterministic case shows that
Wi(x) = x"S(k)x + oy 4, + tr[CT(k)S(k + 1)C(k)].

But Wy(x) = xTQx, i.e. ay = 0, so working backwards from k = n we
see that

4="3 LGS+ DT

Summarizing, we have the following result.

Theorem 6.2.2

For the stochastic linear regulator with complete observations, the
optimal control is

uI}(Xk) = — M(k)x,

where M(k) is given by (6.1.16), i.e. is the same as in the deterministic
case. The minimal cost is

Cx(u®) = mES(O)mq + tr[S(O)P,] + NZ_I tr[CT(k)S(k + 1)C(k)].
(6.2.9)

prOOF The optimality of u' follows from Proposition 6.2.1. As to
the cost, we note that

Wo(x) = xTS(0)x + ag

1s the conditional minimal cost given that the process starts at x, = x.
Taking the expectation over the distribution of x,, and using
Proposition 1.1.3(b), we obtain (6.2.9). O

Note that only the mean m, and covariance P, of the initial state
are needed to compute the optimal cost, so it is not necessary to
suppose that x, is normally distributed. The important feature of the
above result is that the matrices S(k) and M(k) do not depend on the
noise coefficients C(k), so that in particular the optimal control is the
same as in the deterministic case. Thus adding noise to the state
equation as in (6.2.1) makes no difference to the optimal policy, but
simply makes that policy more expensive. Indeed, if the system starts
at a fixed state x, (so that my = x, and P, = 0) then the additional cost
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is precisely
Nil tr[CT(k)S(k + 1)C(k)].
k=0

Let us now consider the discounted cost case. We will assume for
simplicity of notation that the coefficient matrices 4, B, D, F are time
invariant but, with later applications in mind, time variation will be
retained for C(k). Thus the problem is to minimize

N-1
E( Z Pk“ka"‘Fuk“z'*‘PNx;QxN)-
K=0

We use the same device as before, namely rewriting the cost as

k=

N-1
E< IDxE + Ful|? + xf;,’Qx,ﬂv> (6.2.10)
0

where x{ = p*%x,, uf = p*?u,. Multiplying (6.2.1) by p** /2 shows
that x§, uf satisfy

xf o1 = APxf + Bfuf + CP(k)w, (6.2.11)

where A” = p'2A4, B® = p*/?B, C*(k) = p** V/2C(k). Now (6.2.10) and
(6.2.11) give the problem in non-discounted form. As noted above, the
optimal control does not depend on C*(k); applying our previous
results it is given by

uf(x) = — M*(k)x

where M?(k) is defined as in Section 6.1 above. The corresponding
cost is, from (6.2.9)

CR(u?) = mESP(O)mq + tr[SP(0)P,] + Nf tr[C*T(k)SP(k + 1)C?(k)]
k=0

— mISOm, + [SAOP] + T o Hr[CTRIS (ke + 1)CR) .
k=0

The importance of the discount factor becomes apparent when we
consider infinite-horizon problems. Suppose that conditions (6.1.30)
are met and that S” is the solution to the algebraic Riccati equation
with coefficient matrices 4°, B®. Such a solution exists for any p < 1.
Now consider the N-stage problem as above, with terminal cost
matrix Q = S”. This is the ‘matched impedance’ case, discussed at the
end of Section 6.1, for which S?(k) = S” for all k. Thus the optimal
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control is the time-invariant feedback
uf(x,) = — M*x, (6.2.12)

and the cost over N stages is

N—-1
C%(u?) = mi SPmy + tr[SPP,] + kzo Pt tr[CT(k)SPC(k)].
(6.2.13)

Note that if p =1 (no discounting) and C(k) = C is constant, then
C%—> o0 as N— oo and hence the infinite-time problem has no
solution (all controls give cost + oo). This is not surprising. The
reason that finite costs could be obtained in the deterministic case was
that |x,| converged to zero sufficiently fast that

was finite. However, in the present case || x, || does not converge to zero
because at each stage it is being perturbed by the independent noise
term Cw,, and the controller has continually to battle against this
disturbance to keep | x, || as small as possible. If, however, p < 1, then

lim C4 = m}SPm, + tr[S°P,] + T”—p tr[CTSC). (6.2.14)
N-w -

Thus any amount of discounting, however little, leads to a finite
limiting cost. One can show, by methods exactly analogous to those
used in the previous section, that the time-invariant control u” given
by (6.2.12) does in fact minimize the cost

P () = E< S p*IDxy + FukHZ> (6.2.15)
k=0

and that the minimal cost is precisely the expression given in (6.2.14).
As to the conditions required, recall that if (A4, B) is stabilizable then
(A%, B®) is stabilizable for any p < 1; thus

(a) Ifconditions (6.1.30) are satisfied then the infinite time discounted
problem is well-posed, and has the above solution, for any p < 1.

(b) Ifeither of conditions (6.1.30) fails then we must take p < p, where
po is such that (4%, B*), (D, A?) are stabilizable and detectable
respectively for any p < p,. Generally, p, < 1.
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If C(k) is not constant then exactly similar results apply as long as

Y, P e [CT(k)SPC(k)] < oo

K=0
and this will certainly be the case for any p < 1 as long as the elements
of CT(k) are uniformly bounded, i.e. there is some constant ¢, such that
for all i, j, k,

IC(k)jl <y

This, in turn, is always true if the C(k) sequence is convergent, i.e.
there is a matrix C such that C(k) - C as k — oo. The same control is
optimal but there is in general no closed-form expression, as in
(6.2.14), for the minimal cost, which is now

mSPm + tr[SPP] + Y Pt [CTRSPCR)]. (6.2.16)
k=0

Let us now consider minimizing the average cost per unit time,
1 N-1
C,,(u)= lim E[ Y 1|ka+Fuk||2]. (6.2.17)
N-oow N k=0

As before we assume that all coefficients are constant except for the
noise matrices C(k) which are supposed to be convergent: C(k) - C as
k — co. This is needed in the next section.

