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As the volume and variety of available data continue to proliferate, organizations increasingly turn to ana-
lytics in order to enhance business decision-making and ultimately, performance. However, the decisions
made as a result of the analytics process are only as good as the data on which they are based. In this
article, we examine the data quality problem and propose the use of control charting methods as viable
tools for data quality monitoring and improvement. We motivate our discussion using an integrated case
study example of a real aircraft maintenance database. We include discussions of the measures of multiple
data quality dimensions in this online process. We highlight the lack of appropriate statistical methods for
the analysis of this type of problem and suggest opportunities for research in control chart methods within
the data quality environment. This article has supplementary material online.

KEY WORDS: Attributes control chart; Data analytics; Data production process; Process improvement;
Quality management.

1. INTRODUCTION

It has been noted that in today’s information age, everything
can be monitored and measured, but it is increasingly difficult
to use, analyze, and make sense of the data (Lohr 2009). The
proliferation of data has led to increased global spending on
data analytics software by 16.4% in 2011 to a total of $12.2
billion (Kalakota 2012). For instance, IBM has invested more
than $14 billion in analytics in the past five years, mostly in
analytics-related company acquisitions (IBM 2011). Addition-
ally, organizations, such as the United States Air Force, have
adopted several initiatives to expand their analytical capabili-
ties in order to enhance logistics and maintenance effectiveness
(Nunnally and Thoele 2007). However, as organizations seek
to improve their analytics capabilities, it must be emphasized
that gathering, storing, and making sense of a large amount
of data is a complex process and there are many opportunities
throughout for data quality (and thus analytical usefulness) to
be compromised (Tayi and Ballou 1998).

Both academic and practitioner literature have long stated
the need for improved data quality for effective decision mak-
ing; however, the literature stops short of recommending gener-
ally applicable methods for measuring, monitoring, and improv-
ing data quality (Bose 2009; Warth, Kaiser, and Kugler 2011).
Whereas the use of statistical process control (SPC) methods to
monitor and improve the quality of manufacturing and service
processes is well researched and implemented in practice, there
has been only limited and rudimentary usage of SPC methods to
monitor and improve the quality of the data itself. The purpose of
this article is to introduce the data quality problem to researchers
in statistical process control and to examine how control charts
may be used to monitor and ultimately improve data quality.

The remainder of this article begins with a short overview of
the data production and warehousing process. Then, we define
the accepted dimensions of data quality and discuss ways in
which data quality can be measured. We follow with a review of

existing applications of control chart methods to the data qual-
ity problem. Throughout, we integrate a discussion of a data
production process based on an actual repair and refurbishment
facility that maintains jet engine components for United States
Air Force cargo aircraft. In doing so, we give an example il-
lustrating how to measure data quality within a data production
process. Next, we discuss how the unique nature of the “data
about the data” provides additional challenges to data quality
process improvement and illustrate the application of a control
chart to establish a monitoring scheme within the aircraft main-
tenance data warehouse. Finally, we discuss future opportunities
for statistical research in control charting as it applies to the data
quality problem.

2. THE DATA PRODUCTION PROCESS

We assume the reader is familiar with SPC and basic control
charting methods, but possibly unfamiliar with data quality,
information systems, and data warehousing concepts. Thus, we
begin with a brief introduction and overview of the methods for
gathering and storing data in large organizations, such as in our
aircraft maintenance example. In this article, we consider the
data as both the raw material input and, in its transformed state,
the output of the process. We refer to the transformed output of
the data production process as a data product (Pitt, Watson, and
Kavan 1995; Wang and Strong 1996; Kahn, Strong, and Wang
2002). Although the terms information and data are often used
interchangeably in the literature and in practice, we restrict our
terminology to data as it implies a more raw form.

© 2014 American Statistical Association and
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In many organizations, data regarding transactions, cus-
tomer relations, and company performance are ultimately stored
within a computer-based repository known as a data warehouse
(Wixom and Watson 2001; Breslin 2004; March and Hevner
2007). In the past, this data warehouse would often take the
form of a single, specialized organizational data storage system.
Today’s data warehouses used by larger organizations regularly
encompass data integrated from across physically distributed
systems, for example, cloud-based storage.

Inmon (1992) noted that a key characteristic of the data ware-
house is that it can be used to integrate data from across multi-
ple organizational information systems through the extraction,
transformation, and loading (ETL) process. Extraction refers to
the process of obtaining data from either internal or external or-
ganizational sources such as Enterprise Resource Planning sys-
tems, Customer Relationship Management systems, third party
vendors, click-stream data from customer visits to websites, or
many other sources. Once extracted from these sources, the data
are placed in an operational data store where the data will be pro-
cessed during the transformation stage using a series of rules that
will attempt to eliminate duplicates, missing records, and stan-
dardize the language. In the final stage, the data are loaded into
the data warehouse. Every stage of the ETL process has the pos-
sibility of introducing error that can affect the quality of the final
data product and the quality of the eventual analysis of this data.

Ideally, modern data processing systems include automated
data quality checks. Even moderately complex business rules
can be programed, helping to facilitate high quality data entry
and extraction. Automated logical checks occurring early in
the data production process can assist with continuous data
collection improvement and the prevention of later data quality
issues. Figure 1 gives a general overview of data warehousing,
from data input to the output of a transformed data product.

The aircraft maintenance data management system that we
examine is used for making repair decisions regarding both air-
craft engines and engine subcomponents. Variations of these
engines have been in service since the late 1960s, and this par-
ticular data management system has been in use since the 1990s.

This system contains data regarding unique, individual jet
engine subcomponents that are serviced at the maintenance fa-
cility. Examples of such subcomponents include compressor
disks, turbine disks, spools, shafts, seals, and similar items that
combine to create one of over 600 jet engines in the inventory.
Engines are removed from aircraft when they have reached a
given number of flying hours and are due for scheduled mainte-
nance (approximately every five years), or when a malfunction
is suspected. After removal from the aircraft, engines require
complete disassembly, inspection, and overhaul maintenance,
and are subsequently shipped to the maintenance facility for
service. As an engine is disassembled and its constituent sub-
components inspected and overhauled, facility personnel hand-
enter data for each individual subcomponent.

