
Labeled RTDP: Improving the Convergence
of Real-Time Dynamic Programming

Blai Bonet
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90024, USA
bonet@cs.ucla.edu

Héctor Geffner
Departament de Tecnologia
Universitat Pompeu Fabra
Barcelona 08003, España

hector.geffner@tecn.upf.es

Abstract

RTDP is a recent heuristic-search DP algorithm for solving
non-deterministic planning problems with full observability.
In relation to other dynamic programming methods, RTDP has
two benefits: first, it does not have to evaluate the entire state
space in order to deliver an optimal policy, and second, it can
often deliver good policies pretty fast. On the other hand,
RTDP final convergence is slow. In this paper we introduce
a labeling scheme into RTDP that speeds up its convergence
while retaining its good anytime behavior. The idea is to la-
bel a state s as solved when the heuristic values, and thus, the
greedy policy defined by them, have converged over s and
the states that can be reached from s with the greedy pol-
icy. While due to the presence of cycles, these labels can-
not be computed in a recursive, bottom-up fashion in general,
we show nonetheless that they can be computed quite fast,
and that the overhead is compensated by the recomputations
avoided. In addition, when the labeling procedure cannot la-
bel a state as solved, it improves the heuristic value of a rele-
vant state. This results in the number of Labeled RTDP trials
needed for convergence, unlike the number of RTDP trials,
to be bounded. From a practical point of view, Labeled RTDP
(LRTDP) converges orders of magnitude faster than RTDP, and
faster also than another recent heuristic-search DP algorithm,
LAO*. Moreover, LRTDP often converges faster than value
iteration, even with the heuristic h = 0, thus suggesting that
LRTDP has a quite general scope.

Introduction
RTDP is a recent algorithm for solving non-deterministic
planning problems with full observability that can be under-
stood both as an heuristic search and a dynamic program-
ming (DP) procedure (Barto, Bradtke, & Singh 1995). RTDP
involves simulated greedy searches in which the heuristic
values of the states that are visited are updated in a DP
fashion, making them consistent with the heuristic values
of their possible successor states. Provided that the heuris-
tic is a lower bound (admissible) and the goal is reach-
able from every state (with positive probability), the up-
dates yield two key properties: first, RTDP trials (runs) are
not trapped into loops, and thus must eventually reach the
goal, and second, repeated trials yield optimal heuristic val-
ues, and hence, an optimal policy, over a closed set of states

Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

that includes the initial state (Barto, Bradtke, & Singh 1995;
Bertsekas 1995).

RTDP corresponds to a generalization of Korf’s LRTA* to
non-deterministic settings and is the algorithm that underlies
the GPT planner (Bonet & Geffner 2000; 2001a). In relation
to other DP algorithms normally used in non-deterministic
settings such as Value and Policy Iteration (Bertsekas 1995;
Puterman 1994), RTDP has two benefits: first, it is focused,
namely, it does not have to evaluate the entire state space
in order to deliver an optimal policy, and second, it has a
good anytime behavior; i.e., it produces good policies fast
and these policies improve smoothly with time. These fea-
tures follow from its simulated greedy exploration of the
state space: only paths resulting from the greedy policy are
considered, and more likely paths, are considered more of-
ten. An undesirable effect of this strategy, however, is that
unlikely paths tend to be ignored, and hence, RTDP conver-
gence is slow.

In this paper we introduce a labeling scheme into RTDP
that speeds up the convergence of RTDP quite dramatically,
while retaining its focus and anytime behavior. The idea is to
label a state s as solved when the heuristic values, and thus,
the greedy policy defined by them, have converged over s
and the states that can be reached from s with the greedy
policy. While due to the presence of cycles, these labels can-
not be computed in a recursive, bottom-up fashion in gen-
eral, we show nonetheless that they can be computed quite
fast, and that the overhead is compensated by the recomputa-
tions avoided. In addition, when the labeling procedure fails
to label a state as solved, it always improves the heuristic
value of a relevant state. As a result, the number of Labeled
RTDP trials needed for convergence, unlike the number of
RTDP trials, is bounded. From a practical point of view, we
show empirically over some problems that Labeled RTDP
(LRTDP) converges orders of magnitude faster than RTDP,
and faster also than another recent heuristic-search DP al-
gorithm, LAO* (Hansen & Zilberstein 2001). Moreover, in
our experiments, LRTDP converges faster than value itera-
tion even with the heuristic function h = 0, thus suggesting
LRTDP may have a quite general scope.

The paper is organized as follows. We cover first the ba-
sic model for non-deterministic problems with full feedback,
and then value iteration and RTDP (Section 2). We then
assess the anytime and convergence behavior of these two

12 ICAPS 2003

From: ICAPS-03 Proceedings. Copyright © 2003, AAAI (www.aaai.org). All rights reserved.

methods (Section 3), introduce the labeling procedure into
RTDP, and discuss its theoretical properties (Section 4). We
finally run an empirical evaluation of the resulting algorithm
(Section 5) and end with a brief discussion (Section 6).

Preliminaries
We provide a brief review of the models needed for charac-
terizing non-deterministic planning tasks with full observ-
ability, and some of the algorithms that have been proposed
for solving them. We follow the presentation in (Bonet &
Geffner 2001b); see (Bertsekas 1995) for an excellent expo-
sition of the field.

