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MicrobiomeAnalyst is an easy-to-use, web-based platform for comprehensive analysis of common data outputs generated
from current microbiome studies. It enables researchers and clinicians with little or no bioinformatics training to explore a
wide variety of well-established methods for microbiome data processing, statistical analysis, functional profiling and
comparison with public datasets or known microbial signatures. MicrobiomeAnalyst currently contains four modules:
Marker-gene Data Profiling (MDP), Shotgun Data Profiling (SDP), Projection with Public Data (PPD), and Taxon Set
Enrichment Analysis (TSEA). This protocol will first introduce the MDP module by providing a step-wise description of
how to prepare, process and normalize data; perform community profiling; identify important features; and conduct
correlation and classification analysis. We will then demonstrate how to perform predictive functional profiling and
introduce several unique features of the SDP module for functional analysis. The last two sections will describe the key
steps involved in using the PPD and TSEA modules for meta-analysis and visual exploration of the results. In summary,
MicrobiomeAnalyst offers a one-stop shop that enables microbiome researchers to thoroughly explore their preprocessed
microbiome data via intuitive web interfaces. The complete protocol can be executed in ~70 min.

Introduction

Rapid advances in high-throughput sequencing technologies have profoundly changed the study of
microbiomes across diverse environments1–3. Here, the term ‘microbiome’ refers to the set of
microorganisms inhabiting a specific biological niche, including their genomic content and metabolic
products4. Microbiomes are either host associated—in which case microorganisms inhabit higher
organisms such as humans, animals, and plants—or free living such as microbial assemblages found
in water and soil. It is now widely accepted that microbial communities are critical components of
their ecosystems, and disruption of these communities can be detrimental. For instance, the human
microbiome has been shown to greatly influence development, immunity, and even behavior of their
hosts5. As a result of their biomedical importance and translational potential, the past decade has
witnessed a tremendous growth in the number and scale of microbiome studies. Three approaches
have been commonly used to study microbiomes: (i) marker gene surveys to gain an overview of
community structure, (ii) shotgun metagenomics to understand a microbiome’s functional potential,
and (ii) metatranscriptomics to measure its functional activities through gene expression profiling.
Several powerful pipelines—such as quantitative insights into microbial ecology (QIIME)6, mothur7,
UPARSE8, divisive amplicon denoising algorithm 2 (DADA2)9, One Codex10, Kraken11, and meta-
genomic phylogenetic analysis (MetaPhlAn)12—can preprocess raw sequencing reads into feature
abundance tables. These tables, together with associated sample information (i.e., metadata), are the
main inputs for downstream statistical analysis and functional interpretation.

Microbiome data present several key analytical challenges. First, differences in the number of
sequencing reads per sample (i.e., library size) are often very large, requiring proper data normal-
ization before meaningful statistical analysis can be applied. Second, abundance tables at the lowest
taxonomic levels are often very sparse. This sparsity may arise from either under-sampling or true
absence of taxa. Third, microbiome data is compositional13. If a dominant feature increases, the
relative abundance (proportion) of all other features will decrease, even though their absolute
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abundances remain constant. These inherent characteristics of microbiome data must be considered
in downstream statistical analyses. Novel statistical methods that account for such characteristics
are required for a proper analysis of microbiome data. Most newly developed methods are available
in the R programming language and software environment. In particular, the R package phyloseq14

has provided a wealth of functions for manipulating feature tables, taxonomic trees, and sample
metadata. Although R is incredibly powerful and flexible, learning R can be challenging for clinicians
and bench researchers.

MicrobiomeAnalyst15 was developed as a web-based tool to enable microbiome researchers to
effortlessly perform comprehensive statistical analysis, interactive visualization, and meta-analysis of
microbiome data without prior coding expertise. Users can choose from a wide array of well-
established methods and explore the results in real time to gain a better understanding of their data.
Since its initial publication in 201715, MicrobiomeAnalyst has gradually become popular among
microbiome researchers. Over the past 12 months, the web server has processed >70,000 data analysis
jobs submitted from >20,000 users worldwide. We have been actively improving the current features
and adding new functions based on users’ feedback and developments in the field. To meet the
growing user traffic and computational demand, the server has been recently migrated to a high-
performance Google Cloud platform.

Overview of the analysis workflow and the interface design
The overall workflow of MicrobiomeAnalyst is depicted in Fig. 1. There are four modules: (i) Marker-
gene Data Profiling (MDP), which is dedicated to the analysis of marker-gene survey data; (ii)
Shotgun Data Profiling (SDP), for the analysis of shotgun metagenomics or metatranscriptomics data;
(iii) Projection to Public Data (PPD), for visual comparison of users’ marker-gene data with a
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Fig. 1 | Overview of the MicrobiomeAnalyst workflow. MicrobiomeAnalyst comprises four modules: Marker-gene Data Profiling (MDP), Shotgun
Data Profiling (SDP), Projection with Public Data (PPD), and Taxon Set Enrichment Analysis (TSEA). The key functions of each module are illustrated
in their respective boxes. PC, principal coordinate.
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compatible public dataset available in MicrobiomeAnalyst; and (iv) Taxon Set Enrichment Analysis
(TSEA), which is used to test whether certain predefined groups of taxa (taxon sets) are statistically
overrepresented in a list of taxa submitted by users. The four modules share the same general
workflow—data preparation, followed by data analysis and visual exploration. In the data preparation
stage, the user’s data are uploaded for filtering and normalization. Following this, a wide variety of
statistical and visualization methods can be performed on the processed data to detect, for example,
overall patterns, significant features, potential interactions, and functional insights. In the case of the
MDP module, a total of 19 carefully selected methods are provided (Fig. 2 (1)). The web interface for
each method allows users to adjust the key parameters for interactive analysis and visual exploration
of the results.

MicrobiomeAnalyst uses a dynamic navigation track and real-time system messages to guide users
through each step of their data preparation and analysis. As users proceed, the completed steps will be
added to the navigation track at the top of the page (Fig. 2 (1)). Users can click on any hyperlink on
this track to return to the specified page. Upon completion of their analysis, users can click the
‘Downloads’ link at the end of the navigation track to enter the ‘Results Download’ page (Fig. 2 (2))
and batch-download all results and images generated during the analysis. This page also allows users
to generate a comprehensive analysis report describing all the steps performed together with detailed
introductions to the corresponding methods and their associated outputs (Fig. 2 (3)). The system
messages provide real-time feedback and recommendations if errors occur. On the right-hand side is
the ‘R Command History’ panel, which displays the underlying R commands as they occur in real
time. Users can install the underlying R package (MicrobiomeAnalystR) from GitHub (https://github.
com/xia-lab/MicrobiomeAnalystR) and use these R commands to reproduce their results locally. This
feature was recently added to help improve the transparency, flexibility, and reproducibility of
microbiome data analysis following the same concept as our MetaboAnalyst web server16 and its
companion MetaboAnalystR package17.

Comparison with other web-based tools
Metagenomics rapid annotations using subsystems technology (MG-RAST)18, visualization analysis
of microbial population structures (VAMPS)19, and Calypso20 are three popular web-based platforms

Fig. 2 | Comprehensive data analysis and report generation. A screenshot of the MDP ‘Analysis Overview’ page (1) to illustrate the comprehensive
set of analysis methods available. The top left corner shows the navigation track with the current page highlighted in red. The ‘R Command History’
panel to the right of the page displays all underlying R commands. The ‘Downloads of the page’ panel displays the results generated from the current
page. Users can also click the ‘Downloads’ link from the top navigation track to enter the ‘Results Download’ page (2) and batch-download all results
as well as to generate a comprehensive analysis report (3).
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for microbiome data analysis. MG-RAST is a public resource for annotation and storage of raw
metagenomics data. The web interface also provides some basic support for statistical analysis and
visualization. More advanced analysis can be achieved by using its associated matR package (https://
mg-rast.github.io/matR). VAMPS is dedicated to the visualization of microbial communities through
various approaches such as heatmaps, pie charts and principal coordinates analysis (PCoA) plots.
Calypso is an easy-to-use tool that supports data processing as well as diversity, comparative, and
network analyses of microbiome data. In comparison to these tools, MicrobiomeAnalyst, through its
modern interface design and high-performance implementation, offers a real-time visual analytics
experience that enables researchers to easily navigate the complex tasks of microbiome data pro-
cessing, analysis and interpretation. For instance, the MDP module currently offers 19 carefully
selected methods for statistical analysis and visualization. The taxon set enrichment analysis is also a
feature unique to MicrobiomeAnalyst. Another feature that is highly appreciated by the users of
MicrobiomeAnalyst is its publication-ready graphical outputs created throughout their data analysis.
MicrobiomeAnalyst strives for transparency and reproducibility by providing a comprehensive
analysis report and R command history, as well as the release of its companion R package. Detailed
comparisons between MicrobiomeAnalyst and these three web-based tools are shown in Table 1.