Consistent with Figure 1, the raw maintenance data are in-
put into both internal and external databases. Externally, data
are recorded by field-level technicians and engine managers at
air force installations throughout the world. Externally recorded
data include number of cycles and hours of use at both the en-
gine and component level and data are generally uploaded after
each flight. Internally, technicians at the repair facility record
data by hand upon the arrival and disassembly of aircraft en-
gines. Internally hand-recorded data include the condition and
preventive maintenance tasks at the component level. Through
this process, technicians add internally recorded data properties
to those externally recorded, forming complete data records. For
this example, we define each record as a row of data containing
14 separate internally and externally recorded data properties
that describe the individual engine subcomponent, to include
serial number, date of manufacture, time since last overhaul, sta-
tus, etc. See Table 1 for a definition of the terms used throughout
our example.

Data from both sources are extracted, transformed, and loaded
into a data warehouse. From this warehouse, users at many levels
and locations can query the database to obtain desired informa-
tion. There are several data consumers, from Air Force leaders
who require a real-time picture of the maintenance status of en-
gines and components, to mid-level managers who use the data

Figure 1. An example data warehouse/data production process.
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APPLYING CONTROL CHART METHODS TO ENHANCE DATA QUALITY 31

Table 1. Clarification of terminology used in the aircraft maintenance example

Term Definition

Record Row in the aircraft maintenance database that stores personnel hand-entered servicing information on one
individual subcomponent.

Data property Column in the aircraft maintenance database that represents one specific piece of information about an individual
subcomponent part, e.g., item serial number.

Field A single “cell” of information contained at the intersection of a Record and Data Property, e.g., the date of
manufacture for a single, specific subcomponent part.

Part number Manufacturer identification code assigned to a family of subcomponent types. One or more part numbers are
present for each type of subcomponent; multiple part numbers are driven by the use of more than one
subcomponent manufacturer or use of newer models of the same subcomponent.

Item serial number Identification code assigned to each individual subcomponent. Our example contains several hundred unique
individual item serial numbers.

Date of manufacture Reported manufacture date for each individual subcomponent.
Time since last overhaul The amount of time that has elapsed since the most recent previous service event for an individual subcomponent

part. Measured in cycles. Each cycle denotes one use of the engine (start/shut-down) in an aircraft.
Status Code representing the service personnel’s overall judgment of the quality and further potential use of the

individual engine subcomponent, based on technical guidance. There are four status levels, ranging from
condemned to like-new.

for decision making (i.e., deciding when to remove an engine
from an aircraft and send it to the repair facility), to field-level
technicians who use historical information for troubleshooting.
In sum, once aggregated into the data warehouse, data are used
by a variety of consumers for analysis and decision making.
Unfortunately, as with any data management program, the pro-
cess described above presents many opportunities for the data
quality to be compromised.

Several researchers have suggested that, like a physical prod-
uct, data are the end-result of a manufacturing process, with raw
data as the input, and a polished, transformed data product as
the output (Emery 1969; Huh et al. 1990; Ronen and Spiegler
1991; Arnold 1992; Wang and Kon 1993; Wang, Storey, and
Firth 1995; Ballou et al. 1998; March and Hevner 2007). Wang
(1998) adapted the define, measure, analyze, improve, control
(DMAIC) cycle, as prescribed by Six Sigma and made popu-
lar by Motorola, for the data production process, referring to
it as the total data quality management (TDQM) methodol-
ogy. For a discussion of the DMAIC cycle see, for example,
Montgomery and Woodall (2008). However, unlike the DMAIC
cycle from Six Sigma, there is no control stage recommended in
the TDQM cycle. This important omission leaves practitioners
with few methods for monitoring, improving, and controlling
data quality over time.

Later, we discuss how control charts can be used for moni-
toring and controlling data quality outcomes; however, many of
the current control chart methods are not directly applicable to
the unique aspects of the “data about the data” that we observe
when monitoring data quality. To gain a complete perspective
on data quality, multiple, correlated dimensions are measured
and the measures are often categorical variables of mixed types
including dichotomous variables, count variables, and some-
times quantitative metrics. Batini et al. (2009) compared many
methodologies for improving data quality, and listed several
open research issues. These include the identification of more
precise statistical methods for assessing data quality, empirical
validation of data quality methods, and the extension of existing

data quality methods to handle the unique aspects of unstruc-
tured data.

Perhaps the most pertinent, yet challenging obstacle in moni-
toring data quality relates to the difficulty of measuring the “data
about the data” for data quality. A common phrase of quality
control practitioners is “you cannot improve that which you
cannot measure.” Thus, some attempt must be made to opera-
tionally define and measure data quality. As with measuring the
quality of a physical product, data quality is a multidimensional
problem (Garvin 1984, 1987). In the next section, we review the
mainstream literature on the dimensions of data quality to gain
insight into the accepted data quality characteristics.

3. DEFINING AND MEASURING DATA QUALITY

A review of the literature regarding measures of data quality
reveals more than 60 articles published since 1985 that investi-
gate various categories, dimensions, and impact of data quality
on business decision making. This stream of research has shown
data quality to be multidimensional and sometimes difficult to
measure (Ballou and Pazer 1985; Redman 1996; Wang and
Strong 1996; Wand and Wang 1996; Ballou et al. 1998; Huang
et al. 1999; Pipino, Lee, and Wang 2002). Despite the volume
of research on measures of data quality, the suggested dimen-
sions have only been discussed in very general terms, and we
emphasize these dimensions should be operationally defined in
order to be applied to specific monitoring situations.

Both Wang and Strong (1996) and Lee et al. (2002) organized
data quality dimensions into two categories: intrinsic refers to
data qualities that are objective and native to the data; contex-
tual refers to data qualities that are dependent on the context in
which the data are observed or used. Contextual dimensions of
data quality lend themselves more toward information, formed
by placing data within a situation or problem specific context
(Davenport and Prusak 2000; Batini et al. 2009; Haug, Arlbjørn,
and Pedersen 2009; Watts, Shankaranarayanan, and Even 2009).
Contextual dimensions include relevancy, value-added quantity
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(Wang and Strong 1996), believability, accessibility, and rep-
utation of the data (Lee et al. 2002, 2004). Measurement of
these dimensions has relied heavily on self-report surveys and
user questionnaires, as they rely on subjective and situational
judgments of decision makers for quantification (Batini et al.
2009). The scope of our article is to consider the quality of data,
not information; thus, we limit our study to consider the more
general intrinsic measures of data quality discussed next.