Deterministic Models with No Feedback

Deterministic state models (Newell & Simon 1972; Nilsson
1980) are the most basic action models in AI and consist
of a finite set of states S, a finite set of actions A, and a
state transition function f that describes how actions map
one state into another. Classical planning problems can be
understood in terms of deterministic state models compris-
ing:

S1. a discrete and finite state space S,
S2. an initial state s0 ∈ S,
S3. a non empty set G ⊆ S of goal states,
S4. actions A(s) ⊆ A applicable in each state s ∈ S,
S5. a deterministic state transition function f(s, a) for s ∈

S and a ∈ A(s),
S6. positive action costs c(a, s) > 0.

A solution to a model of this type is a sequence of ac-
tions a0, a1, . . . , an that generates a state trajectory s0,
s1 = f(s0, a0), . . . , sn+1 = f(si, ai) such that each action
ai is applicable in si and sn+1 is a goal state, i.e. ai ∈ A(si)
and sn+1 ∈ G. The solution is optimal when the total cost∑n

i=0 c(si, ai) is minimal.

Non-Deterministic Models with Feedback

Non-deterministic planning problems with full feedback can
be modeled by replacing the deterministic transition func-
tion f(s, a) in S5 by transition probabilities Pa(s′|s),1 re-
sulting in the model:2

M1. a discrete and finite state space S,
M2. an initial state s0 ∈ S,
M3. a non empty set G ⊆ S of goal states,
M4. actions A(s) ⊆ A applicable in each state s ∈ S,
M5. transition probabilities Pa(s′|s) of reaching state s′ af-

ter aplying action a ∈ A(s) in s ∈ S,
M6. positive action costs c(a, s) > 0.

1Namely, the numbers Pa(s′|s) are real and non-negative and
their sum over the states s′ ∈ S must be 1.

2The ideas in the paper apply also, with slight modification,
to non-deterministic planning where transitions are modeled by
means of functions F (s, a) mapping s and a into a non-empty set
of states (e.g., (Bonet & Geffner 2000)).

While the states si+1 that result from an action ai are not
predictable they are assumed to be fully observable, provid-
ing feedback for the selection of the action ai+1:

M7. states are fully observable.

The models M1–M7 are known as Markov Decision
Processes or MDPs, and more specifically as Stochastic
Shortest-Path Problems (Bertsekas 1995).3

Due to the presence of feedback, the solution of an MDP
is not an action sequence but a function π mapping states
s into actions a ∈ A(s). Such a function is called a pol-
icy. A policy π assigns a probability to every state trajec-
tory s0, s1, s2, . . . starting in state s0 which is given by
the product of all transition probabilities Pai

(si+1|si) with
ai = π(si). If we further assume that actions in goal states
have no costs and produce no changes (i.e., c(a, s) = 0 and
Pa(s|s) = 1 if s ∈ G), the expected cost associated with a
policy π starting in state s0 is given by the weighted average
of the probability of such trajectories multiplied by their cost∑∞

i=0 c(π(si), si). An optimal solution is a control policy
π∗ that has a minimum expected cost for all possible initial
states. An optimal solution for models of the form M1–M7
is guaranteed to exist when the goal is reachable from every
state s ∈ S with some positive probability (Bertsekas 1995).
This optimal solution, however, is not necessarily unique.

We are interested in computing optimal and near-optimal
policies. Moreover, since we assume that the initial state s0

of the system is known, it is sufficient to compute a par-
tial policy that is closed relative to s0. A partial policy π
only prescribes the action π(s) to be taken over a subset
Sπ ⊆ S of states. If we refer to the states that are reachable
(with some probability) from s0 using π as S(π, s0) (includ-
ing s0), then a partial policy π is closed relative to s0 when
S(π, s0) ⊆ Sπ . We sometimes refer to the states reachable
by an optimal policy as the relevant states. Traditional dy-
namic programming methods like value or policy iteration
compute complete policies, while recent heuristic search DP
methods like RTDP and LAO* are more focused and aim to
compute only closed, partial optimal policies over an smaller
set of states that includes the relevant states. Like more
traditional heuristic search algorithms, they achieve this by
means of suitable heuristic functions h(s) that provide non-
overestimating (admissible) estimates of the expected cost
to reach the goal from any state s.

Dynamic Programming
Any heuristic function h defines a greedy policy πh:

πh(s) = argmin
s∈A(s)

c(a, s) +
∑

s′∈S

Pa(s′|s) h(s′) (1)

where the expected cost from the resulting states s′ is as-
sumed to be given by h(s′). We call πh(s) the greedy action
in s for the heuristic or value function h. If we denote the
optimal (expected) cost from a state s to the goal by V ∗(s),

3For discounted and other MDP formulations, see (Puterman
1994; Bertsekas 1995). For uses of MDPs in AI, see for ex-
ample (Sutton & Barto 1998; Boutilier, Dean, & Hanks 1995;
Barto, Bradtke, & Singh 1995; Russell & Norvig 1994).

ICAPS 2003 13

it is well known that the greedy policy πh is optimal when h
is the optimal cost function, i.e. h = V ∗.