Limitations
Preprocessing of raw sequencing data is not supported by the MicrobiomeAnalyst web server, which
focuses on real-time interactive data analysis. Owing to Internet bandwidth and server memory
constraints, it would be impractical for users to preprocess their raw sequencing data on Micro-
biomeAnalyst in real time. To partially address this limitation, we have also developed the Micro-
biomeAnalystR package, which integrates DADA2 (ref. 9) to enable users to preprocess raw
sequencing reads into amplicon sequence variant (ASV)21 abundance tables suitable for downstream
statistical analysis. More details surrounding raw data preprocessing and commonly used pipelines
are available in Box 1. MicrobiomeAnalyst was primarily developed for analysis of cross-sectional
microbiome data and lacks functionality for time-series data analysis. We aim to fill this gap by
adding new methods to evaluate the temporal stability of microbial communities to identify core,
persistent, and transient groups22. Finally, users are required to re-upload and re-perform data
processing steps each time they open a new session of MicrobiomeAnalyst. This could affect the
reproducibility of some analysis results, such as classification results from ‘Random Forests’ or
empirical P values from Sparse Correlations for Compositional data (SparCC)23 analysis. We are
developing a new component that will allow registered users to save their work and resume analyses
at a later time24.

Table 1 | Comparisons of MicrobiomeAnalyst with other web-based tools for microbiome data analysis

MicrobiomeAnalyst MG-RAST VAMPS Calypso

URL https://www.microbiomeanalyst.ca/ http://www.mg-rast.org https://vamps2.mbl.edu/ http://cgenome.net/calypso

Data input 16S rRNA, metagenomics 16S rRNA, metagenomics 16S rRNA 16S rRNA, metagenomics

File format Count tables, BIOM, mothur Sequences Sequences Count tables, BIOM, mothur,
QIIME format

Real-time interaction +++++ ++ +++ ++++
Data filtering and
normalization

+++++ +++ ++++ ++++

Diversity profiling Yes Yes Yes Yes

Comparative analysis +++++ +++ +++ +++++
Correlation analysis +++++ − − ++++
Functional prediction PICRUSt, Tax4Fun − − −
Functional annotation KEGG, COG SEED, KEGG, COG − −
Pathway visualization Interactive KEGG metabolic network KEGG mapper − −
Co-analysis with
public data

37 public datasets >44, 000 public datasets − −

Taxon set enrichment
analysis

>2,000 taxon sets − − −

Features for reproducibility Analysis report, R command history
and R package

Repository for public
projects and R package

Repository for public
projects

−

Some features are assessed using the symbols ‘−’ for absent and ‘+’ for present, with more ‘+’ symbols indicating better support.
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Experimental design
The protocol below is organized into four sections to showcase all four modules in Micro-
biomeAnalyst: (i) a comprehensive analysis of 16S rRNA marker-gene abundance data (Steps 1–30);
(ii) predictive functional profiling, followed by pathway enrichment analysis and network visuali-
zation of a Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog (KO) abundance
table (Steps 31–49); (iii) visual data exploration with a public dataset (Steps 50–56); and (iv) taxon
set enrichment analysis (Steps 57–63). A detailed step-by-step tutorial is available in the
Procedure below.

Comprehensive analysis of 16S rRNA abundance data
The MDP module is the most heavily used module, containing more than half of all methods
currently available in MicrobiomeAnalyst. Typically, the first question of microbiome data analysis is
to determine whether there are any patterns within the data. Such exploratory analyses are conducted
via commonly used ecological methods, including alpha- and beta-diversity analysis. Multivariate
statistics can then be used to assess the robustness of such patterns. The next logical step is to identify
which taxa are responsible for the observed differences. Identification of important taxa and their
correlations or co-occurrence patterns can be accomplished using different univariate statistical
methods or more complex multivariate procedures23,25,26. For well-studied microbial communities
such as the human gut microbiomes, it is also possible to predict their functional potential27,28. The
resulting gene abundance data can offer important functional insights without the need to perform
shotgun metagenomics.

Functional profiling and network visualization of gene abundance data
The SDP module offers a similar set of methods for pattern discovery and comparative analysis of
gene abundance data produced from either predictive functional profiling or metagenomics/meta-
transcriptomics. A unique feature of the SDP is its functional annotations based on modules,
pathways and metabolic networks. MicrobiomeAnalyst enables users to easily visualize the dis-
tribution of these functions across samples and study conditions. It also supports explicit statistical
testing to identify enriched functions29. Users can interactively explore the results within a metabolic
network environment for further functional insights30.

Visual comparison with a public dataset
With the increasing number of public datasets, meta-analysis has become a powerful approach for
both comparison and hypothesis generation31–33. The PPD module is intended to enable users to
visually explore their own 16S rRNA data within the context of a compatible public dataset. These
public datasets are obtained mainly from Qiita34. Datasets selected by users for meta-analysis must
share at least 20% taxonomic features for meaningful comparisons. In this module, users’ and the
public data are co-processed and then co-projected into an interactive 3D PCoA plot for visual
comparison. Users can compare the taxonomic compositions of samples to find out which taxa are
driving group separations. This enables users to contextualize their data to gain a global perspective in
order to, for example, identify compositional differences across different environments35 or
populations36.

Box 1 | Preprocessing of raw 16S rRNA amplicon sequencing data

This box describes the general steps and available tools for raw sequence data preprocessing.
Amplicon sequencing of marker genes is a widely used method for taxonomic profiling of microbial communities
across different hosts and environments. After raw reads are obtained from sequencing platforms, bioinformatics
pipelines are needed to translate raw reads into taxonomic information. Traditionally, raw reads are converted
into OTUs, which are clusters of reads that meet a 97% similarity threshold. It is now generally recommended to
convert raw reads to high-resolution ASVs, which can be identified on the basis of their unique biological
sequences to facilitate meta-analysis across studies21. The main preprocessing steps of all bioinformatics
pipelines are (i) quality control of sequencing reads, (ii) clustering of reads, and (iii) taxonomic assignment. The
commonly used pipelines include QIIME6, mothur7, UPARSE8, and, more recently, DADA2 (ref. 9). DADA2 works
by generating a parametric error model that is trained on all raw sequencing data and applies the model to
correct and collapse sequencing errors into ASVs. The MicrobiomeAnalystR package integrates DADA2 for raw
16S rRNA amplicon sequencing data.
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Enrichment analysis of a list of taxa
Following comparative analysis, users will produce a list of taxa that are significantly associated with a
phenotype of interest. However, such a list often lacks context for developing hypotheses or obtaining
mechanistic insights. Enrichment analysis, a popular method already used for the interpretation of
lists of genes37 and metabolites38, can be applied to gain deeper understandings from a list of taxa.
However, a key obstacle is the need to create a comprehensive and meaningful collection of taxon
sets, similar to gene sets or metabolite sets. To address this gap, we have manually curated 2,393 taxon
sets from high-impact journals (impact factor >3) across different fields of microbiome research.
These taxon sets can be downloaded from the ‘Resources’ page at the MicrobiomeAnalyst website.
These taxon sets are further categorized into five categories: taxon sets associated with (i) host single-
nucleotide polymorphisms (SNPs), (ii) host-intrinsic factors (e.g., diseases), (iii) host-extrinsic factors
(e.g., diet and lifestyle), (iv) environmental factors (e.g., chemical exposures), and (v) microbe-
intrinsic factors (e.g., mobility and shape).

Materials

Equipment
Computer requirements
● Browser requirements: MicrobiomeAnalyst runs on all modern major web browsers. For the best
experience, we recommend Google Chrome v.75+, Firefox v.67+, Safari v.12+, or Microsoft Internet
Explorer v.11+. JavaScript must be enabled in your browser.

● Internet connection requirements: a fast connection is highly recommended.
● Hardware requirements: >2 GB of RAM and screen resolution of 1,200 × 800 is preferred.

Data files
● Input files. The main input files for MicrobiomeAnalyst are three tab-delimited plain-text files: a
feature abundance table containing read counts of features (operational taxonomic units (OTUs)/
ASVs/genes) across multiple samples, a taxonomy file for those features (OTUs/ASVs), and a metadata
file describing group information for those samples. MicrobiomeAnalyst also accepts BIOM files
generated from the QIIME pipeline, as well as outputs from the mothur pipeline. In addition, if users
would like to perform phylogenetic tree analysis or UniFrac distance-based analysis, a tree file
generated from any commonly used algorithm is required. See Box 2 for more details about these
file formats.

● Example datasets. MicrobiomeAnalyst provides multiple example datasets for testing purposes. From
the data upload page of each module, users can directly use our example data from the ‘Example
datasets for testing’ panel. Three example datasets are used in this protocol. The first dataset consists of

Box 2 | Data formatting and upload

This box describes how to prepare processed microbiome data for MicrobiomeAnalyst.
MicrobiomeAnalyst accepts abundance data generated from several commonly used bioinformatic pipelines.
These files can be uploaded in plain-text format (.txt or.csv) or directly as .biom or .shared files. Users must also
provide a metadata file describing group information for the same samples. The following are short descriptors of
how to format the abundance, taxonomy, and metadata files for MicrobiomeAnalyst.

Abundance files (.txt/.csv)
The abundance table should be formatted so that features are in rows and samples are in columns. The first line
should start with ‘#NAME’. If the feature names contain taxon names, ensure that the taxa levels are separated
by semicolons (e.g., Bacteria; Firmicutes; Clostridia). If the features do not contain specific taxon
names (e.g., OTU000001), a taxonomy mapping file must also be provided (see below).