Four intrinsic data quality dimensions have received the great-
est attention in the data quality research: accuracy, timeliness,
consistency, and completeness (Scannapieco and Catarci 2002;
Parssian 2006; Batini et al. 2009; Haug and Arlbjørn 2011).
Ballou and Pazer (1985) were among the first to investigate
methods of measuring the quality of each of these four dimen-
sions, and the view that these four dimensions are the core,
intrinsic aspects of data has remained stable since their early
work (Wang and Strong 1996; Kahn, Strong, and Wang 2002;
Lee et al. 2002). For recent and notable research from which
we source our following core-dimension definitions and their
proposed measures, see, for example, Batini et al. (2009), Haug
and Arlbjørn (2011), and Warth, Kaiser, and Kugler (2011).

Accuracy is one of the oldest aspects of data quality investi-
gated in the literature, with research regarding its measurement
and assessment occurring from the 1960s onward (Morey 1982;
Laudon 1986). Accuracy refers to data that are as equivalent to
their corresponding “real” values as possible (Ballou and Pazer
1985), or simply data that match up to other external values
considered to be correct (Redman 1996, pp. 255–256). A sim-
ple example would be the degree to which a current data record
in our aircraft maintenance database regarding a specific aircraft
engine component (including serial number, part number, date of
manufacture, etc.) correctly matches an externally comparable
database, i.e., the original component manufacturer’s database.

Timeliness implies that data are as up-to-date as possible.
Haug, Arlbjørn, and Pedersen (2009) make the argument for
the intrinsic nature of the timeliness dimension. Depending on
the nature of the data, infrequently updated data records may
hamper effective managerial decision making (e.g., outdated
data or errors that occur in the data may be missed, potentially
preventing the early correction of any operational issues). It
is noteworthy that the quality inferred from a measure, such
as timeliness, depends heavily on the nature of the data. For
example, the original date of manufacture of an aircraft engine
component will not change, and need not be updated frequently;
however, the date of the most recent cycle time must be kept cur-
rent. Ballou et al. (1998, p. 468) also demonstrated a timeliness
measure calculated by finding the difference in time between
record delivery and entry into the storage system. This differ-
ence is added to the time elapsed from the occurrence of the
real-world event represented by the record.

Consistency accounts for how closely successive and related
data records match in terms of format and structure. Ballou
and Pazer (1985) defined consistency as when the “representa-
tion of the data value is the same in all cases” (p. 153). Batini
et al. (2009) developed the notion of both intra-relation and
inter-relation constraints on the consistency of data. The former
assesses adherence of the data property to a range of possi-
ble values, that is, a value domain (Coronel, Morris, and Rob
2011), and the latter requires that tuples/rows from two or more

datasets must represent the data with the same structure. An
example of this would be that an aircraft engine component,
currently in use, would have for “date of manufacture” a possi-
ble value range of 1980–2012 (intra-relation constraint), while
that component’s record in two different datasets would, in both
cases, have a field for date of manufacture, and both fields would
intentionally represent the component’s date of manufacture in
the same format (inter-relation constraint).

Completeness refers to data that are full and complete in
content, with no missing data. This dimension describes a data
record that captures the minimally required amount of informa-
tion needed in order to technologically reflect some “real-world
system” (Wand and Wang 1996), or data that have had all values
captured (Gomes, Farinha, and Trigueiros 2007). Every field in
the data record is needed in order to capture the complete picture
of what the record is attempting to represent in the “real world.”
In the aircraft maintenance example, if a particular component’s
record includes a date of manufacture and serial number, but no
part number, then that record is considered incomplete. The
minimum amount of data needed for a complete record is not
present. A simple ratio of incomplete versus total records can
then form a potential measure of the dataset’s completeness.

A discussion on measures of data quality would not be com-
plete without a brief mention of the importance of metadata to
measuring and monitoring data quality. Quite simply, metadata
are data about the data (McNurlin and Sprague 2006). Kimball
et al. (1998) described metadata as all data in a database that are
not the specific data themselves. Metadata are stored in a meta-
data repository within the warehouse and have been described as
consisting of two different types: technical metadata and busi-
ness metadata (Vetterli, Vaduva, and Staudt 2000). Technical
metadata provide information such as field names, field lengths,
number of records, etc. Business metadata can be more flexible
and are defined to reflect specific aspects of the data that are
important to a particular business context. For example, busi-
ness metadata may include the measures of data quality such as
timeliness, completeness, accuracy, and consistency of the data.
The metadata repository can be stored as a separate database, or
distributed throughout the various toolsets available in a modern
data warehousing environment, with implementations varying
in practice (Shankaranarayanan and Even 2004). It is a valuable
resource for gathering, tracking, and monitoring data quality, as
the stored metadata can be used to determine the levels of all
four aforementioned quality dimensions. It is within this repos-
itory that data about data quality (metadata) can be gathered for
quality control applications.

4. STATISTICAL MONITORING OF DATA QUALITY
USING CONTROL CHARTS

Of the few published applications of control charts to data
quality that we could locate, most used univariate Shewhart
charts, and only one recent paper referenced univariate expo-
nentially weighted moving average (EWMA) and cumulative
sum (CUSUM) methods. None used multivariate methods to
control the multidimensional data quality process, but instead
relied on multiple univariate control charts, one (Pierchala et al.
2009) with over 7500 charts applied simultaneously. Because
of the dichotomous and/or categorical nature of the data quality
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APPLYING CONTROL CHART METHODS TO ENHANCE DATA QUALITY 33

measures, recent applications relied heavily on Shewhart at-
tribute charts. A brief review of the applications of control chart-
ing to data quality outcomes suggests many opportunities for re-
searchers to improve upon the methods used in these scenarios.

The earliest use of control charts for monitoring data qual-
ity that we could locate dates back to the 1940 census when
Deming and Geoffrey (1941) recommended using p-charts for
monitoring clerical accuracy in data entry with punch cards.
Neter (1952) reviewed the literature on the use of statistical
methods applied to monitoring and controlling clerical accu-
racy in auditing and data entry applications. Examples in Neter
(1952) included Bell System companies’ use of continuous in-
spection techniques for posting entries of workers’ time reports,
Standard Register Company’s control of accuracy of sales in-
voices, and United Airline’s use of control charts to monitor
accuracy of plane reservations.