While due to the possible presence of ties in (1), the
greedy policy is not unique, we assume throughout the pa-
per that these ties are broken systematically using an static
ordering on actions. As a result, every value function V de-
fines a unique greedy policy πV , and the optimal cost func-
tion V ∗ defines a unique optimal policy πV ∗ . We define the
relevant states as the states that are reachable from s0 using
this optimal policy; they constitute a minimal set of states
over which the optimal value function needs to be defined.4

Value iteration is a standard dynamic programming
method for solving non-deterministic states models such as
M1–M7 and is based on computing the optimal cost function
V ∗ and plugging it into the greedy policy (1). This optimal
cost function is the unique solution to the fixed point equa-
tion (Bellman 1957):

V (s) = min
a∈A(s)

c(a, s) +
∑

s′∈S

Pa(s′|s) V (s′) (2)

also called the Bellman equation. For stochastic short-
est path problems like M1-M7 above, the border condition
V (s) = 0 is also needed for goal states s ∈ G. Value it-
eration solves (2) for V ∗ by plugging an initial guess in the
right-hand of (2) and obtaining a new guess on the left-hand
side. In the form of value iteration known as asynchronous
value iteration (Bertsekas 1995), this operation can be ex-
pressed as:

V (s) := min
a∈A(s)

c(a, s) +
∑

s′∈S

Pa(s′|s) V (s′) (3)

where V is a vector of size |S| initialized arbitrarily (except
for s ∈ G initialized to V (s) = 0), and where we have
replaced the equality in (2) by an assignment. The use of
expression (3) for updating a state value in V is called a
state update or simply an update. In standard (synchronous)
value iteration, all states are updated in parallel, while in
asynchronous value iteration, only a selected subset of states
is selected for update. In both cases, it is known that if all
states are updated infinitely often, the value function V con-
verges eventually to the optimal value function. In the case
that concerns us, model M1–M7, the only assumption that is
needed for convergence is that (Bertsekas 1995)
A. the goal is reachable with positive probability from every

state.
From a practical point of view, value iteration is stopped
when the Bellman error or residual defined as the difference
between left and right sides of (2):

R(s) def=
∣∣∣∣V (s)− min

a∈A(s)
c(a, s) +

∑

s′∈S

Pa(s′|s)V (s′)
∣∣∣∣ (4)

over all states s is sufficiently small. In the discounted
MDP formulation, a bound on the policy loss (the differ-
ence between the expected cost of the policy and the ex-
pected cost of an optimal policy) can be obtained as a sim-
ple expression of the discount factor and the maximum

4This definition of ‘relevant states’ is more restricted than the
one in (Barto, Bradtke, & Singh 1995) that includes the states
reachable from s0 by any optimal policy.

RTDP(s : state)
begin

repeat RTDPTRIAL(s)
end

RTDPTRIAL(s : state)
begin

while ¬s.GOAL() do
// pick best action and update hash
a = s.GREEDYACTION()
s.UPDATE()

// stochastically simulate next state
s = s.PICKNEXTSTATE(a)

end

Algorithm 1: RTDP algorithm (with no termination condi-
tions; see text)

residual. In stochastic shortest path models such as M1–
M7, there is no similar closed-form bound, although such
bound can be computed at some expense (Bertsekas 1995;
Hansen & Zilberstein 2001). Thus, one can execute value
iteration until the maximum residual becomes smaller than
a bound ε, then if the bound on the policy loss is higher than
desired, the same process can be repeated with a smaller ε
(e.g., ε/2) and so on. For these reasons, we will take as our
basic task below, the computation of a value function V (s)
with residuals (4) smaller than or equal to some given pa-
rameter ε > 0 for all states. Moreover, since we assume that
the initial state s0 is known, it will be enough to check the
residuals over all states that can be reached from s0 using
the greedy policy πV .

One last definition and a few known results before we pro-
ceed. We say that cost vector V is monotonic iff

V (s) ≤ min
a∈A(s)

c(a, s) +
∑

s′∈S

Pa(s′|s) V (s′)

for every s ∈ S. The following are well-known results
(Barto, Bradtke, & Singh 1995; Bertsekas 1995):

Theorem 1 a) Given the assumption A, the optimal values
V ∗(s) of model M1-M7 are non-negative and finite; b) the
admissibility and monotonicy of V are preserved through
updates.

Real-Time Dynamic Programming
RTDP is a simple DP algorithm that involves a sequence of
trials or runs, each starting in the initial state s0 and end-
ing in a goal state (Algorithm 1, some common routines are
defined in Alg.2). Each RTDP trial is the result of simulat-
ing the greedy policy πV while updating the values V (s)
using (3) over the states s that are visited. Thus, RTDP is
an asynchronous value iteration algorithm in which a sin-
gle state is selected for update in each iteration. This state
corresponds to the state visited by the simulation where suc-
cessor states are selected with their corresponding probabil-
ity. This combination is powerful, and makes RTDP different

14 ICAPS 2003

state :: GREEDYACTION()
begin

return argmin
a∈A(s)

s.QVALUE(a)

end

state :: QVALUE(a : action)
begin

return c(s, a) +
∑

s′

Pa(s′|s) · s′.VALUE

end

state :: UPDATE()
begin

a = s.GREEDYACTION()
s.VALUE = s.QVALUE(a)

end

state :: PICKNEXTSTATE(a : action)
begin

pick s′ with probability Pa(s′|s)
return s′

end

state :: RESIDUAL()
begin

a = s.GREEDYACTION()
return |s.VALUE − s.QVALUE(a)|

end

Algorithm 2: Some state routines.

than pure greedy search and general asynchronous value it-
eration. Proofs for some properties of RTDP can be found in
(Barto, Bradtke, & Singh 1995), (Bertsekas 1995) and (Bert-
sekas & Tsitsiklis 1996); a model like M1–M7 is assumed.