Taxonomy files (.txt/.csv)
The taxonomy file should be formatted so that feature names are in the first column, beginning with
‘#TAXONOMY’. Each row should contain the taxonomic classification of all the features under the column
subheadings ‘Phylum’, ‘Class’, ‘Order’, ‘Family’, ‘Genus’, and ‘Species’. The feature names must match those that
appear in the abundance file.

Metadata files (.txt/.csv)
The metadata file should be formatted so that the first column contains the sample names, starting with
‘#NAME’. Subsequent columns contain information for each sample with regard to group assignment or other
experimental factors. The sample names must match those that appear in the abundance file.
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43 stool samples from pediatric inflammatory bowel disease (IBD) patients and healthy controls
obtained from the Integrated Human Microbiome Project (iHMP)3. These data were preprocessed
using the DADA2 pipeline integrated within the MicrobiomeAnalystR package. These data will be used
for the MDP and TSEA modules to explore microbial differences between the two groups. The second
dataset consists of 21 fecal microbiome samples from a study of aging mice39. These data will be used
first by the MDP module to generate a predicted gene abundance table that will then be used as the
input for the SDP module. The third dataset consists of 26 environmental microbiome samples from
arable soil across North and South America40. This dataset is intended to be used with the PPD module
to perform meta-analysis with other microbiome datasets.

Equipment setup
Download the example data
Go to the MicrobiomeAnalyst homepage (https://www.microbiomeanalyst.ca) and click “Resources”
from the top menu bar. From the “Example Datasets” tab, click on each zipped folder to save it on
your computer. After they are downloaded, unzip each folder so that all files will be accessible for
uploading to MicrobiomeAnalyst.

Procedure

Stage 1: Comprehensive analysis of 16S abundance data ● Timing ~30 min, depending on
the size of the dataset
1 Startup. Go to the MicrobiomeAnalyst home page (https://www.microbiomeanalyst.ca) and click

the ‘Marker Data Profiling (MDP)’ circle to enter the MDP module.
? TROUBLESHOOTING

2 Uploading data. Detailed instructions for preparing input files can be found in Box 2. Upon
entering the MDP module, click ‘Example data sets for testing’ to expand the panel containing all
available example datasets. Select the ‘Pediatric IBD’ dataset listed under ‘Data Type’. Click the
‘Submit’ button to upload the data. Alternatively, choose the ‘Plain text table format’ panel. Click
the ‘Choose File’ button next to ‘OTU/ASV table’ and locate the ‘ibd_asv_table.csv’ file. Repeat this
step for the ‘ibd_meta.csv’, ‘ibd_taxa.txt’, and ‘ibd_tree.tre’ files. From the ‘Taxonomy labels’
dropdown menu, click ‘Greengenes Taxonomy’. Click the ‘Submit’ button to upload the data.
? TROUBLESHOOTING

3 Data integrity check. This page consists of two tabs. The first tab, ‘Text Summary’, provides a text
summary of the uploaded files. The second tab, ‘Library Size Overview’, graphically describes the
read counts for all uploaded samples, which is informative for downstream data filtering and
normalization. Click ‘Proceed’ at the bottom of the page to move forward.
? TROUBLESHOOTING

4 Data filtering. Filtering is generally recommended to remove low-quality features, thereby
improving downstream statistical analysis. Keep the default selections for the ‘Low count filter’ and
‘Low variance filter’ sliders and click ‘Submit’ to perform data filtering. A message will appear in the
upper-right corner, indicating the results of the data filtering step. Note that the filtered data will
not be used for alpha-diversity analysis and users can turn off the filters by dragging the
corresponding slider to zero value. More details on data filtering can be found in Box 3. Click
‘Proceed’ at the bottom right of the page to navigate to the next page.

5 Data normalization. On the ‘Data Normalization’ page, users can perform data rarefying, scaling,
and transformation. The aim of data normalization is to standardize the data to enable accurate
comparisons. More details can be found in Box 3. Keep the default selections for the options (only
‘Data scaling’ set to ‘Total sum scaling’) and click ‘Submit’, followed by ‘Proceed’ to move to the
‘Analysis Overview’ page.

6 Community profiling. Users can evaluate microbial community diversity profiles using the ‘Alpha-
diversity’ and ‘Beta-diversity’ analysis options (refer to Box 4 for further details). To start, click
‘Alpha-diversity analysis’ from the ‘Analysis Overview’ page.

7 Alpha diversity. At the top of the page are several drop-down menus where users can explore
different alpha-diversity measures or choose a taxonomic level to evaluate diversity differences. By
default, alpha diversity is evaluated at the feature (OTU/ASV) level using Chao1, and significant
differences are evaluated using t-tests. The bottom half of the page contains two graphical
summaries of the results. To the left is a dot plot displaying the alpha-diversity measures across
samples, and to the right is a box plot summarizing the alpha-diversity measures across groups.
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From these results, it can be seen that the within-sample diversities of the pediatric IBD patients
and the healthy controls are significantly different: the alpha-diversity measures are significantly
lower in the IBD patients compared to the values in the controls.

8 (Optional) Explore different alpha-diversity measures; each one makes different assumptions about
the community structure and will therefore reveal different aspects of the community structure
(refer to Box 4 for further details). Also try different taxonomic levels to see whether the same trend
can be observed across higher taxonomic levels.

9 Beta diversity. Click the ‘Analysis Overview’ link on the navigation track at the top of the page.
Next, click ‘Beta-diversity analysis’. The top half of this page contains parameters for beta-diversity
analysis (refer to Box 4 for further details). The two tabs on the bottom of the page show 2D and
3D PCoA plots, respectively. By default, the difference in diversity between pediatric IBD patients
and controls is assessed using the Bray–Curtis index. The permutational multivariate analysis of
variance (PERMANOVA) suggests that the clusters for the two groups are significantly different
(P value < 0.001).

10 3D PCoA exploration. Click the ‘Interactive PCoA 3D’ tab to further explore the PCoA results in an
interactive 3D scatter plot based on the first three components (Fig. 3). Use your mouse to rotate
and zoom in and out of the plot. Again, there is a clear separation between the two groups.

11 Double-click on several data points (representing samples) from the IBD group (red) to view the
corresponding pie charts of that samples’ taxonomic abundance. Users can change the taxonomic
level of the pie chart as well as merge small (below a user-specified cutoff) taxa. Change the
taxonomic level to ‘Genus’ and click ‘Update’.

12 Double-click on several control samples and view their corresponding pie charts. Notice the
taxonomic differences between the healthy controls and IBD patients. For instance, it seems that the

Box 3 | Data filtering and normalization

This box describes the different approaches available in MicrobiomeAnalyst for data filtering and normalization.
Microbiome data are affected by various sources of systematic variation arising from sample preparation to
sequencing. Filtering and normalization aim to remove or reduce such systematic variability52. The merits and
pitfalls of the most commonly used methods are further discussed below. The choice of method is dependent on
the type of analyses to be performed53.

Data filtering
The purpose of data filtering is to remove low-quality and/or uninformative features to improve downstream
statistical analysis. MicrobiomeAnalyst offers three data-filtering procedures (i) minimal data filtering (applied to
all analyses), which removes features containing all zeros or appearing in only one sample (considered artifacts);
(ii) low-count filtering, which removes features that may exist due to sequencing errors or low-level
contamination; and (iii) low-variance filtering, which removes features unlikely to be associated with the
conditions under study. The last two options are not used for within-sample profiling (alpha diversity) but are
highly recommended for comparative analysis.

Data rarefying
Rarefying is commonly used to account for uneven library sizes. This method works by randomly subsampling
without replacement to the size of the smallest library that is not considered defective. It has been criticized
because of potential loss of useful information54. However, the procedure has been shown to be useful for very
small (<1,000 reads/sample) or very uneven library sizes between groups (>10×)53, as well as important for
comparing ecological communities (beta diversity)55.

Data scaling
Scaling involves multiplying feature counts by a sample-specific factor to account for uneven sequencing depth,
transforming raw reads into relative abundances. The most commonly used method is total sum scaling (TSS),
whereby count data are divided by the total number of reads in each sample. This method has been criticized
because the total number of reads can be dominated by a few most abundant features, which biases resulting
relative abundances56. Moreover, TSS does for not account for heteroskedasticity of feature variance across
measured values53,57. Other scaling factors, such as upper quantile (UQ)58 and cumulative sum scaling (CSS)59,
have been proposed to address such issues. In particular, when performing differential abundance analysis, CSS
has been recommended for controlling the FDR in data with large group sizes52. However, when performing
community-level comparisons, such as estimation of beta diversity, TSS is recommended because it most
accurately captures the composition of the original communities, whereas UQ and CSS distort communities53,55.

Data transformation
The aim of data transformation is to stabilize the variance of the data. The centered log ratio (CLR) is commonly
used and is recommended because of the compositionality of microbiome data13. Furthermore, its variants,
relative log expression (RLE) and trimmed mean of M (mean) values (TMM), have consistently demonstrated
high performance in identifying differentially abundant features54–56.
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samples from IBD patients are dominated by Escherichia, whereas healthy controls are dominated
by Bacteroides (Fig. 3).