More recent applications of Shewhart control charts to data
quality are included in the work of Redman (1992, 1996,
2001, 2008) that recommended using p-charts to monitor the
proportion of inaccurate (or accurate) records. Pautke and
Redman (1990) recommended using Shewhart attribute charts
along with a method developed at Bell Labs referred to as track-
ing. This method requires sampling a set of records entering a
data production process and tracking the observations through
the entire process. The accuracy of the data is measured during
and/or at the end of the process, and control charts can be em-
ployed to monitor the accuracy of the records over time. Redman
(1992) notes that one problem with their tracking methodology
is that, unlike a production process, the observations do not
travel through the information system at the same rate; thus, the
sample size at the beginning is likely to be reduced substantially
when observations are made at the end of the data production
process.

Pierchala et al. (2009) published a thorough report on the
use of p-charts and c-charts at the National Highway Traffic
Safety Administration (NHTSA) to monitor the data quality in
the fatality analysis reporting system (FARS). They reported
using as many as 7569 control charts annually to monitor data
quality for the FARS system, and they adjust the limits to ±5σ to
better control for false alarms. Additionally, they do not directly
measure data quality metrics, but measure, for example, the
proportion of vehicle occupants who were not wearing seatbelts.
Signals on the control charts may be due to changes in the
process (e.g., seatbelt law enforcement tactics) or may be due
to data quality problems, and must be investigated by the data
owners. It would be preferred to use more direct measures of data
quality such as the metrics suggested in the next section rather
than process measures that confound actual process changes
with data quality changes.

Shewhart X̄ control charts with time varying limits have been
reportedly used to monitor the quality of temperature readings
at the California Irrigation Management Information System
(CIMS) weather stations (Eching and Snyder 2004). Like the
chart applications in the FARS database, direct measures of
data quality are not used, rather measures of hourly temperature
are taken, and signals outside of the control limits (±2σ ) are
considered indicators of data quality problems.

Sparks and OkuGami (2010) considered the use of CUSUM
and EWMA charts for flagging biased measures in monitor-

ing the consistency of large volumes of data. They made the
distinction between spatial consistency (e.g., similar thickness
measures at several locations on a sheet of metal), temporal con-
sistency (e.g., measures consistent with their one-step-ahead
forecast values), and multivariate consistency (e.g., measures
consistent with related measures, such as rainfall consistent
with temperature and humidity). Sparks and OkuGami (2010)
recommended using EWMA charts for monitoring departures
from temporal consistency, and using CUSUM charts for detect-
ing persistent bias in a measurement device. They also recom-
mended the use of the exponentially weighted moving variance
(EWMV) chart to detect persistent increases in variance of a
measurement device. Lenz and Borowski (2010) developed an
automatic error tracking and correction application based on
Oracle’s Warehouse Builder (Oracle Corporation 2012). Their
method developed a system of rules for defining errors in vari-
ous data quality dimensions and then used ±3σ Shewhart-type
rules to signal potential data quality problems.

In some of the examples presented above, direct measures of
data quality, such as accuracy and consistency, are used in con-
junction with control charts to monitor data quality. In others, in-
direct process measures are monitored with control charts, with
signals to process changes possibly confounded with data qual-
ity problems. Whenever possible, we recommend the use of di-
rect measures of data quality, with the focus on the intrinsic and
contextual measures that are supported through the information
technology (IT) literature and discussed in the previous section.

One practical barrier to the use of control charts with direct
measures of data quality is that the measures are often corre-
lated dichotomous or count variables (see, e.g., Pipino, Lee,
and Wang 2002; Even and Shankaranarayanan 2009; Blake and
Mangiameli 2011). Further, for a given data production pro-
cess, there are often many dimensions and subdimensions of
data quality that must be simultaneously monitored (see, e.g.,
Haug, Arlbjørn, and Pedersen 2009). As noted in the Pierchala
et al. (2009) example above, more than 7500 control charts were
constructed and monitored for just one database. Despite the use
of ±5σ limits, the false alarm rate would be notably high for this
application and there would be little power to detect actual pro-
cess changes. Multivariate control chart methods would help in
this situation, but control charts for mixed attribute data types to
monitor high-dimensional processes are limited or nonexistent
in the literature.

In our own data quality example from the aircraft maintenance
database, we have multiple measures of the intrinsic dimensions
of data quality that can be observed over time. In the next sec-
tion, we discuss how data quality is measured in the aircraft
maintenance example, and discuss an application of a control
chart for monitoring the data quality measures.

5. MEASURING DATA QUALITY: AIRCRAFT
MAINTENANCE

For our example, we retrieved the maintenance history for one
type of jet engine subcomponent (compressor stage-2 disks)
from the aircraft maintenance data management system de-
scribed earlier. Historical records were collected between 2000
and 2009. During this time, the maintenance and record-keeping
procedures had remained unchanged, limiting the likelihood of
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Figure 2. Sample rows of maintenance facility data.

changes in data quality over time occurring due to changes in
maintenance facility procedures. The example dataset contains
data on several hundred individual compressor stage-2 disks.
Each record has 14 separate data properties that describe that
single disk when the record was created. Within each record,
there are multiple data property fields that can be measured with
quality metrics of accuracy, completeness, and consistency. Al-
though the aircraft maintenance database did include data prop-
erties, such as time since engine overhaul, date of manufacture,
and time since subcomponent was new, the database did not con-
tain the date when the actual record was entered into the system.
Thus, we are not able to examine timeliness in this example.
Measures for each of the three extrinsic data quality dimensions
available for this example were guided by the literature and busi-
ness rules were developed by maintenance personnel. All data
properties for each dimension were measured at the field level.