Theorem 2 (Bertsekas and Tsitsiklis (1996)) If assump-
tion A holds, RTDP unlike the greedy policy cannot be
trapped into loops forever and must eventually reach the
goal in every trial. That is, every RTDP trial terminates in a
finite number of steps.

Theorem 3 (Barto et al. (1995)) If assumption A holds,
and the initial value function is admissible (lower bound),
repeated RTDP trials eventually yield optimal values V (s) =
V ∗(s) over all relevant states.

Note that unlike asynchronous value iteration, in RTDP
there is no requirement that all states be updated infinitely
often. Indeed, some states may not be updated at all. On the
other hand, the proof of optimality lies in the fact that the
relevant states will be so updated.

These results are very important. Classical heuristic
search algorithms like IDA* can solve optimally problems
with trillion or more states (e.g. (Korf & Taylor 1996)), as
the use of lower bounds (admissible heuristic functions) al-
lows them to bypass most of the states in the space. RTDP is

the first DP method that offers the same potential in a gen-
eral non-deterministic setting. Of course, in both cases, the
quality of the heuristic functions is crucial for performance,
and indeed, work in classical heuristic search has often been
aimed at the discovery of new and effective heuristic func-
tions (see (Korf 1997)). LAO* (Hansen & Zilberstein 2001)
is a more recent heuristic-search DP algorithm that shares
this feature.

For an efficient implementation of RTDP, a hash table T
is needed for storing the updated values of the value func-
tion V . Initially the values of this function are given by an
heuristic function h and the table is empty. Then, every time
that the value V (s) for a state s that is not in the table is up-
dated, and entry for s in the table is created. For states s in
the table T , V (s) = T (s), while for states s that are not in
the table, V (s) = h(s).

The convergence of RTDP is asymptotic, and indeed, the
number of trials before convergence is not bounded (e.g.,
low probability transitions are taken eventually but there is
always a positive probability they will not be taken after any
arbitrarily large number of steps). Thus for practical rea-
sons, like for value iteration, we define the termination of
RTDP in terms of a given bound ε > 0 on the residuals (no
termination criterion for RTDP is given in (Barto, Bradtke, &
Singh 1995)). More precisely, we terminate RTDP when the
value function converges over the initial state s0 relative to
a positive ε parameter where

Definition 1 A value function V converges over a state s
relative to parameter ε > 0 when the residuals (4) over s
and all states s′ reachable from s by the greedy policy πV

are smaller than or equal to ε.

Provided with this termination condition, it can be shown
that as ε approaches 0, RTDP delivers an optimal cost func-
tion and an optimal policy over all relevant states.

Convergence and Anytime Behavior
From a practical point of view, RTDP has positive and neg-
ative features. The positive feature is that RTDP has a good
anytime behavior: it can quickly produce a good policy and
then smoothly improve it with time. The negative feature
is that convergence, and hence, termination is slow. We il-
lustrate these two features by comparing the anytime and
convergence behavior of RTDP in relation to value iteration
(VI) over a couple of experiments. We display the anytime
behavior of these methods by plotting the average cost to
the goal of the greedy policy πV as a function of time. This
cost changes in time as a result of the updates on the value
function. The averages are taken by running 500 simulations
after every 25 trials for RTDP, and 500 simulations after each
syncrhonous update for VI. The curves in Fig. 1 are further
smoothed by a moving average over 50 points (RTDP) and 5
points (VI).

The domain that we use for the experiments is the race-
track from (Barto, Bradtke, & Singh 1995). A problem in
this domain is characterized by a racetrack divided into cells
(see Fig. 2). The task is to find the control for driving a car
from a set of initial states to a set of goal states minimizing

ICAPS 2003 15

large-ring large-square

Figure 1: Quality profiles: Average cost to the goal vs. time for Value Iteration and RTDP over two racetracks.

the number of time steps.5

The states are tuples (x, y, dx, dy) that represent the po-
sition and speed of the car in the x, y dimensions. The
actions are pairs a = (ax, ay) of instantaneous accelera-
tions where ax, ay ∈ {−1, 0, 1}. Uncertainty in this domain
comes from assuming that the road is ’slippery’ and as a re-
sult, the car may fail to accelerate. More precisely, an action
a = (ax, ay) has its intended effect 90% of the time; 10% of
the time the action effects correspond to those of the action
a0 = (0, 0). Also, when the car hits a wall, its velocity is set
to zero and its position is left intact (this is different than in
(Barto, Bradtke, & Singh 1995) where the car is moved to
the start position).

For the experiments we consider racetracks of two shapes:
one is a ring with 33068 states (large-ring), the other is
a full square with 383950 states (large-square). In both
cases, the task is to drive the car from one extreme in the
racetrack to its opposite extreme. Optimal policies for these
problems turn out to have expected costs (number of steps)
14.96 and 10.48 respectively, and the percentages of relevant
states (i.e., those reachable through an optimal policy) are
11.47% and 0.25% respectively.

Figure 1 shows the quality of the policies found as a func-
tion of time for both value iteration and RTDP. In both cases
we use V = h = 0 as the initial value function; i.e., no (in-
formative) heuristic is used in RTDP. Still, the quality profile
for RTDP is much better: it produces a policy that is practi-
cally as good as the one produced eventually by VI in almost
half of the time. Moreover, by the time RTDP yields a policy
with an average cost close to optimal, VI yields a policy with
an average cost that is more than 10 times higher.