13 (Optional) By default, beta-diversity analysis is visualized using PCoA on a Bray–Curtis
dissimilarity index and assessed using PERMANOVA. To gain a different perspective, change
the ordination method to ‘Nonmetric Multidimensional Scaling (NMDS)’ and the statistical
method to ‘Analysis of Similarities (ANOSIM)’, which are both rank-based approaches. Then
change the distance method to ‘Unweighted UniFrac’, which uses the phylogenetic distance
between features, rather than their abundance information (refer to Box 4 for more details). Click
the ‘Update’ and explore the results.

14 Heat tree analysis. Return to the ‘Analysis Overview’ page and click ‘Heat tree’. The heat tree
analysis uses the hierarchical structure of taxonomic classifications to depict group-wise relative
abundance for microbial communities41. The upper part of the page contains key parameters for
creating and customizing a heat tree. Set ‘Genus’ as the current taxonomy level, specify ‘Reingold-
Tilford’ for heat tree layout, keep ‘Comparison’ as the current view mode, and then select ‘CD vs
Control’ for the comparison of interest (Crohn’s disease versus control). Click ‘Submit’ to generate
the corresponding the heat tree (Fig. 4). The layout of the tree may vary slightly because of the
random nature of the algorithm. The difference table, which contains between-group comparisons
using the non-parametric Wilcoxon test at different taxonomic levels, can be downloaded from the
upper-right panel of the page.

Box 4 | Alpha and beta diversity

This box describes the alpha- and beta-diversity analyses available in MicrobiomeAnalyst for community
profiling.
Alpha diversity is a measure of within-sample diversity, whereas beta diversity is a measure of between-sample
diversity. Alpha-diversity measures can be considered summary statistics of the diversity of single samples,
whereas beta-diversity estimates can be considered dissimilarity scores between pairs of samples60. For the
latter, these measures permit further analyses via clustering or dimensionality reduction techniques. Various
statistical tests can be applied to evaluate whether the differences are significant. More details are
available below.

Alpha diversity
Alpha diversity summarizes both the species richness (total number of species) and/or evenness (abundance
distribution across species) within a sample60. Six alpha-diversity measures are currently supported in
MicrobiomeAnalyst, each assessing different aspects of the community. ‘Observed’ calculates the total number
of features per sample, whereas ‘ACE’ and ‘Chao1’ estimate taxa richness by accounting for features that are
undetected because of low abundance. ‘Shannon’ and ‘Simpson’ take both species richness and evenness into
account, with varying weight given to evenness. Finally, ‘Fisher’ models the community abundance structure as a
logarithmic series distribution.

Beta diversity
Beta diversity evaluates differences in the community composition between samples. Resulting beta-diversity
estimates can be combined into a distance matrix and used for ordination to visualize patterns. Samples close to
each other are more similar in their microbial community profiles. MicrobiomeAnalyst supports the five most
commonly used beta-diversity measures. ‘Jaccard distance’ uses just the presence or absence of features to
calculate differences in microbial composition; ‘Bray-Curtis dissimilarity’ uses abundance data and calculates
differences in feature abundance; ‘Jensen-Shannon divergence’ assesses the distance between two probability
distributions that account for the presence and abundance of microbial features; ‘Unweighted UniFrac’ and
‘weighted UniFrac’ use the phylogenetic distance between features – the former is based purely on phylogenetic
distance, whereas the latter is further weighted by the relative abundance of features.
Beta-diversity measures can be visualized using either PCoA or nonmetric multidimensional scaling (NMDS).
Both methods take the distance matrix as input; PCoA maximizes the linear correlation between samples,
whereas NMDS maximizes the rank-order correlation between samples61. Users should use PCoA if distances
between samples are so close that a linear transformation would suffice. NMDS is suggested if users wish to
highlight the gradient structure within their data61,62. NMDS is iterative and may return different results for the
same dataset. Furthermore, MicrobiomeAnalyst calculates a stress value for the NMDS plot, which is a measure
of goodness of fit. Generally, values >0.2 suggest a poor fit, whereas values <0.1 indicate a good fit.
Ordination measures between the groups are assessed for their statistical significance using either
PERMANOVA, analysis of group similarities (ANOSIM) or homogeneity of group dispersions (PERMDISP).
These tests evaluate global differences in microbiome composition between groups. PERMANOVA tests whether
the centroids of all groups are equivalent. It uses the distances (or dissimilarity) between samples of the same
group and compares them to the distances between groups63,64. This method is sensitive to multivariate
dispersions; therefore, PERMDISP should also be used to evaluate whether the dispersion (or variation) between
samples differs from the dispersion between groups63,64. ANOSIM tests whether within-group distances are
greater or equal to between-group distances, using the ranks of all pair-wise sample distances.
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15 Correlation network analysis. Click on ‘Analysis Overview’ in the top navigation track and then
select ‘Correlation network (SparCC)’. The correlation network analysis uses four methods to
calculate pairwise correlations between taxonomic features: SparCC23, Pearson’s correlation,
Spearman’s rank correlation, and Kendall’s tau correlation. SparCC, in particular, was designed to
address the issue of spurious correlations due to the compositional nature of microbiome data (refer
to Box 5 for more details). The top part of the page contains all the necessary parameters for
performing correlation analysis and generating the network. To begin, make sure that ‘SparCC’ is
selected from the ‘Algorithm’ dropdown menu. Select ‘Genus’ from the ‘Taxonomy level’ dropdown
menu and select ‘CD vs Control’ from the ‘Comparison of interest’ dropdown menu. Keep the
default thresholds for P value and correlation. Click ‘Submit’ to generate the network (Fig. 5). This
step can be time intensive when there are many features and samples in the dataset.

16 Exploring the correlation network. In the resulting correlation network, nodes represent taxonomic
features and edges represent correlations greater than the correlation threshold between pairs of
taxa. By default, nodes are colored by their abundance, and the sizes of the edges reflect the strength
of the correlations between taxa. To update the node coloring, select ‘by Taxonomy’, keep the

Fig. 3 | Interactive 3D PCoA plot for beta-diversity analysis. A screenshot of the 3D PCoA plot and pie charts generated by the beta-diversity
analysis. Users can rotate the graph or double-click any sample to view a pie-chart summary of its microbial abundances at a selected taxonomic level.
Two pie charts, one from a control sample and one from a Crohn’s disease (CD) sample, are shown. The control sample is dominated by Bacteroides,
whereas the CD sample is dominated by Escherichia.
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taxonomy level as ‘Phylum’, and click ‘Submit’ (Fig. 5). The nodes are now colored based on their
phyla, with the color legend on the left of the network. The network is also interactive. For instance,
double-click the yellow node Bifidobacterium (on the left side). A box plot comparing the
abundances of this taxon between the two groups will appear to the right of the network, with
numerical values below showing the correlation coefficients between the node and its closest
neighbors. Finally, at the top of the network is the MD-index (microbial dysbiosis index), which is
an empirical estimation of the degree of dysbiosis within the microbiome42. Here the MD-index is
−0.67 (the value could be slightly different in different runs), which suggests an overall decrease in
taxa abundance in CD patients as compared to controls.

17 (Optional) Compare the results of the correlation analysis using the other correlation algorithms
(Spearman’s, Pearson’s or Kendall’s; Box 5).

Fig. 4 | Heat tree visualization of taxonomic differences. A screenshot of a heat tree to illustrate the taxonomic differences between the two selected groups.
The top of the page shows the key parameters. The color gradient and the size of node, edge, and label are based on the log2 ratio of median abundance.
In this case, blue and red indicate that corresponding taxa are lower and higher, respectively, in Crohn’s disease patients as compared with controls.
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18 Classical univariate analysis. Return to the ‘Analysis Overview’ page and click ‘Classical univariate
analysis’. MicrobiomeAnalyst offers t-tests/ANOVA and their nonparametric counterparts.
The results for all differential-abundance analyses follow the same layout. The top half of the
page contains parameters with which users can customize their analyses, such as the taxonomic
level, statistical method, and significance cutoff. The bottom half of the page contains the result
table for the analysis. Features in the table are ranked by their false-discovery rate (FDR)-adjusted
P values, and those below the cutoff are highlighted in orange.

19 Click the ‘Details’ link under the ‘View’ column of the result table. A box plot will appear in a
pop-up dialog, showing the abundances of the selected feature across different groups.

20 (Optional) Explore the significant features identified at different taxonomic levels.
21 Identification of significant features using methods developed for RNA-seq data analysis. Click on the

‘Analysis Overview’ from the navigation track to return to the ‘Analysis Options’ page.
22 Click ‘RNA-seq methods’ from the ‘Comparison & classification’ options. By default, edgeR is

performed at the feature level. Compared to classical univariate analysis, edgeR identifies
54 significant features. Change the taxonomy level to ‘Species’ and click ‘Submit’. A total of
14 species are identified as significant.

23 One of the top features is ‘s_coli’, which stands for Escherichia coli. Visualize the box plot using the
‘Details’ hyperlink. The box plot shows a trend of E. coli being more abundant in CD patients as
compared with healthy controls.