Seven of the 14 data properties for each record were used
to measure accuracy. For the remaining seven data properties,
inaccuracy measures were either redundant or no standard was
available for comparison. Definitions of the data property terms
and details of the measures for the entire dataset can be found in
the supplementary materials. Air Force technicians heuristically
judge the accuracy (or inaccuracy) of a record’s data property
by comparing its value to that of another variable. For example,
for each individual record, the subcomponent’s serial number
field should not contain the same value as the overall engine
serial number field. If the values are equal, a data entry error on
the part of maintenance personnel has occurred, and the field is
considered to be inaccurate. Following established guidelines,
inaccuracy was measured for each data property and defined as

IAij =
{

0 if field is accurate

1 if field is inaccurate,

for i = 1, . . . , 7 fields, within j = 1, . . . , NR part records.
Completeness (or incompleteness) was measured according

to the incompleteness of each of the 14 possible data property
fields in a record. These 14 data properties are detailed in the
supplementary materials. The incompleteness is recorded as

ICij =
{

0 if record is complete

1 if record is incomplete,

for i = 1, . . . ,14 fields and j = 1, . . . , NR part records.
Next, 13 data properties were used to compute measures of

consistency (or inconsistency) for each record. The 13 data prop-
erties and definitions of the inconsistency measures are given
in the supplementary materials. Several maintenance business
rules guided the development of consistency metrics. For exam-
ple, the values for some data properties were deemed consistent
if they contained a value of a certain character length, such as 8

or 10 characters for serial and item numbers, respectively. Other
data record properties, such as the date of the last subcomponent
overhaul (DLOH), were deemed inconsistent if they were not in
a numeric format. In all cases, inconsistency was defined as

ICNij =
{

0 if field is consistent

1 if field is inconsistent,

for i = 1, . . . ,13 fields, within j = 1, . . . , NR part records.
Figure 2 displays a few sample rows of the data collected from
the maintenance facility. Inaccuracies in the SERIAL (SERIAL
should not equal ESN) and TSOH (TSOH should not be greater
than TSNH) data properties are highlighted in bold. Incomplete
fields are observed for the DATE and DLOH properties as in-
dicated by blank fields. The three fields surrounded by a bold
border indicate inconsistent fields (ITEM SER should contain a
10-character value, and SERIAL should contain an 8-character
value).

The data quality measures for the aircraft maintenance
database can be summarized to include 34 dichotomous vari-
ables (7 measures of inaccuracy, 14 measures of incompleteness,
13 measures of inconsistency). In the current dataset, there are
NR = 603 records. The complete data are provided as supple-
mental materials to this article. To establish a baseline, we will
use the first 547 observations, which were recorded prior to
January 1, 2009.

Interestingly, in 20 of the 34 variables, no nonconforming
items in data quality were observed in the baseline sample. In a
high-quality process, where the probability of observing a non-
conforming item is very small, very large baseline samples are
often required in order to observe even a single nonconforming.
Thus, nonconforming items may be possible in the process, but
the baseline sample size is not large enough to observe them.
Some authors have approached the problem of no observed non-
conforming in the baseline sample by suggesting that any sub-
sequent observation of a nonconforming item would constitute
a signal to an out-of-control event (see, e.g., Yang et al. 2002;
Chakraborti and Human 2006). Recently, Zhang et al. (2012)
suggested a Bayes estimator for the proportion nonconforming
when all items in the baseline sample are conforming. Using a
beta prior, the Bayes estimator is given by

p̂0B = N + a

m + a + b
,

where there are N nonconforming items observed in a sample
of m items, and a and b represent prior numbers of observations
that are nonconforming and conforming, respectively. Zhang
et al. (2012) studied different values for a and b with respect to
univariate geometric control charts using estimated parameters.
They suggested using a = 1 and b = 999 (1 prior nonconforming
observation out of 1000) because these parameter values resulted
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Table 2. Estimated proportion nonconforming from the baselines
sample of size m = 547 from the aircraft maintenance database.

Values indicated with a asterisks are maximum likelihood estimates.
All other values are Bayes estimates using the method suggested by

Zhang et al. (2012)

Variable p̂0

Inaccuracy IA 1 0.0006
IA 2 0.3272∗

IA 3 0.1818∗

IA 4 0.4790∗

IA 5 0.1993∗

IA 6 0.2834∗

IA 7 0.4662∗

Incompleteness IC 1 0.0006
IC 2 0.0006
IC 3 0.0006
IC 4 0.0006
IC 5 0.0006
IC 6 0.0006
IC 7 0.0006
IC 8 0.0006
IC 9 0.0006
IC 10 0.2687∗

IC 11 0.1042∗

IC 12 0.0018∗

IC 13 0.0006
IC 14 0.0006

Inconsistency ICN 1 0.0018∗

ICN 2 0.0006
ICN 3 0.0006
ICN 4 0.0006
ICN 5 0.3272∗

ICN 6 0.0006
ICN 7 0.0006
ICN 8 0.0006
ICN 9 0.0006
ICN 10 0.2687∗

ICN 11 0.1042∗

ICN 12 0.0018∗

ICN 13 0.0006

in more consistent control chart performance when the observed
proportion defective was less than the true proportion defective.

Because we observed no nonconforming items in 20 of the
variables, we use the recommended values of a = 1 and b =
999 with the Bayes estimator of Zhang et al. (2012) to estimate
the proportion nonconforming in these 20 variables. We use the
maximum likelihood estimator (N

m
) to estimate the proportion

nonconforming in the remaining 14 variables. The estimates of
the proportion nonconforming are given in Table 2, with aster-
isks indicating those computed using the maximum likelihood
estimator. Close inspection shows that in many of the data qual-
ity variables, nonconforming items are estimated to occur very
rarely. However, in some cases, the proportion of nonconform-
ing fields is alarmingly high.

In order to assess the degree of correlation among the vari-
ables in our example, we computed the mean square contingency
coefficients between the variables. The mean square contin-
gency coefficient (also known as the phi coefficient) is a special
case of Pearson’s correlation coefficient for dichotomous vari-

ables (Cohen et al. 2003, pp. 30–31), and can be computed from
a 2 × 2 table as follows

X2 = 0 X2 = 1
X1 = 0 A B A+B
X1 = 1 C D C+D

A+C B+D

φ = AD − BC√
(A + B)(C + D)(A + C)(B + D)

.