The limit in (6.2.17) may or may not exist for any particular control
u, but it certainly does exist for all constant, stabilizing controls, i.e.
controls of the form uf = — Kx, where 4:= A — BK is stable. For
then the closed-loop system is

X1 = Ax, + C(k)w,

and we know by a slight extension of results in Section 2.4 that
Q(k):= cov(x,) > Q where Q satisfies

Q=AQA" + CC".
Thus

C, (%) = lim % i tr[(D — FK)Q(k)(D — FK)"]

N-
=tr[(D — FK)Q(D — FK)"].
If the pair (4, B) is stabilizable then a stabilizing K exists and the
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problem of minimizing C,,(u) is meaningful. We now show that C, (u)
is minimized by the control u, = — Mx, where M is given by (6.1.28).
This is the same control policy that is optimal for the deterministic
infinite-time problem.

Theorem 6.2.3

Suppose conditions (6.1.30) hold. Then, among all controls u for
which C,,(u) exists and E|x,[?> remains bounded, the minimal
cost is achieved by the control uj(x) = — Mx where M is given by
(6.1.28). The minimal value of the cost is

C,(u!)=tr[C'SC]

where S is the unique solution of the algebraic Riccati equation
(6.1.29).

PROOF It is shown in Appendix B that 4 — BM is stable, so that
J(u') exists. Let S be the solution of the ARE (6.1.29) and consider
the N-stage problem of minimizing

N-1
Cyu) = E[ Y IDx, + Fuy|? +x1T,SxNJ
K=o

This is the ‘matched terminal cost’ problem for which, from
Theorem 6.2.2, control u! is optimal. Thus for any control u,

Cult) = Calu) = mESmo + r[SPo]+ S tr[CTHOSCR)].
k=0

(6.2.18)
Thus
1 1
. . > 13 o 1 — 1
Jim - Cpfu) = lim - Cpfu) = Coy(u)
as long as the left-hand limit exists. But if C,(u) exists and E||x,]|? is
bounded, then
1 1
lim — Cy(u)= C,(u) + lim —E[x}Sxy] = C,,(u).
N N—-w N

N—-
This shows that u' is optimal. From (6.2.18) its cost is

C,(u!) = lim iNf tr[CT(k)SC(k)] = tr[CTSC]. 0
=0

N—- k
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The control uj = — Mx, is not the only optimal control for the
average cost per unit time problem. Indeed, for any integer j we can
write

N et
Cav(u) = Al,ljn NEI:kZO ”ka + Fuk”2:|

1 [N-1
+ lim —E[ Y ||ka+Fuk||2].
N k=j

N- o0

Now for any given control u,,

i1
E[ z |Dx, + Fuk||2}
0

is a fixed number not depending on N. Thus the first limit is zero, and
since (N — j)/N—1as N - o0,

. 1 N-1
C. ()= lim —E[ Y \|ka+Fuk|i2].
N—j |«

N- w0

The expression on the right is the average cost from time j onwards
starting in state x;, and its minimal value does not depend at all on
what controls u, were used for k < j. Thus any control of the form

"y arbitrary, k<j
Tl = Mx,, k> j

is optimal. Thus the average cost criterion is only relevant when one is
mainly concerned with ‘long-run performance’; the idea is that the
system settles down to a statistically stationary state in which an
average of precisely tr[CTSC] is added to the cost at each stage,
and this is minimal. There is, however, nothing in the cost criterion
which specifies just how long this settling-down period is supposed
to last. The discounted cost formulation has the opposite effect: it
emphasizes performance during some initial interval the length of
which is effectively specified by the discount factor. In this case the
optimal control is unique. Another advantage of discounted costs
is that the stabilizability/detectability conditions can always be met
by sufficiently rapid discounting, whereas with average costs little
can be said if the original system matrices (4, B, D) do not satisfy
these conditions.
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Figure 4.1.2 Graphical proof of Prop. 4.1 for the case o 2 scalar stationary
system (one-dimensional state and control), assuming tha: 4 F0.B£0,Q@>0, E
and R > 0. The Riccati equation (1.13) is given by

B2p2
Popi=A2(p _ E Q.
k+1 ( (3 BQP;,+R) Q.

which can be equivalently written as
FPry1 = F(B),
where the function F is given by

AZRP
F(P)= 5P 1R

+ Q.

Because F is concave and monotonically increasing i the Imterva] {-R/B? c0),
2s shown in the figure, the equation P = F(P) has oze posfive solution P* and

one negative solution 2. The Riccati iteration FPri: = HB,) converges to P*
starting anywhere in the interval (P, o) as shown i the Sgare

where both minimizations are subject to the sysiem equation constraint
. Ti1 = Az; + Bu,. Furthermore, for a fixed T and for every k, z{ P (0)zg

{20P:(0)zo} is nondecreasing with respect to  and bounded from above,
- and therefore converges to some real number for every g € Rr. It follows
- 2at the sequence {Px(0)} converges to some matrix P in the sense that
each of the sequences of the elements of P (0) converges to the correspond-