24 Next, select ‘DESeq2’ from the ‘Algorithm’ dropdown menu and click ‘Submit’. Compared to
edgeR, DESeq2 is a more conservative algorithm, and it identifies three species as significantly

Box 5 | Correlation, comparison and classification

This box describes methods for correlation (SparCC), comparison (LEfSe) and classification (RF) analyses
available in MicrobiomeAnalyst.

Correlations
The aim of correlation networks is to identify potential interactions between microbes that could represent
mutualistic, commensal, parasitic or even competitive relationships65. Uncovering such interactions could hold
important therapeutic implications for the health of the microbial community and ultimately lead to
understanding microbiome function66. Several simple methods for computing correlation networks exist, such as
Pearson’s correlation, which determines whether linear relationships exist between two taxa, and Spearman’s
and Kendall’s rank correlations, which measure rank relationships between pairs. However, these naïve methods
often fail to address the compositional nature of microbiome data and can be unreliable because of the
identification of spurious correlations67. Alternatively, compositionally robust methods such as SparCC23 and
sparse inverse covariance estimation for ecological association and statistical inference (SPIEC-EASI)68 have
been introduced, both of which make a strong assumption of a sparse correlation network13. SparCC uses a log
ratio transformation and performs multiple iterations to identify taxa pairs that are outliers to background
correlations. SPIEC-EASI uses graphical network models to infer the entire correlation network at once. Both
methods are computationally intensive, although an efficient implementation of the SparCC algorithm, named
FastSpar, was recently introduced69. MicrobiomeAnalyst implements FastSpar as well as Pearson’s, Spearman’s
and Kendall’s methods for correlation analysis.

LEfSe
LEfSe is a non-parametric statistical method developed to identify microbial taxa that are significantly different
between groups26. LEfSe first uses the Kruskal–Wallis test to identify taxa whose relative abundances are
significantly different between groups. LDA is then applied to taxa that meet the significance threshold to
estimate their effect size. This approach outputs a ranked list of taxa based on their LDA scores. A significance
level of P < 0.05 and an LDA score of 2 are often used to determine taxa that best characterize each phenotype.
The original LEfSe implementation, which is available on the Huttenhower Galaxy (https://huttenhower.sph.ha
rvard.edu/galaxy), considers the entire set of taxa (all taxonomic ranks) when performing LEfSe. In comparison,
the MicrobiomeAnalyst implementation performs LEfSe only at the user’s specified taxonomic level. In addition,
the original LEfSe implementation uses raw P values when determining significant taxa. The MicrobiomeAnalyst
implementation provides users the option to use either raw or FDR-adjusted P value cutoffs.

Random Forests
RF is a supervised machine-learning algorithm that has been applied to microbiome data for classification as well
as to identify microbial taxa that differentiate between phenotypes25,45. RF is well suited for large and noisy data
such as those from the microbiome because it is able to identify non-linear relationships, deal with variable
interactions, and is robust to overfitting70. RF works by constructing multiple decision trees using a randomly
selected subset of the training data. Each tree is formed by selecting at random, at each node, a small group of
input features to split on. The class prediction is achieved via the majority vote from all trees. To evaluate the
classification accuracy, 1/3 of samples are omitted during tree construction and are subsequently classified using
the models to compute the out-of-bag or OOB error rates. The importance of a variable is calculated as the mean
decrease in accuracy across all trees when the variable is shuffled.
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different between CD and control groups. All three were also identified with edgeR. For instance,
E. coli is already implicated in IBD pathogenesis43,44 and Haemophilus parainfluenzae has been
shown to be increased in IBD42.

25 (Optional) Try different taxonomic levels for further exploratory analysis. Return to the ‘Analysis
View’ page and explore the ‘metagenomeSeq’ approach which was specifically designed for
differential abundance analysis of marker-gene data.

26 Biomarker discovery with linear discriminant analysis effect size (LEfSe). Next, we will identify
robust biomarkers of CD using the LEfSe approach (Box 5). Return to the ‘Analysis Overview’ page
and click ‘LEfSe’. The top half contains analysis parameters, whereas the bottom contains two tabs.
The first tab is a graphical summary of the LEfSe results, whereas the second tab displays the results
table. From the parameter panel, change the taxonomic level to ‘Genus’, the significance cutoff to
‘0.1’ (FDR-adjusted or q value) and click ‘Submit’. Eleven taxa are identified as significant when the
following cutoffs are used: q value <0.1 and linear discriminant analysis (LDA score) >2.0 (Fig. 6).

27 By default, the graphical output shows a dot plot containing at most the top 15 features ranked by
their LDA scores. Change the number of features included in the graphic by entering ‘11’ in the text
box next to ‘Top features’ and click ‘Update’ (Fig. 6). From the updated graphical summary, the
mini heatmap to the right indicates the abundance of the microbial features across the groups. Ten
taxa at genus level are decreased in CD patients as compared to healthy controls, whereas
Escherichia is the only genus that is increased in CD patients. For a multiclass dataset, the
interpretation of the plot would essentially be the same. The mini heatmap will indicate which taxa
are most abundant in which groups. Users can also choose to view a bar plot summary (under the

Fig. 5 | Correlation network analysis. A screenshot of the correlation network generated using the SparCC algorithm. In the center of the image is the
correlation network, with nodes representing taxa at the genus level, and edges representing correlations between taxa pairs. The nodes are colored on
the basis of phylum. To the right is a box plot of Bifidobacterium showing reduced abundance in CD patients versus healthy controls.
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‘Graphical output’ drop-down menu), which uses different colors to indicate the most positively
associated taxa for each phenotype.

28 Classification using ‘Random Forests’ From the ‘Analysis Overview’ page, click ‘Random Forests’.
The random forests (RF) algorithm is a powerful machine-learning method that can be applied
to microbiome data for classification and selection of important features45 (Box 5). By default, the
RF model was created using 500 trees. Use the drop-down menu to set this to ‘5000’, set
the ‘Taxonomic level’ to ‘Genus’, and click ‘Submit’. From the ‘Classification Performance’ tab, the
out-of-bag (OOB) error using 5,000 trees is 0.14. This value may be different for some users
because of the randomness of the algorithm (Fig. 7). The plot shows the performance of the
RF model, trained on genus-level data, in predicting the sample classification to either CD or
control. RF can naturally deal with multiclass datasets and will compute OOB errors and
classification performance for each group.

Fig. 6 | Graphical summary of LEfSe analysis. Significant taxa are ranked in decreasing order by their LDA scores (x axis). The mini heatmap to the
right of the plot indicates whether the taxa are higher (red) or lower (blue) in each group.
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29 Identification of significant features with RF. Click the ‘Important Features’ tab to view the graphical
result. The plot layout is identical to that of the LEfSe plot (Steps 26 and 27), except that features are
ranked by their mean decrease accuracy. For multiclass datasets, the mini heatmap helps visualize
the patterns of change across different groups. Using LEfSe and RF, Roseburia and Anaerostipes
caccae are consistently identified as showing the most important differences between pediatric CD
and healthy controls, marked by a decreased abundance in CD patients. Both microbes are
producers of butyrate, a metabolite with known anti-inflammatory effects, and their depletion has
been linked to IBD46–48.

30 Analysis report generation and results download. Following the analysis, click the ‘Downloads’
hyperlink from the top navigation track. The ‘Results Download’ page will appear, showing all
figures, result tables and the ‘R Command History’ file. Click the ‘Generate Report’ button to create
a PDF report detailing all analyses performed and embedded with the results (Fig. 2 (3)). Click the
‘Analysis Report’ link to download the report. Click the ‘Download.zip’ link to download a zipped
file containing all results generated in the analysis session.

Fig. 7 | Visualization of the ‘Random Forests’ results. A screenshot of the ‘Random Forests’ analysis results. The classification performance for each
group is shown in the table to the right. Users can click the ‘Important Features’ tab to view those features with large impact on the accuracy of
the model.
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Stage 2: Predictive functional profiling and analysis of gene abundance data ● Timing
~20 min, depending on the dataset size.
31 Startup. Return to the MicrobiomeAnalyst home page and click ‘Marker Data Profiling (MDP)’ to

enter the module.
32 Example data upload. From the example datasets, select ‘Aging Mouse Gut’ and click ‘Submit’.

Repeat Steps 3–5 to perform data processing.
33 Prediction of functional potential. Phylogenetic investigation of communities by reconstruction of

unobserved states (PICRUSt) is a computational approach that can predict gene abundance from
properly annotated OTU abundance tables (see Box 6 for more details). Click the ‘PICRUSt
(Greengenes)’ hyperlink from the ‘Analysis Overview’ page.

c CRITICAL STEP The MicrobiomeAnalyst implementation of PICRUSt is based on the
Greengenes49 reference OTUs (18May2012 version). If users have not annotated their data to
this database, the analysis will fail.

34 From the PICRUSt page, click the ‘Predict Functional Potential’ button.

c CRITICAL STEP This step will take 1~2 min, depending on the server load at the time.
35 Upon completion, a box plot of KO counts across all samples will appear on the page. From the

‘Downloads of the page’ menu, click the ‘KO Table’ and the ‘Metadata file’ options to download
these files. These files will be used as input for the SDP module. The procedures described below
work equally well for shotgun metagenomics and metatranscriptomics data.