The coefficient, φ, has a similar interpretation to Pearson’s
correlation coefficient, with high positive values indicating
agreement (many incidents of X1 = X2 = 0, or X1 = X2 =
1), and low negative values indicating disagreement (many in-
cidents of X1 = 0 and X2 = 1, or X1 = 1 and X2 = 0). The
φ coefficient does not exist in cases in which no nonconforming
items are observed in a sample; thus, Table 3 gives the mean
square contingency coefficients for 14 of the 34 variables. It
is noteworthy that several pairs of variables are perfectly cor-
related. For example, for cases in which an inaccurate (or ac-
curate) value is observed in field two (IA 2), an inconsistent
(or consistent) value is also observed in field 5 (ICN 5). The
variable IA 2 corresponds to an inaccurate item serial number,
and ICN 5 corresponds to an inconsistent end item serial num-
ber. One possibility is that this collinearity is artificially created
by the rules-based measurement system. However, further in-
vestigation into the rules showed that the variables are, indeed,
measuring different aspects of the data quality, yet inaccurate
item serial numbers and inconsistent serial numbers tend to oc-
cur simultaneously in this process. For both IA 2 and ICN 5,
33% of the observed fields were nonconforming in the baseline
sample, indicating a high potential for improvement in the data
quality regarding item serial numbers. Similar collinearity was
observed between IC 10 and ICN11, IC 11 and ICN 12, as well
as IC12 and ICN 13. For other variables, the mean square con-
tingency coefficients ranged from near zero to as high as 0.96
in absolute value.

6. MONITORING DATA QUALITY: AIRCRAFT
MAINTENANCE

The aircraft maintenance data example contains 34 dichoto-
mous variables, 20 of which presented no nonconforming items
in the baseline sample of size m = 547. Further inspection
of Table 3 reveals perfect associations between four pairs of
the variables in which nonconforming items were observed,
with other pairs of variables ranging from nominally to sig-
nificantly related. The first step to establishing a monitoring
scheme for this process is to search the literature for methods
that may be directly applicable to this process. Thus, we be-
gin with an overview of existing methods that might apply to
this specific aircraft maintenance data quality example. First
we discuss methods for establishing a baseline, in-control refer-
ence sample. This is followed with a discussion of prospective
monitoring tools that might apply to this process. Although our
review of the literature reveals that there are few directly appli-
cable control chart methods that can be readily applied to our
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Table 3. Mean square contingency coefficients from the baseline sample of n = 547 observations from the aircraft maintenance database. The
mean square contingency coefficients are measures of association for dichotomous variables (Cohen et al. 2003, pp. 30–31). Bold font indicates

absolute coefficients greater than 0.80, italics indicate absolute coefficients in the range of [0.40, 0.80)

IA 2 IA 3 IA 4 IA 5 IA 6 IA 7 IC 10 IC 11 IC 12 ICN 1 ICN 5 ICN 11 ICN 12 ICN 13

IA 2 1.00
IA 3 −0.06 1.00
IA 4 −0.13 −0.12 1.00
IA 5 0.18 −0.08 −0.40 1.00
IA 6 0.05 −0.26 0.08 0.01 1.00
IA 7 0.10 0.06 −0.21 0.09 0.67 1.00
IC 10 0.04 −0.28 0.09 0.00 0.96 0.65 1.00
IC 11 0.07 0.46 −0.33 −0.04 −0.13 0.36 −0.13 1.00
IC 12 0.06 0.09 −0.04 0.09 0.07 0.05 −0.03 −0.01 1.00
ICN 1 −0.03 −0.02 0.04 −0.02 −0.03 −0.04 −0.03 −0.01 0.00 1.00
ICN 5 1.00 −0.06 −0.13 0.18 0.05 0.10 0.04 0.07 0.06 −0.03 1.00
ICN 11 0.04 −0.28 0.09 0.00 0.96 0.65 1.00 −0.13 −0.03 −0.03 0.04 1.00
ICN 12 0.07 0.46 −0.33 −0.04 −0.13 0.36 −0.13 1.00 −0.01 −0.01 0.07 −0.13 1.00
ICN 13 0.06 0.09 −0.04 0.09 0.07 0.05 −0.03 −0.01 1.00 0.00 0.06 −0.03 −0.01 1.00

aircraft maintenance data quality example, we close the section
with an example analysis of the aircraft maintenance data. This
discussion highlights many opportunities for research pertaining
to control chart use in monitoring and improving data quality.

6.1 Phase I Analysis

In Phase I, a reference sample is retrospectively studied to
identify the in-control state of the process and to estimate the
process parameters. In Phase II, the process is prospectively
monitored for departures from the in-control state. Ideally, we
should consider a Phase I analysis to establish the in-control
state of the process and to estimate the process parameters.
Then we use the results of this Phase I analysis to establish an
appropriate monitoring scheme for our process variables. Nu-
merous researchers have studied the retrospective use of control
charts and shown that control charts designed for Phase II moni-
toring perform poorly when used retrospectively (see, e.g., Yang
and Hillier (1970), Borror and Champ (2001), Nedumaran and
Pignatiello (2005), and Jones-Farmer, Jordan, and Champ
(2009)). Thus, it is necessary to consider methods developed
specifically for use in Phase I.

We found no Phase I method for analyzing multivariate at-
tribute data. In fact, we found only very sparse information for
conducting a Phase I analysis with univariate attribute data.
Borror and Champ (2001) studied the Phase I use of univariate
p-charts, and showed that they did not work well, with false
alarms occurring with near certainty for reference samples of
size m = 500. In their study of univariate geometric control
charts with estimated parameters, Zhang et al. (2012) noted
that very large in-control sample sizes are needed to accurately
estimate the process parameters. There is a clear need in the lit-
erature for more research on Phase I methods for both univariate
and multivariate attribute processes.

In another stream of literature, several authors have investi-
gated the use of both model-based and model-free clustering
methods for either conducting a retrospective Phase I analysis
or establishing a prospective (Phase II) monitoring scheme, or
both. Although none of the clustering methods fit the aircraft

maintenance data quality scenario we describe here, the phi-
losophy behind the approaches may be useful for motivating
research in multivariate Phase I methods.