The problem with RTDP, on the other hand, is conver-
gence. Indeed, while in these examples RTDP produces near-
to-optimal policies at times 3 and 40 seconds respectively, it
converges, in the sense defined above, in more than 10 min-
utes. Value iteration, on the other hand, converges in 5.435

5So far we have only considered a single initial state s0, yet it
is simple to modify the algorithm and extend the theoretical results
for the case of multiple initial states.

Figure 2: Racetrack for large-ring. The initial and goal
positions marked on the left and right

and 78.720 seconds respectively.

Labeled RTDP
The fast improvement phase in RTDP as well as its slow
convergence phase are both consequences of an exploration
strategy – greedy simulation – that privileges the states that
occur in the most likely paths resulting from the greedy pol-
icy. These are the states that are most relevant given the
current value function, and that’s why updating them pro-
duces such a large impact. Yet states along less likely paths
are also needed for convergence, but these states appear less
often in the simulations. This suggests that a potential way
for improving the convergence of RTDP is by adding some
noise in the simulation.6 Here, however, we take a differ-
ent approach that has interesting consequences both from a
practical and a theoretical point of view.

6This is different than adding noise in the action selection
rule as done in reinforcement learning algorithms (Sutton & Barto
1998) In reinforcement learning, noise is needed in the action se-
lection rule to guarantee optimality while no such thing is needed
in RTDP. This is because full DP updates as used in RTDP, unlike
partial DP updates as used in Q or TD-learning, preserve admissi-
bility.

0

50

100

150

200

250

300

350

400

450

500

2 2.5 3 3.5 4 4.5 5 5.5 6

elapsed time

RTDP
VI

0

50

100

150

200

250

300

350

400

450

500

30 40 50 60 70 80

elapsed time

RTDP
VI

16 ICAPS 2003

Roughly, rather than forcing RTDP out of the most likely
greedy states, we keep track of the states over which the
value function has converged and avoid visiting those states
again. This is accomplished by means of a labeling proce-
dure that we call CHECKSOLVED. Let us refer to the graph
made up of the states that are reachable from a state s with
the greedy policy (for the current value function V) as the
greedy graph and let us refer to the set of states in such
a graph as the greedy envelope. Then, when invoked in a
state s, the procedure CHECKSOLVED searches the greedy
graph rooted at s for a state s′ with residual greater than
ε. If no such state s′ is found, and only then, the state s
is labeled as SOLVED and CHECKSOLVED(s) returns true.
Namely, CHECKSOLVED(s) returns true and labels s as
SOLVED when the current value function has converged over
s. In that case, CHECKSOLVED(s) also labels as SOLVED all
states s′ in the greedy envelope of s as, by definition, they
must have converged too. On the other hand, if a state s′

is found in the greedy envelope of s with residual greater
than ε, then this and possibly other states are updated and
CHECKSOLVED(s) returns false. These updates are crucial
for accounting for some of the theoretical and practical dif-
ferences between RTDP and the labeled version of RTDP that
we call Labeled RTDP or LRTDP.

Note that due to the presence of cycles in the greedy
graph it is not possible in general to have the type of re-
cursive, bottom-up labeling procedures that are common in
some AO* implementations (Nilsson 1980), in which a state
is labeled as solved when its successors states are solved.7

Such a labeling procedure would be sound but incomplete,
namely, in the presence of cycles it may fail to label as
solved states over which the value function has converged.

The code for CHECKSOLVED is shown in Alg. 3. The la-
bel of state s in the procedure is represented with a bit in
the hash table denoted with s.SOLVED. Thus, a state s is la-
beled as solved iff s.SOLVED = true. Note that the Depth
First Search stores all states visited in a closed list to avoid
loops and duplicate work. Thus the time and space complex-
ity of CHECKSOLVED(s) is O(|S|) in the worst case, while
a tighter bound is given by O(|SV (s)|) where SV (s) ⊆ S
refers to the greedy envelope of s for the value function V .
This distinction is relevant as the greedy envelope may be
much smaller than the complete state space in certain cases
depending on the domain and the quality of the initial value
(heuristic) function.

An additional detail of the CHECKSOLVED procedure
shown in Alg. 3, is that for performance reasons, the search
in the greedy graph is not stopped when a state s′ with resid-
ual greater than ε is found; rather, all such states are found
and collected for update in the closed list. Still such states
act as fringe states and the search does not proceed beneath
them (i.e., their children in the greedy graph are not added

7The use of labeling procedures for solving AND-OR graphs
with cyclic solutions is hinted in (Hansen & Zilberstein 2001), yet
the authors do not mention that the same reasons that preclude the
use of backward induction procedures for computing state values
in AND-OR graphs with cyclic solutions, also preclude the use of
bottom up, recursive labeling procedures as found in standard AO*
implementations.

CHECKSOLVED(s : state, ε : float)
begin

rv = true
open = EMPTYSTACK
closed = EMPTYSTACK
if ¬s.SOLVED then open.PUSH(s)

while open �= EMPTYSTACK do
s = open.POP()
closed.PUSH(s)

// check residual
if s.RESIDUAL() > ε then

rv = false
continue

// expand state
a = s.GREEDYACTION()
foreach s′ such that Pa(s′, s) > 0 do

if ¬s′.SOLVED & ¬IN(s′, open ∪ closed)
open.PUSH(s′)

if rv = true then
// label relevant states
foreach s′ ∈ closed do

s′.SOLVED = true

else
// update states with residuals and ancestors
while closed �= EMPTYSTACK do

s = closed.POP()
s.UPDATE()

return rv
end

Algorithm 3: CHECKSOLVED

to the open list).
In presence of a monotonic value function V , DP updates

have always a non-decreasing effect on V . As result, we can
establish the following key property:

Theorem 4 Assume that V is an admissible and monotonic
value function. Then, a CHECKSOLVED(s, ε) call either la-
bels a state as solved, or increases the value of some state
by more than ε while decreasing the value of none.