36 Return to the MicrobiomeAnalyst home page and click ‘Shotgun Data Profiling (SDP)’ to enter the
module.

37 Data upload. To upload the PICRUSt data, first select the ‘Upload a gene abundance table’ panel.
From the ‘Gene ID type’ drop-down menu, choose ‘KEGG Ortholog (KO)’. Next, click the ‘Choose
File’ button next to ‘Abundance’ file to locate the ‘functionalprof_picrust.csv’ file. Press ‘Open’ to
select the file. Next click the ‘Choose File’ button next to ‘Metadata file’ and locate the ‘metadata.csv’
file. Click ‘Submit’ to upload all the data. To facilitate the testing process, we have also included
these data in the example datasets. To use this feature, click ‘Example data sets for testing’ at the
bottom of the page. Select the ‘KO Mouse Dataset’ and the click ‘Submit’ to upload the data.

c CRITICAL STEP The required format is a.txt or.csv file with genes in rows and samples in
columns. The accepted gene identifiers include KOs, Enzyme Commissions (ECs), and Clusters of
Orthologous Groups (COGs). The first row must contain sample names and begins with ‘#NAME’.
The same metadata file used for MDP can be used, with sample names as the first column, followed
by metadata variables. Click on the ‘Data Format’ page for further details.

38 Data integrity check. The ‘Data Integrity Check’ page summarizes the results of the data upload.
Click ‘Proceed’ to continue.

39 Data filtering. Keep the default ‘low count filter’ and ‘low variance filter’ settings and click ‘Submit’.
Refer to Step 4 for more details. A message will appear on the top right indicating the number of
remaining features. Click ‘Procced’ to move forward.

40 Data normalization. Keep the ‘Data scaling’ set to ‘Cumulative sum scaling’ and click ‘Submit’.
Refer to Box 3 for details of the available normalization methods. Click ‘Proceed’ to continue.

41 Analysis overview. The ‘Analysis Overview’ page provides several options for functional profiling,
clustering analysis, differential-abundance analysis, and biomarker analysis. Differential-abundance

Box 6 | Functional prediction

This box describes methods available in MicrobiomeAnalyst for predictive functional profiling.
Despite their cost effectiveness for taxonomic surveys, marker-gene data do not directly provide any functional
information. Inferring potential functions from 16S rRNA sequencing data is thus greatly appealing. Two well-
established methods for predictive functional profiling are available in MicrobiomeAnalyst, PICRUSt27 and
Tax4Fun28. PICRUSt was the first tool that popularized the method of inferring microbiome functions from 16S
rRNA data. It leverages the idea that phylogenetically related organisms are more likely to have similar gene
contents. From 16S rRNA data, the PICRUSt algorithm searches for the most closely related organisms with
annotated genomes and assumes that their functional information is also present in the data. On the other hand,
Tax4Fun is an R package that combines precomputed functional profiles from KEGG prokaryotic organisms and
normalized taxonomic abundances. To use Tax4Fun, the input 16S rRNA sequencing data must be annotated
using the SILVA reference database71, whereas for PICRUSt, the Greengenes database49 must be used. Both
methods rely on available genome annotations to make inferences, and are suitable for predictive functional
profiling of microbiomes from well-studied environments such as the human gut.
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analysis and biomarker analysis are covered in Steps 18–29. Here, we will show how to obtain a
functional overview. Click ‘Diversity overview’ to begin.

42 Functional diversity profiling. On the ‘Functional Diversity Profiling’ page, users can view a graphical
summary of the potential functions of their gene abundance data by binning related genes into
several functional categories, including KEGG metabolism, KEGG pathways, KEGG modules, and
COG functional categories. The top of the page contains parameters with which to customize the
plot, such as the functional category and color scheme. The default view is KEGG metabolism using
the total number of hits. From the plot, we see minor variations across the young, middle-aged, and
old mice at this functional level. To explore different functional levels, select ‘KEGG pathways’ and
‘Total hits normalized by category size’. Click ‘Submit’ to update the plot. From the new stacked-
area plot we can see the distributions of different pathways across samples and conditions.

43 Enrichment analysis. We can perform enrichment analysis to statistically assess whether certain
pathways or modules are significantly associated with the age factor. The enrichment is calculated
using the well-established globaltest algorithm29, which is a robust test to identify whether
particular gene sets (i.e., KEGG pathways) are significantly associated with the phenotype shifts on
the basis of their abundance profiles. Return to the ‘Analysis Overview’ page and click ‘Association
analysis’. A pop-up will appear. Keep the experimental factor set to ‘Age’ and press ‘Proceed’.

44 Visualization using the KEGG global metabolic network. On the ‘Network Viewer’ page, users can
visually explore the enriched pathways within the KEGG global metabolic network (Fig. 8). The
page consists of three sections: the top toolbar, the left panel containing the pathway analysis
results, and the central area, which displays the metabolic network. To demonstrate the utility of
this page, click the checkbox next to ‘Phenylalanine metabolism’. Matched KOs from user’s data
will now be highlighted as edges on the network, with their colors based on the highlight colors
specified by the users.

45 Network exploration. Further explore the results of the enrichment analysis. Use your mouse to
zoom in and out, as well as to drag the network in any direction. Users can double-click any
highlighted edge to view the associated reactions. The bottom left corner of the page lists all
matched KOs in the selected pathway. If users click on any KO, they will be directly taken to the
corresponding page on the KEGG website.

46 Network customization. The toolbar at the top of the page contains many useful options with which
users can customize their network. These include changing the background of the network, showing
or hiding pathway names, and switching the overall network styles. Adjust these settings to
customize the network.

47 Further network customization. Users can also highlight their specified pathways in different colors.
For instance, click the colored box next to ‘Highlight’. A color palette will appear. Directly click on a
region showing the color of interest and press ‘Choose’ to close the dialog. Next, click on the
‘Geraniol degradation’ pathway from the left-hand side to highlight all matching edges.

48 Network download. Following the network exploration, click the drop-down menu next to
‘Download’ and select ‘PNG Image’. A ‘Download Dialog’ will pop up on your screen with the
created network. Right-click the PNG image and save it under your preferred name. Alternatively,
users can export the KEGG network in SVG format.

49 (Optional) To further explore the gene abundance data (e.g., differential abundance analysis and
biomarker analysis), follow Steps 18–29.

Stage 3: Visual data exploration with a compatible public dataset ● Timing ~10 min,
depending on the dataset size.
50 Startup. Return to the MicrobiomeAnalyst home page and click ‘Projection with Public Data (PPD)’

to enter the module.
51 Data upload. The PPD upload page is similar to the MDP upload page. Click ‘Example data sets for

testing’ to show all available example datasets. Select the ‘Arable soil’ dataset. Click the ‘Submit’
button to upload the data. Alternatively, click ‘Choose File’ next to ‘ASV/OTU table’ and locate
‘soil_test_otu.txt’. Click ‘Choose File’ next to ‘Metadata file’ and locate ‘soil_sample.txt’, and click
‘Choose File’ next to Taxonomy table and locate ‘soil_test_taxa.txt’. Specify the ‘Taxonomy labels’
as ‘Greengenes OTU Ids’. Click ‘Submit’ to upload the data.

52 Data integrity check. The ‘Data Integrity Check’ page summarizes the results of the data upload.
Click ‘Proceed’ to continue.
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53 Data selection. The ‘Data Selection’ page contains all datasets available in MicrobiomeAnalyst for
users to co-project with their data. The datasets are organized by body sites (for human samples),
organism (samples from other mammals), and environmental samples. As the example data
originate from arable soil, click the ‘Environmental’ tab to view all available options. Select ‘Global
soil’ and click ‘Submit’.

c CRITICAL STEP At least 20% of taxa must be shared between the user’s data and the selected
public dataset.

54 Interactive data visualization. The 3D PCoA should look similar to Fig. 3. Refer to Steps 10–12 for
instructions on navigating the plot. The user’s data are represented as circles, whereas the public
data are squares. Use your mouse to rotate or zoom in and out of the graph. It is clear that the
samples from the user’s data separate into three clusters, with one cluster close to samples from dry
soil and surface soil groups, while the other clusters of samples are far from all reference data.

55 (Optional) Comparison of taxa abundances of different samples. Double-click a data point (i.e., a
sample) to view a pie chart summary of its taxa abundances (Steps 11 and 12). Note that all
generated pie charts will appear in the right-hand ‘View History’ panel. Visually compare these pie
charts to get a sense of how the samples are different across conditions at various taxonomic levels.

56 Analysis download. Click on the ‘Downloads’ link from the top navigation track to download the
results.

Stage 4: Enrichment analysis of a list of taxa ● Timing ~10 min
57 Startup. Return to the MicrobiomeAnalyst home page and click ‘Taxon Set Enrichment Analysis

(TSEA)’ to enter the module.
58 Data upload. The required format is a list of taxa. Use the example taxa list file (‘ibd_taxa.txt’)

described in the ‘Equipment setup’ section. Open the ‘ibd_taxa.txt’ file in your preferred text editor
(e.g., Notepad). Select all taxa names and copy and paste the contents into the text area of
MicrobiomeAnalyst. Keep the ‘Input type’ as ‘Mixed-level Taxon Names’. Click the ‘Submit’ button.

c CRITICAL STEP Users must upload their taxa list as a single column of taxon names or IDs and
correctly specify the input type in order to proceed.