Thissen et al. (2005) used Gaussian mixture models to es-
tablish an in-control reference sample. Mixture modeling is a
model-based clustering method that can be used alone or in con-
junction with regression models where the distribution of the in-
dependent variables is considered a mixture of two or more dis-
tributions that may differ in location, scale, correlation structure,
or all three. For more details on mixture modeling, the interested
reader is referred to McLachlan and Peel (2000), or Fraley and
Raftery (2002). Although the model-based control chart method
used by Thissen et al. (2005) is developed for continuous multi-
variate distributions, it is possible that a similar framework could
be developed for multivariate discrete or attribute distributions.
For example, Muthén, du Toit, and Spisic (1997) showed that
mixture modeling could be generalized using weighted least
squares to include binary, ordered, and continuous outcomes.
Another possible research opportunity is to investigate the use
of mixture modeling for Phase I analysis of processes measured
by continuous variables, discrete variables, or a mixture of vari-
ables of different types. Noteworthy limitations to this approach
should be considered, including the possible requirements of
impractically large sample sizes, and/or the possible identifica-
tion of a set of discontinuous in-control baseline samples.

Some model-free clustering methods have been applied to
quality control scenarios, adaptations of which may be useful
in the data quality framework. Sullivan (2002) introduced a
clustering method to detect multiple outliers in a univariate con-
tinuous process. More recently, Zhang et al. (2010) introduced
a univariate clustering-based method for finding an in-control
reference sample from a long historical stream of univariate con-
tinuous data. Jobe and Pokojovy (2009) introduced a computer
intensive multi-step clustering method for retrospective outlier
detection in multivariate processes. Although model-free clus-
tering methods have been used for some univariate and multi-
variate Phase I applications, there remain many opportunities
for research in this area. In particular, there is a need to investi-
gate the practicality of model-free clustering methods for Phase
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APPLYING CONTROL CHART METHODS TO ENHANCE DATA QUALITY 37

I analysis of univariate and multivariate attribute processes, as
well as multivariate processes with mixed data types. There are
many opportunities to investigate the strengths and limitations
of these methods, including sample size and the appropriateness
of the methods in terms of correctly identifying a meaningful
in-control baseline sample.

6.2 Phase II Analysis

Although the Phase II multivariate control chart literature is
significantly more developed than that of the Phase I multivariate
control chart literature, we found few methods that were directly
applicable to our example data. Here we consider the most
relevant of the existing methods for monitoring multivariate
attribute process, and highlight more opportunities for research
in this important area.

Topalidou and Psarakis (2009) conducted an extensive litera-
ture review on multinomial and multiattribute control charts,
most of which are applicable for Phase II monitoring. An
early contributor in this area is Patel (1973) who suggested
a Shewhart-type chart for monitoring multivariate binomial or
Poisson processes using an approach similar to Hotelling’s T2.
One common monitoring approach when there are multiple
types of defects in a product is the demerit chart in which
a weighted sum of the defect counts is monitored (see, e.g.,
Montgomery 2013, pp. 30–31; or Jones, Woodall, and Conerly
1999). Lu et al. (1998) considered the design of an np-chart for
multiple attributes based on a weighted sum of nonconforming
units from multiple binomial variables, similar to the demerit
charts. Demerit-like methods, which give heavier weights to
more severe defects, are not desirable to use in this example
because the establishment of the weights is arbitrary, and would
be difficult to apply in the data quality scenario. It would be
difficult to determine the severity of defects of a certain type
(e.g.,, incomplete vs. inaccurate fields).

Other approaches to monitoring multiple attributes include
use of chi-square-based charts for contingency-type analyses
when several categories are possible including Duncan (1950),
Marcucci (1985), and Nelson (1987). More recently, Ryan,
Wells, and Woodall (2011) noted that a limitation of the tradi-
tional chi-square charting approach is that one must accumulate
the observations into subgroups, delaying the time until a signal
is observed when a quality problem is present. They proposed
a multinomial chart which is an extension of Reynolds and
Stoumbos’ (1999) CUSUM chart for continuous inspection of a
Bernoulli process. Ryan, Wells, and Woodall (2011) show that
their method is preferred to using multiple Bernoulli CUSUM
charts when the process shift is in the direction for which the
chart is designed and recommended using multiple Bernoulli
CUSUM charts when the shift direction could not be speci-
fied. Most of these multinomial-type charts have been studied
on relatively small-dimensional problems; for example, Ryan,
Wells, and Woodall (2011) considered up to four dimensions,
noting that future research should study the applicability of their
method in higher dimensions.

Recently, Li, Tsung, and Zou (2012) proposed the use of log-
linear models in conjunction with an exponentially weighted
moving average (EWMA) monitoring scheme for prospective
control chart monitoring. Their method is strictly applicable to

prospective monitoring, and, requires a large in-control refer-
ence sample to establish the monitoring scheme. Although Li,
Tsung, and Zou’s (2012) log-linear model-based chart fills an
important niche in multivariate control charts for categorical
data, it is similar to the traditional multinomial charts in that
large subgroups of observations must be accumulated prior to
plotting a point on the chart, delaying the time until a signal to
a problem can be observed. Additionally, Li, Tsung, and Zou
(2012) developed and illustrated their method on a scenario
with a relatively small dimension (p = 3) compared to our data
quality example scenario (p = 34). An important area for future
research is to investigate the scalability of the existing Phase II
control charts for multiple attribute processes in higher dimen-
sions (>4). In particular, it would be useful to make comparison
of the statistical performance, practicality, and interpretability of
the multivariate attribute methods to the use of multiple univari-
ate charts, giving recommended approaches for practitioners.

Another stream of SPC methodology that may present op-
portunities for use in data quality monitoring are the techniques
based on supervised learning (see, e.g., Cook and Chiu 1998;
Chinnam 2002; Sun and Tsung 2003; Hwang, Runger, and Tuv
2007; Deng, Runger, and Tuv 2012). Several of these meth-
ods can be used with mixed data types and data measured us-
ing different measurement scales. Usually, an artificial dataset
is generated to represent out-of-control data, which is used to
train a classifier; thus converting the monitoring problem to a
classification problem. Recently, Deng, Runger, and Tuv (2012)
introduced a supervised learning approach based on continual
updates of the classifier with real-time data. Their method is ap-
propriate for use with multidimensional data of mixed types and
may be applicable to very large data environments with rapidly
occurring data. There is an opportunity to investigate the SPC
methods based on supervised learning in terms of applicability
for Phase I and Phase II use for high-dimensional multivariate
process with attribute measures.