A consequence of this is that CHECKSOLVED can solve
by itself models of the form M1-M7. If we say that a model
is solved when a value function V converges over the initial
state s0, then it is simple to prove that:

Theorem 5 Provided that the initial value function is ad-
missible and monotonic, and that the goal is reachable from
every state, then the procedure:

while ¬s0.SOLVED do CHECKSOLVED(s0, ε)
solves the model M1-M7 in a number of iterations no greater
than ε−1

∑
s∈S V ∗(s)−h(s), where each iteration has com-

plexity O(|S|).

ICAPS 2003 17

LRTDP(s : state, ε : float)
begin

while ¬s.SOLVED do LRTDPTRIAL(s, ε)
end

LRTDPTRIAL(s : state, ε : float)
begin

visited = EMPTYSTACK
while ¬s.SOLVED do

// insert into visited
visited.PUSH(s)

// check termination at goal states
if s.GOAL() then break

// pick best action and update hash
a = s.GREEDYACTION()
s.UPDATE()

// stochastically simulate next state
s = s.PICKNEXTSTATE(a)

// try labeling visited states in reverse order
while visited �= EMPTYSTACK do

s = visited.POP()
if ¬CHECKSOLVED(s, ε) then break

end

Algorithm 4: LRTDP.

The solving procedure in Theorem 5 is novel and inter-
esting although it is not sufficiently practical. The problem
is that it does never attempt to label other states as solved
before labeling s0. Yet, unless the greedy envelope is a
strongly connected graph, s0 will be the last state to con-
verge and not the first. In particular, states that are close to
the goal will normally converge faster than states that are
farther.

This is the motivation for the alternative use of the
CHECKSOLVED procedure in the Labeled RTDP algorithm.
LRTDP trials are very much like RTDP trials except that
trials terminate when a solved stated is reached (initially
only the goal states are solved) and they invoke then the
CHECKSOLVED procedure in reverse order, from the last un-
solved state visited in the trial back to s0, until the procedure
returns false on some state. Labeled RTDP terminates when
the initial state s0 is labeled as SOLVED. The code for LRTDP
is shown in Alg. 4. The first property of LRTDP is inherited
from RTDP:

Theorem 6 Provided that the goal is reachable from every
state and the initial value function is admissible, then LRTDP
trials cannot be trapped into loops, and hence must termi-
nate in a finite number of steps.

The novelty in the optimality property of LRTDP is the
bound on the total number of trials required for convergence

Theorem 7 Provided that the goal is reachable from every
state and the initial value function is admissible and mono-

tonic, then LRTDP solves the model M1-M7 in a number of
trials bounded by ε−1

∑
s∈S V ∗(s) − h(s).

Empirical Evaluation

In this section we evaluate LRTDP empirically in relation to
RTDP and two other DP algorithms: value iteration, the stan-
dard dynamic programming algorithm, and LAO*, a recent
extension of the AO* algorithm introduced in (Hansen & Zil-
berstein 2001) for dealing with AND-OR graphs with cyclic
solutions. Value iteration is the baseline for performance; it
is a very practical algorithm yet it computes complete poli-
cies and needs as much memory as states in the state space.
LAO*, on the other hand, is an heuristic search algorithm
like RTDP and LRTDP that computes partial optimal policies
and does not need to consider the entire space. We are inter-
ested in comparing these algorithms along two dimensions:
anytime and convergence behavior. We evaluate anytime be-
havior by plotting the average cost of the policies found by
the different methods as a function of time, as described in
the section on convergence and anytime behavior. Likewise,
we evaluate convergence by displaying the time and memory
(number of states) required.

We perform this analysis with a domain-independent
heuristic function for initializing the value function and with
the heuristic function h = 0. The former is obtained by solv-
ing a simple relaxation of the Bellman equation

V (s) = min
a∈A(s)

c(a, s) +
∑

s′∈S

Pa(s′|s) V (s′) (5)

where the expected value taken over the possible successor
states is replaced by the min such value:

V (s) = min
a∈A(s)

c(a, s) + min
s′:Pa(s′|s)>0

V (s′) (6)

Clearly, the optimal value function of the relaxation is a
lower bound, and we compute it on need by running a la-
beled variant of the LRTA* algorithm (Korf 1990) (the deter-
ministic variant of RTDP) until convergence, from the state s
where the heuristic value h(s) is needed. Once again, unlike
standard DP methods, LRTA* does not require to evaluate
the entire state space in order to compute these values, and
moreover, a separate hash table containing the values pro-
duced by these calls is kept in memory, as these values are
reused among calls (this is like doing several single-source
shortest path problems on need, as opposed to a single but
potentially more costly all-sources shortest-path problem
when the set of states is very large). The total time taken
for computing these heuristic values in the heuristic search
procedures like LRTDP and LAO*, as well as the quality of
these estimates, will be shown separately below. Briefly, we
will see that this time is significant and often more signif-
icant than the time taken by LRTDP. Yet, we will also see
that the overall time, remains competitive with respect to
value iteration and to the same LRTDP algorithm with the
h = 0 heuristic. We call the heuristic defined by the relax-
ation above, hmin. It is easy to show that this heuristic is
admissible and monotonic.