Fig. 8 | Visualization of enriched pathways in the KEGG global metabolic network. A screenshot of the KEGG global metabolic network. The top
toolbar contains all options for network customization, such as background color, highlight color, and whether to show pathway names. The left panel
contains the results of the enrichment analysis, and the bottom of the panel provide links to the KEGG website for all matched KOs. Selected pathways
are highlighted in different colors within the network.
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59 Name mapping. The next page shows the results of the ‘Taxonomic Name/ID Mapping’ function.
The purpose of this page is to match taxon names from user’s data to the underlying taxon set
libraries of MicrobiomeAnalyst. Taxon names without hits will be highlighted in yellow and will be
excluded from further analysis. Click the ‘Submit’ button at the bottom of the page to continue.

60 The ‘Taxon Set Library’ page shows all available taxon sets for enrichment analysis. There are three
levels of taxon sets: ‘Mixed-level’ (including phylum to species), ‘Species-level’, and ‘Strain-level’. In
this use case, the taxa are a mix of genus and species names. Under the ‘Mixed-level taxon sets’
heading, click the ‘Host-intrinsic taxon sets’ and click ‘Submit’ to proceed to the next step.
? TROUBLESHOOTING

61 Network exploration. The TSEA result is shown as an enrichment network (Fig. 9). In the network,
each node represents a taxon set, with its color corresponding to the P value and its size
corresponding to the number of hits. Two nodes are connected if the number of shared taxa is
>20%. On the basis of the network, ‘Pediatric Crohn’s Disease’ receives the largest number of hits
and is highly interconnected with other taxon sets such as ‘Type 1 Diabetes’, ‘Colorectal
carcinogenesis’, ‘Crohn’s Disease’, and ‘Anorexic (decrease)’. Drag nodes around or use the mouse
scroll to zoom in or out. Click any taxon set to view its details in the ‘Taxon Set View’ in the right-
side panel. All matching taxa will be highlighted in red. The link to the corresponding publication is
provided as a hyperlink to PubMed, as well as to where the evidence was gathered within the
publication.

62 Exploration of the TSEA results table. Scroll down the page to view the results table. Ten taxon sets
have FDR-adjusted P values <0.05. ‘Anorexic’ is one of the most enriched taxon sets. This is not
unexpected, because malnutrition is a common complication of pediatric IBD, potentially
stemming from anorexia50,51. Spend some time exploring the rest of the TSEA results.

63 Download of results. Click the ‘Downloads’ link from the top navigation track to enter the ‘Results
Download’ page. Generate the corresponding analysis report and download the results. Click
‘Logout’ to exit the session.

Fig. 9 | TSEA results. At the top of the page is an enrichment network. Users can click any node to view more details about the underlying taxon set
via the ‘Taxon Set View’ option on the right. The result table with detailed statistical information is shown at the bottom of the page.
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Troubleshooting

Troubleshooting advice can be found in Table 2.

Timing

Steps 1–30, Stage 1, comprehensive analysis of 16S abundance data: ~30 min, depending on the
dataset size
Steps 31–49, Stage 2, predictive functional profiling and analysis of gene abundance data: ~20 min,
depending on the dataset size
Steps 50–56, Stage 3, visual data exploration with a compatible public dataset: ~10 min, depending on
the dataset size
Steps 57–63, Stage 4, enrichment analysis of a list of taxa: ~10 min

Anticipated Results

This protocol enables users to perform a comprehensive analysis of their microbiome data. Three
example datasets are provided: one each for pediatric IBD samples, aging mouse samples, and arable
soil samples. The major graphical outputs produced during the analysis are shown in Figs. 3–9. Users
are not only able to profile their microbial communities and identify important features, they can also
gain functional insights through enrichment analysis and metabolic network-based visualizations.
The PPD and TSEA modules further permit users to perform meta-analysis by comparing their data
with either a compatible public dataset or known microbial signatures for potential validation or
novel insights.

Reporting Summary
Further information on research design is available in the Nature Research Reporting Summary
linked to this article.

Data availability
All example datasets used in the protocol are integrated as example datasets in their respective
modules and are also available for download from the ‘Resources’ page of MicrobiomeAnalyst

Table 2 | Troubleshooting table

Step Problem Possible reason Solution

1 The home page does not
display properly.

JavaScript is not enabled in your
browser.

Check the documentation for your specific browser on how to enable
JavaScript. For Google Chrome, click the three vertical dots in the
upper-right corner of your browser and go to ‘Settings’. Scroll down
the page and click ‘Advanced’. Under ‘Privacy and security’, click
‘Site Settings’ and then click ‘JavaScript’. Turn on ‘Allowed’.

2 Data upload failed. There are issues with the uploaded files,
such as missing files or incorrect
formatting.

The MicrobiomeAnalyst system messages will indicate possible
reasons for failed uploads. Check for the following issues and
reformat and re-upload your files: (i) incorrect tab-delimited
formatting (if uploading plain-text tables), (ii) selection of incorrect
taxonomy labels, (iii) not using semicolons to separate taxonomic
ranks in the taxonomy table, and (iv) uploading data in formats that
are not currently supported.

3 Data integrity check failed. Sample names do not match between
the metadata and abundance tables.

Ensure that sample names are consistent among all uploaded files.

There are duplicated taxonomy names
in your taxonomy table.

Ensure that taxonomy names for your uploaded count table and
taxonomy table match.

60 No matches are available
for user’s uploaded list
of taxa.

Despite the large size of taxon set
libraries, not all existing microbes are
covered.

We will keep adding new taxon sets to expand our coverage of the
microbiome.

After some time, the server
fails to respond.

The user’s session has timed out (default
= 45 min).

Refresh the page and re-upload your files. We are implementing a
user account management system so that registered users can save
and resume their analyses.
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(https://www.microbiomeanalyst.ca/MicrobiomeAnalyst/docs/Resources.xhtml). There are no restric-
tions on their use.

Code availability
MicrobiomeAnalyst is freely accessible as a web-based application. The underlying R code is freely
available at GitHub (https://github.com/xia-lab/MicrobiomeAnalystR) under a GNU General Public
License v.2 or later. The code in this protocol has been peer-reviewed.

References

1. Gilbert, J. A., Jansson, J. K. & Knight, R. The Earth Microbiome project: successes and aspirations. BMC Biol.
12, 69 (2014).

2. Gevers, D. et al. The Human Microbiome Project: a community resource for the healthy human microbiome.
PLoS Biol. 10, e1001377 (2012).

3. iHMP Research Network Consortium. The Integrative Human Microbiome Project: dynamic analysis of
microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16, 276–289
(2014).

4. Marchesi, J. R. & Ravel, J. The vocabulary of microbiome research: a proposal. Microbiome 3, 31 (2015).
5. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).
6. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2.

Nat. Biotechnol. 37, 852–857 (2019).
7. Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software

for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
8. Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10,

996–998 (2013).
9. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods

13, 581–583 (2016).
10. Minot, S. S., Krumm, N. & Greenfield, N. B. One Codex: a sensitive and accurate data platform for genomic

microbial identification. Preprint at bioRxiv, https://doi.org/10.1101/027607 (2015).
11. Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments.

Genome Biol. 15, R46 (2014).
12. Segata, N. et al. Metagenomic microbial community profiling using unique clade-specific marker genes.

Nat. Methods 9, 811–814 (2012).
13. Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional:

and this is not optional. Front. Microbiol. 8, 2224 (2017).
14. McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of

microbiome census data. PLoS One 8, e61217 (2013).
15. Dhariwal, A. et al. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-

analysis of microbiome data. Nucleic Acids Res. 45, W180–W188 (2017).
16. Chong, J. et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic

Acids Res. 46, W486–W494 (2018).
17. Chong, J., Yamamoto, M. & Xia, J. MetaboAnalystR 2.0: from raw spectra to biological insights. Metabolites

9, E57 (2019).
18. Wilke, A. et al. The MG-RAST metagenomics database and portal in 2015. Nucleic Acids Res. 44, D590–D594

(2016).
19. Huse, S. M. et al. VAMPS: a website for visualization and analysis of microbial population structures.

BMC Bioinforma. 15, 41 (2014).
20. Zakrzewski, M. et al. Calypso: a user-friendly web-server for mining and visualizing microbiome–

environment interactions. Bioinformatics 33, (782–783 (2016).
21. Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxo-

nomic units in marker-gene data analysis. ISME J. 11, 2639 (2017).
22. Baksi, K. D., Kuntal, B. K. & Mande, S. S. ‘TIME’: a web application for obtaining insights into microbial

ecology using longitudinal microbiome data. Front. Microbiol. 9, 36 (2018).
23. Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8,

e1002687 (2012).
24. Zhou, G. et al. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling

and meta-analysis. Nucleic Acids Res. 47, W234–W241 (2019).
25. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
26. Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).
27. Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene

sequences. Nat. Biotechnol. 31, 814–821 (2013).
28. Aßhauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4Fun: predicting functional profiles from

metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884 (2015).
29. Goeman, J. J., van de Geer, S. A., de Kort, F. & van Houwelingen, H. C. A global test for groups of genes:

testing association with a clinical outcome. Bioinformatics 20, 93–99 (2004).