6.3 Example Analysis

We have highlighted a growing literature on multivariate tech-
niques for attributes processes; however, all would require sub-
stantial adaptations and further study to be applicable to a sce-
nario like the one presented with the aircraft maintenance data.
We will make the assumption that the first m = 547 observations
were gathered under conditions of process stability, although we
admit that this assumption is untested with a Phase I study. Fur-
ther, despite the multivariate nature of the process, because we
have no prespecified shift direction, we will follow the recom-
mendation of Ryan, Wells, and Woodall (2011) and construct
multiple Bernoulli CUSUM charts to monitor the process. For
details on constructing Bernoulli CUSUM charts, see Reynolds
and Stoumbos (1999). Because the data are not gathered in
subgroups, a continuous monitoring scheme for Bernoulli ob-
servations is appropriate, although our analysis is limited to
the use of multiple univariate charts in place of a multivariate
monitoring method.

Figure 3 shows Bernoulli CUSUM charts for the incomplete-
ness measures for 3 of the 14 fields measured. The charts for
the variables, IC 10, IC 11, and IC 12, represent the respective
completeness of the date field, the field containing DLOH, and
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Figure 3. Bernoulli CUSUM charts for three of the measures of
incompleteness in the Air Force maintenance database example. Note
that, unlike more conventional CUSUM charts, the definition of the
CUSUM statistic in Reynolds and Stoumbos (1999) does not immedi-
ately reset to zero, thus negative values are possible.

the time since the part was new in hours (TSNH). Each CUSUM
was constructed according to the guidelines given in Reynolds
and Stoumbos (1999) and was designed for an average number
of observations to signal (ANOS) of 500. The initial estimates
of the proportion nonconforming were obtained from the ref-

erence sample of size m = 547, and these values are given in
Table 2. While there are 34 similar charts to fully address all
variables in the example, we selected the incompleteness dimen-
sions on these fields to illustrate the charts on variables with a
very high proportion of nonconforming, a medium proportion
nonconforming, and a very low proportion nonconforming.

For the date field, the Bernoulli CUSUM was tuned to detect
a shift from p0 = 0.27 to p1 = 0.30. The process remains in-
control for observations 548 through 603. For the DLOH field,
the charts were tuned to detect a shift from p0 = 0.10 to p1 =
0.14. The chart signaled an out of control event at observation
570. Investigation into the process indicated that maintenance
personnel had deviated from established guidelines regarding
the entry of Julian dates representing the “Last Overhaul Date”
of the engine subcomponent. Corrective action was taken and
the CUSUM was reset following observation 572. The process
remained in-control for the rest of the observation period. The
CUSUM chart for TSNH was tuned to detect a shift from p0 =
0.0018 to p1 = 0.0036. The chart is uninteresting because all
fields were conforming during observation period. This is not
unusual, given the lack of nonconforming items in the reference
sample, and the very low estimated proportion nonconforming.

7. CONCLUDING REMARKS

We have presented a unified review of the relevant literature
on data quality from the perspective of process improvement.
This review includes literature from the IT field that frames data
production as a process and suggests measures of data quality.
Although some differences exist between data production and
the production of, say, an automobile, we found some similari-
ties in the way in which the end product may be measured and
monitored.

We included a review of SPC monitoring methods that have
been applied to the data quality problem in the literature. We
discussed the challenges of measuring data quality and gave
examples of how we measured data quality in the framework
of a real aircraft maintenance database example. We then ex-
plored the literature, seeking methods that might be applicable
for defining an in-control reference sample and establishing a
monitoring scheme for our example. This led us to many gaps
in the literature that provide opportunities for future research in
control chart methods.

Many of these open questions are highlighted in Section 6,
and include studies of both Phase I and Phase II methods for
multivariate attribute processes. As control charts are used to
monitor data quality, we anticipate many more interesting re-
search questions to arise from practice. For example, when a
signal is given suggesting a decrease in incompleteness, this
might suggest a process improvement. It might also be “too
good to be true,” suggesting that data are being falsified. Will
the control charts methods be useful in distinguishing true sig-
nals from falsified data?

For the purposes of our example, we considered the quality
of the data for a single subcomponent. We admit that this is
an oversimplification that we used in order to make the prob-
lem reasonably straightforward for discussion, and note that
even with this oversimplification we found no existing statis-
tical methods that could be readily applied to our problem. In
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APPLYING CONTROL CHART METHODS TO ENHANCE DATA QUALITY 39

addition, when considering the quality of the data in an entire
database, one might find a natural hierarchical structure to the
data. Here, subcomponents are nested within engines and parts
are nested within subcomponents. It is possible that the data, and
possibly the data quality, may correlate due to this or some other
hierarchical structure. We suspect that some maintenance and
transactional databases may follow a similar hierarchical struc-
ture. Thus, future research should consider appropriate ways
to model the quality of data in a hierarchical structure and to
monitor for continuous data quality improvement.

Finally, the scalability of the methods to large databases will
certainly bring new opportunities for research concerning meth-
ods for automating the measurement of the quality dimensions,
acceptable rates of false signals, and signal interpretation. Al-
though the dataset used in our example provided us with an
opportunity to clearly demonstrate the use of control charts for
monitoring data quality, the smaller size of the example dataset
might be seen as a limitation to the scope of these methods. As
more data are acquired and stored, the scope of the data qual-
ity problem will likely increase and new monitoring procedures
will need to be developed, but the principles described herein
remain.

We hope that the new way of thinking about the data quality
problem that we present in this paper will encourage collabo-
ration between SPC and IT experts to further develop tangible
solutions. As this article attests, examining this problem re-
quires expertise in both areas: the IT expert provides insight
into how data are collected, stored, processed, and retrieved,
and the SPC expert plays an integral role in understanding the
latest statistical techniques and procedures to measure, monitor,
and control these processes. Working together, relevant samples
can be extracted at the right place and time and meaningful
process improvement efforts may emerge.

SUPPLEMENTARY MATERIALS

Technical details and dataset: An Excel spreadsheet file con-
tains (1) a legend explaining the abbreviations used for each
of the 14 data properties considered in the aircraft maintenance
example, (2) details on how each of the 34 data quality measures
were generated from the database, and (3) data quality measures
for 603 records from the aircraft maintenance database.
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