18 ICAPS 2003

large-ring large-square

Figure 3: Quality profiles: Average cost to the goal vs. time for RTDP, VI, ILAO* and LRTDP with the heuristic h = 0 and
ε = 10−3.

problem |S| V (s0) % rel. hmin(s0) t. hmin

small-b 9312 11.084 13.96 10.00 0.740
large-b 23880 17.147 19.36 16.00 2.226
h-track 53597 38.433 17.22 36.00 8.714
small-r 5895 10.377 10.65 10.00 0.413
large-r 33068 14.960 11.47 14.00 3.035
small-s 42071 7.508 1.67 7.00 3.139
large-s 383950 10.484 0.25 10.00 41.626
small-y 81775 13.764 1.35 13.00 8.623
large-y 239089 15.462 0.86 14.00 29.614

Table 1: Information about the different ractrack instances:
size, expected cost of the optimal policy from s0, percentage
of relevant states, heuristic for s0 and time spent in seconds
for computing hmin.

Problems
The problems we consider are all instances of the racetrack
domain from (Barto, Bradtke, & Singh 1995) discussed ear-
lier. We consider the instances small-b and large-
b from (Barto, Bradtke, & Singh 1995), h-track from
(Hansen & Zilberstein 2001),8 and three other tracks, ring,
square, and y (small and large) with the corresponding
shapes. Table 1 contains relevant information about these
instances: their size, the expected cost of the optimal pol-
icy from s0, and the percentage of relevant states.9 The last
two columns show information about the heuristic hmin: the
value for hmin(s0) and the total time involved in the com-
putation of heuristic values in the LRTDP and LAO* algo-
rithms for the different instances. Interestingly, these times
are roughly equal for both algorithms across the different
problem instances. Note that the heuristic provides a pretty
tight lower bound yet it is somewhat expensive. Below, we
will run the experiments with both the heuristic hmin and
the heuristic h = 0.

8Taken from the source code of LAO*.
9All these problems have multiple initial states so the value

V ∗(s0) (and hmin(s0)) in the table is the average over the intial
states.

Algorithms
We consider the following four algorithms in the compari-
son: VI, RTDP, LRTDP, and a variant of LAO*, called Im-
proved LAO* in (Hansen & Zilberstein 2001). Due to cycles,
the standard backward induction step for backing up values
in AO* is replaced in LAO* by a full DP step. Like AO*,
LAO* gradually grows an explicit graph or envelope, origi-
nally including the state s0 only, and after every iteration, it
computes the best policy over this graph. LAO* stops when
the graph is closed with respect to the policy. From a prac-
tical point of view, LAO* is slow; Improved LAO* (ILAO*)
is a variation of LAO* in (Hansen & Zilberstein 2001) that
gives up on some of the properties of LAO* but runs much
faster.10

The four algorithms have been implemented by us in C++.
The results have been obtained on a Sun-Fire 280-R with
1GB of RAM and a clock speed of 750Mhz.

Results
Curves in Fig. 3 display the evolution of the average cost to
the goal as a function of time for the different algorithms,
with averages computed as explained before, for two prob-
lems: large-ring and large-square. The curves
correspond to ε = 10−3 and h = 0. RTDP shows the best
profile, quickly producing policies with average costs near
optimal, with LRTDP close behind, and VI and ILAO* far-
ther.

Table 2 shows the times needed for convergence (in sec-
onds) for h = 0 and ε = 10−3 (results for other values of
ε are similar). The times for RTDP are not reported as they
exceed the cutoff time for convergence (10 minutes) in all
instances. Note that for the heuristic h = 0, LRTDP con-
verges faster than VI in 6 of the 8 problems, with problem
h-track, LRTDP running behind by less than 1% of the

10ILAO* is presented in (Hansen & Zilberstein 2001) as an im-
plementation of LAO*, yet it is a different algorithm with different
properties. In particular, ILAO*, unlike, LAO* does not maintain
an optimal policy over the explicit graph across iterations.

0

50

100

150

200

250

300

350

400

450

500

2 4 6 8 10 12

elapsed time

RTDP
VI

LAO
LRTDP

0

50

100

150

200

250

300

350

400

450

500

20 30 40 50 60 70 80 90 100 110

elapsed time

RTDP
VI

LAO
LRTDP

ICAPS 2003 19

algorithm small-b large-b h-track small-r large-r small-s large-s small-y large-y
VI(h = 0) 1.101 4.045 15.451 0.662 5.435 5.896 78.720 16.418 61.773

ILAO*(h = 0) 2.568 11.794 43.591 1.114 11.166 12.212 250.739 57.488 182.649
LRTDP(h = 0) 0.885 7.116 15.591 0.431 4.275 3.238 49.312 9.393 34.100

Table 2: Convergence time in seconds for the different algorithms with initial value function h = 0 and ε = 10−3. Times for
RTDP not shown as they exceed the cutoff time for convergence (10 minutes). Faster times are shown in bold font.

algorithm small-b large-b h-track small-r large-r small-s large-s small-y large-y
VI(hmin) 1.317 4.093 12.693 0.737 5.932 6.855 102.946 17.636 66.253

ILAO*(hmin) 1.161 2.910 11.401 0.309 3.514 0.387 1.055 0.692 1.367
LRTDP(hmin) 0.521 2.660 7.944 0.187 1.599 0.259 0.653 0.336 0.749