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS |www.nature.com/nprot 21

https://www.microbiomeanalyst.ca/MicrobiomeAnalyst/docs/Resources.xhtml
https://github.com/xia-lab/MicrobiomeAnalystR
https://doi.org/10.1101/027607
www.nature.com/nprot


30. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of
large-scale molecular data sets. Nucleic Acids Res. 40, D109–114 (2012).

31. Rocca, J. D. et al. The Microbiome Stress Project: toward a global meta-analysis of environmental stressors
and their effects on microbial communities. Front. Microbiol. 9, 3272 (2018).

32. Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for
colorectal cancer. Nat. Med 25, 679–689 (2019).

33. Sze, M. A. & Schloss, P. D. Looking for a signal in the noise: revisiting obesity and the Mmcrobiome. MBio 7,
e01018-16 (2016).

34. Gonzalez, A. et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat. Methods 15, 796–798 (2018).
35. Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R. & Gordon, J. I. Worlds within worlds: evolution of the

vertebrate gut microbiota. Nat. Rev. Microbiol. 6, 776–788 (2008).
36. Lozupone, C. A. et al. Meta-analyses of studies of the human microbiota. Genome Res. 23, 1704–1714 (2013).
37. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-

wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
38. Xia, J. & Wishart, D. S. MSEA: a web-based tool to identify biologically meaningful patterns in quantitative

metabolomic data. Nucleic Acids Res. 38, W71–W77 (2010).
39. Langille, M. G. et al. Microbial shifts in the aging mouse gut. Microbiome 2, 50 (2014).
40. Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4,

1340–1351 (2010).
41. Foster, Z. S., Sharpton, T. J. & Grunwald, N. J. Metacoder: an R package for visualization and manipulation of

community taxonomic diversity data. PLoS Comput. Biol. 13, e1005404 (2017).
42. Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15,

382–392 (2014).
43. Palmela, C. et al. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 67, 574–587 (2018).
44. Fang, X. et al. Escherichia coli B2 strains prevalent in inflammatory bowel disease patients have distinct

metabolic capabilities that enable colonization of intestinal mucosa. BMC Syst. Biol. 12, 66 (2018).
45. Knights, D., Costello, E. K. & Knight, R. Supervised classification of human microbiota. FEMS Microbiol. Rev.

35, 343–359 (2011).
46. Zhu, C. et al. Roseburia intestinalis inhibits interleukin−17 excretion and promotes regulatory T cells dif-

ferentiation in colitis. Mol. Med. Rep. 17, 7567–7574 (2018).
47. Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment.

Genome Biol. 13, R79 (2012).
48. Riviere, A., Selak, M., Lantin, D., Leroy, F. & De Vuyst, L. Bifidobacteria and butyrate-producing

colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol. 7, 979
(2016).

49. DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible
with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

50. Collins, A., Nolan, E., Hurley, M., D’Alton, A. & Hussey, S. Anorexia nervosa complicating pediatric Crohn
disease—case report and literature review. Front. Pediatr. 6, 283 (2018).

51. Gerasimidis, K., McGrogan, P. & Edwards, C. A. The aetiology and impact of malnutrition in paediatric
inflammatory bowel disease. J. Hum. Nutr. Diet. 24, 313–326 (2011).

52. Pereira, M. B., Wallroth, M., Jonsson, V. & Kristiansson, E. Comparison of normalization methods for the
analysis of metagenomic gene abundance data. BMC Genomics 19, 274 (2018).

53. Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data character-
istics. Microbiome 5, 27 (2017).

54. McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible.
PLoS Comput. Biol. 10, e1003531 (2014).

55. McKnight, D. T. et al. Methods for normalizing microbiome data: an ecological perspective. Methods Ecol.
Evol. 10, 389–400 (2019).

56. Dillies, M. A. et al. A comprehensive evaluation of normalization methods for Illumina high-throughput
RNA sequencing data analysis. Brief. Bioinform. 14, 671–683 (2013).

57. Hugerth, L. W. & Andersson, A. F. Analysing microbial community composition through amplicon
sequencing: from sampling to hypothesis testing. Front. Microbiol. 8, 1561 (2017).

58. Bullard, J. H., Purdom, E., Hansen, K. D. & Dudoit, S. Evaluation of statistical methods for normalization and
differential expression in mRNA-Seq experiments. BMC Bioinforma. 11, 94 (2010).

59. Joseph, N., Paulson, C., Corrada Bravo, H. & Pop, M. Robust methods for differential abundance analysis in
marker gene surveys. Nat. Methods 10, 1200–1202 (2013).

60. Morgan, X. C. & Huttenhower, C. Chapter 12: human microbiome analysis. PLoS Comput. Biol. 8, e1002808
(2012).

61. Ramette, A. Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 62, 142–160 (2007).
62. Kuczynski, J. et al. Microbial community resemblance methods differ in their ability to detect biologically

relevant patterns. Nat. Methods 7, 813–819 (2010).
63. Anderson, M. J. & Walsh, D. C. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous

dispersions: what null hypothesis are you testing? Ecol. Monog. 83, 557–574 (2013).
64. Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics

Reference Online, https://doi.org/10.1002/9781118445112.stat07841(2014).

PROTOCOL NATURE PROTOCOLS

22 NATURE PROTOCOLS |www.nature.com/nprot

https://doi.org/10.1002/9781118445112.stat07841
www.nature.com/nprot


65. Faust, K. et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 8,
e1002606 (2012).

66. Layeghifard, M., Hwang, D. M. & Guttman, D. S. Disentangling interactions in the microbiome: a network
perspective. Trends Microbiol. 25, 217–228 (2017).

67. Pearson, K. Mathematical contributions to the theory of evolution.—on a form of spurious correlation which
may arise when indices are used in the measurement of organs. Proc. R. Soc. Lond. 60, 489–498 (1897).

68. Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS
Comput. Biol. 11, e1004226 (2015).

69. Watts, S. C., Ritchie, S. C., Inouye, M. & Holt, K. E. FastSpar: rapid and scalable correlation estimation for
compositional data. Bioinformatics 35, 1064–1066 (2018).

70. Touw, W. G. et al. Data mining in the life sciences with Random Forest: a walk in the park or lost in the
jungle? Brief. Bioinform. 14, 315–326 (2013).

71. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based
tools. Nucleic Acids Res. 41, D590–596 (2013).

Acknowledgements
The authors thank Genome Canada, Génome Québec, the Natural Sciences and Engineering Research Council of Canada (NSERC), and
the Canada Research Chairs (CRC) Program for funding support.

Author Contributions
J.C. and J.X. prepared the manuscript. J.C., P.L., G.Z., and J.X. contributed to the development of MicrobiomeAnalyst. All authors read
and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41596-019-0264-1.

Correspondence and requests for materials should be addressed to J.X.

Peer review information Nature Protocols thanks Tiffany Weir and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 17 June 2019; Accepted: 29 October 2019;

Related links
Key references using this protocol
Khan, N. et al. Mucosal Immunol. 12, 772–783 (2019): https://doi.org/10.1038/s41385-019-0147-3
Stinson, L. F., Boyce, M. C., Payne, M. S. & Keelan, J. A. Front. Microbiol. 10, 1124 (2019):
https://doi.org/10.3389/fmicb.2019.01124
Amrane, S. et al. Sci. Rep. 9, 12807 (2019): https://doi.org/10.1038/s41598-019-49189-8

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS |www.nature.com/nprot 23

https://doi.org/10.1038/s41596-019-0264-1
https://doi.org/10.1038/s41385-019-0147-3
https://doi.org/10.3389/fmicb.2019.01124
https://doi.org/10.1038/s41598-019-49189-8
www.nature.com/nprot





	Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data
	MicrobiomeAnalyst is an easy-to-use, web-based platform for comprehensive analysis of common data outputs generated from current microbiome studies. It enables researchers and clinicians with little or no bioinformatics training to explore a wide variety 
	Introduction
	Overview of the analysis workflow and the interface design
	Comparison with other web-based tools
	Limitations
	Experimental design
	Comprehensive analysis of 16S rRNA abundance data
	Functional profiling and network visualization of gene abundance data
	Visual comparison with a public dataset
	Enrichment analysis of a list of taxa

	Materials
	Equipment
	Computer requirements
	Data files
	Abundance files (.txt/.csv)
	Taxonomy files (.txt/.csv)
	Metadata files (.txt/.csv)
	Equipment setup
	Download the example data

	Procedure
	Stage 1: Comprehensive analysis of 16S abundance data
	Data filtering
	Data rarefying
	Data scaling
	Data transformation
	Alpha diversity
	Beta diversity
	Correlations
	LEfSe
	Random Forests
	Stage 2: Predictive functional profiling and analysis of gene abundance data
	Stage 3: Visual data exploration with a compatible public dataset
	Stage 4: Enrichment analysis of a list of taxa

	Troubleshooting
	Timing
	Anticipated Results
	Reporting Summary
	References
	References

	References
	ACKNOWLEDGMENTS