Table 3: Convergence time in seconds for the different algorithms with initial value function h = hmin and ε = 10−3. Times
for RTDP not shown as they exceed the cutoff time for convergence (10 minutes). Faster times are shown in bold font.

time taken by VI. ILAO* takes longer yet also solves all
problems in a reasonable time. The reason that LRTDP, like
RTDP, can behave so well even in the absence of an infor-
mative heuristic function is because the focused search and
updates quickly boost the values that appear most relevant so
that they soon provide such heuristic function, an heuristic
function that has not been given but has been learned in the
sense of (Korf 1990). The difference between the heuristic-
search approaches such as LRTDP and ILAO* on the one
hand, and classical DP methods like VI on the other, is more
prominent when an informative heuristic like hmin is used
to seed the value function. Table 3 shows the correspond-
ing results, where the first three rows show the convergence
times for VI, ILAO* and LRTDP with the initial values ob-
tained with the heuristic hmin but with the time spent com-
puting such heuristic values excluded. An average of such
times is displayed in the last column of Table 1, as these
times are roughly equal for the different methods (the stan-
dard deviation in each case is less than 1% of the average
time). Clearly, ILAO* and LRTDP make use of the heuristic
information much more effectively than VI, and while the
computation of the heuristic values is expensive, LRTDP with
hmin, taking into account the time to compute the heuristic
values, remains competitive with VI with h = 0 and with
LRTDP with h = 0. E.g., for large-square the overall
time for the former is 0.653 + 41.626 = 42.279 while the
latter two times are 78.720 and 49.312. Something similar
occurs in small-y and small-ring. Of course, these
results could be improved by speeding up the computation
of the heuristic hmin, something we are currently working
on.

Summary
We have introduced a labeling scheme into RTDP that speeds
up its convergence while retaining its good anytime behav-
ior. While due to the presence of cycles, the labels cannot
be computed in a recursive, bottom-up fashion as in stan-
dard AO* implementations, they can be computed quite fast
by means of a search procedure that when cannot label a
state as solved, improves the value of some states by a finite
amount. The labeling procedure has interesting theoretical
and practical properties. On the theoretical side, the num-
ber of Labeled RTDP trials, unlike the number of RTDP trials

is bounded; on the practical side, Labeled RTDP converges
much faster than RTDP, and appears to converge faster than
Value Iteration and LAO*, while exhibiting a better anytime
profile. Also, Labeled RTDP often converges faster than VI
even with the heuristic h = 0, suggesting that the proposed
algorithm may have a quite general scope.

We are currently working on alternative methods for com-
puting or approximating the heuristic hmin proposed, and
variations of the labeling procedure for obtaining practical
methods for solving larger problems.

Acknowledgments: We thank Eric Hansen and Shlomo Zil-
berstein for making the code for LAO* available to us. Blai
Bonet is supported by grants from NSF, ONR, AFOSR, DoD
MURI program, and by a USB/CONICIT fellowship from
Venezuela.

References
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
act using real-time dynamic programming. Artificial Intel-
ligence 72:81–138.

Bellman, R. 1957. Dynamic Programming. Princeton Uni-
versity Press.

Bertsekas, D., and Tsitsiklis, J. 1996. Neuro-Dynamic Pro-
gramming. Athena Scientific.

Bertsekas, D. 1995. Dynamic Programming and Optimal
Control, (2 Vols). Athena Scientific.

Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Chien,
S.; Kambhampati, S.; and Knoblock, C., eds., Proc. 5th
International Conf. on Artificial Intelligence Planning and
Scheduling, 52–61. Breckenridge, CO: AAAI Press.

Bonet, B., and Geffner, H. 2001a. GPT: a tool for planning
with uncertainty and partial information. In Cimatti, A.;
Geffner, H.; Giunchiglia, E.; and Rintanen, J., eds., Proc.
IJCAI-01 Workshop on Planning with Uncertainty and Par-
tial Information, 82–87.

Bonet, B., and Geffner, H. 2001b. Planning and control
in artificial intelligence: A unifying perspective. Applied
Intelligence 14(3):237–252.

Boutilier, C.; Dean, T.; and Hanks, S. 1995. Planning un-

20 ICAPS 2003

der uncertainty: structural assumptions and computational
leverage. In Proceedings of EWSP-95.
Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129:35–62.
Korf, R., and Taylor, L. 1996. Finding optimal solutions
to the twenty-four puzzle. In Clancey, W., and Weld, D.,
eds., Proc. 13th National Conf. on Artificial Intelligence,
1202–1207. Portland, OR: AAAI Press / MIT Press.
Korf, R. 1990. Real-time heuristic search. Artificial Intel-
ligence 42(2–3):189–211.
Korf, R. 1997. Finding optimal solutions to rubik’s cube
using patterns databases. In Kuipers, B., and Webber, B.,
eds., Proc. 14th National Conf. on Artificial Intelligence,
700–705. Providence, RI: AAAI Press / MIT Press.
Newell, A., and Simon, H. 1972. Human Problem Solving.
Englewood Cliffs, NJ: Prentice–Hall.
Nilsson, N. 1980. Principles of Artificial Intelligence.
Tioga.
Puterman, M. 1994. Markov Decision Processes – Discrete
Stochastic Dynamic Programming. John Wiley and Sons,
Inc.
Russell, S., and Norvig, P. 1994. Artificial Intelligence: A
Modern Approach. Prentice Hall.
Sutton, R., and Barto, A. 1998. Reinforcement Learning:
An Introduction. MIT Press.

ICAPS 2003 21

