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Diabetes, coronary artery disease, and adult period-

ontitis are common chronic diseases observed in a

significant proportion of the adult US population.

Diabetes is a metabolic disease that, due to dis-

turbances in insulin production, leads to abnormal

fat, sugar, and protein metabolism and resultant

hyperglycemia that can ultimately induce diverse

multiple systems pathologies (164). This disease

affects approximately 18 million individuals with an

increase of approximately 1.3 million new cases a

year in people aged 20 years and older (106). Global

estimates by Zimmet & McCarty (173) predicted 216

million diagnosed cases of Type 2 diabetes by 2010.

The American Diabetes Association reports a direct

medical cost in 2002 of $92 billion, with combined

direct and indirect expenditures (disability, work loss,

premature mortality) attributable to diabetes esti-

mated at $132 billion (4, 59).

Overall, these cost figures underscore the enor-

mous economic impact related to the treatment and

control of diabetes in this country. In addition to a

monetary burden, diabetes patients are also at

increased risk of premature death related to vascular

disease manifested as coronary heart disease,

cerebrovascular accidents, and peripheral vascular

disease (5, 108). The magnitude of the need for

additional research initiatives and clinical interven-

tions for diabetes is very apparent with expenditures

climbing higher and higher and no cure available.

There are a number of chronic disease processes

associated with the development of long-term

hyperglycemia, with cardiovascular diseases and

periodontal infection among the most common.

According to WHO estimates, cardiovascular diseases

are responsible for 16.6 million deaths around the

world (67). Of these diseases, coronary artery disease

caused 7.1 million deaths. In addition, cardiovascular

disease is the leading cause of diabetes-related

deaths, diabetes resulting in a 2–4 times greater risk

of developing cardiovascular disease (76, 171).

Like coronary heart disease, periodontitis is also

exacerbated by the diabetic state, which leads to

more severe and rapid disease progression (153).

Periodontitis is an infection caused predominately by

gram-negative organisms in the plaque biofilm that

affects 7–15% of the adult population (115). Perio-

dontal research over the last 30–40 years has been

instrumental in providing an insight into the impact

of severe periodontitis on systemic health. Although

bacteria must be present for periodontal disease to

occur, a susceptible host is also required. The im-

mune response that develops in the gingival and

periodontal tissues in response to the chronic pres-

ence of plaque bacteria results in the destruction of

structural components of the periodontium, leading,

ultimately, to the clinical signs of periodontitis (118).

The host response is determined primarily by genetic,

environmental, and acquired factors. The host re-

sponse is essentially protective in nature. However, a

hyper-responsive inflammatory trait associated with

an impaired host immune response could result in

enhanced tissue destruction.

An abnormal inflammatory response, which has

been referred to as a hyper-inflammatory trait (114,

133), has been linked to diabetes, where there is an

increased susceptibility to infections, such as perio-

dontal disease, and also to cardiovascular disease,

which is more inflammatory in nature. The
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�hyper-inflammatory trait� is associated with an

exaggerated secretion of innate inflammatory medi-

ators and systemic markers of inflammation. It is

suggested that this process mechanistically contri-

butes to the pathology associated with these chronic

disease processes. Traditionally, diabetic complica-

tions have been attributed to the hyperglycemic state,

which over time results in the irreversible covalent

modification (glycosylation) of structural proteins

and lipids that make up the extracellular matrix and

connective tissues, as well as the vascular tissues

(18, 62, 151). These structural changes result in

impaired capillary function, poor blood perfusion of

tissues and organs, and the release of reactive oxygen

species (oxidative stress), triggering a systemic

inflammatory process. The activation of inflamma-

tion at a systemic level results in chronic elevation of

inflammatory mediators and acute phase reactants

such as C-reactive protein, elevated fibrinogen, and

lowered albumin – all hallmarks of the acute phase

reaction observed in diabetes, coronary heart disease,

and periodontitis (9, 58, 125, 139, 145). Thus a hyper-

inflammatory trait may predispose an individual to

more severe systemic disease as a result of over-

expression of inflammatory mediators and may ulti-

mately lead to metabolic dysregulation in the person

who has diabetes or who are at risk for developing the

disease.

Acute infection is a metabolic stressor, resulting in

an increased demand for insulin, glucose, and lipids

(28, 41, 70). Infection results in the systemic chal-

lenge of pyrogenic cytokines such as interleukin (IL)-

1b, tumor necrosis factor-a and IL-6, which block

lipoprotein lipase activity, leading to decreased

transportation of blood lipids from the circulation

into the cells (16, 36, 50, 54, 141). This elicits

hyperlipemia, reflected clinically as an increase in

low-density lipoprotein and total cholesterol (37).

Tumor necrosis factor-a and IL-1b promote glyco-

genolysis and impaired glucose uptake by cells in the

periphery, presumably by an effect on glucose

transport receptor expression, leading to hypergly-

cemia (26, 38, 45, 50, 130, 148). These cytokines also

induce insulin resistance by inhibiting the insulin

receptor tyrosine kinase and other signaling proteins

(16, 97, 117, 165), further increasing the physiological

demand for insulin secretion. Clinically, this insulin

resistance manifests as elevations in fasting and

postprandial serum insulin, increased C-peptide (the

N-terminus pro-peptide region of the insulin mole-

cule that accumulates when excess insulin is syn-

thesized and released), and impaired glucose

tolerance. Therefore, an infectious challenge can

induce a metabolic diabetic state, which, if the

infection is ephemeral, is generally considered

reversible. However, it is not known what metabolic

changes occur when this process is not acute, but

chronic and asymptomatic in nature. Since coronary

heart disease and periodontitis both possess inflam-

matory components that result in the production of a

similar cytokine profile, these chronic disease pro-

cesses could serve as a stimulus to a systemic-based

inflammatory response that may represent a previ-

ously underestimated metabolic stressor in diabetic

patients, enhancing insulin resistance and impairing

insulin secretion and leading to increased morbidity

associated with diabetic complications. Further, the

inflammatory component provides an important

linkage of diabetic metabolic dysregulation, perio-

dontal disease severity, and the development of cor-

onary heart disease. In this review, we propose an

overall hypothetical working model that is illustrated

in Fig. 1. This model suggests a connection between

the complex association of diabetes, coronary heart

disease, and periodontal disease. The inflammatory

component provides an important linkage of diabetic

metabolic dysregulation, periodontal disease severity,

and development of coronary heart disease. This

model depicts interactions between chronic oral

and systemic infectious ⁄ inflammatory processes. A

clearer understanding of these interactions should

lead to the development of better primary prevention

strategies to reduce possible comorbidities that have

been identified with cardiovascular events and perio-

dontitis, and provide better glycemic control in

individuals with diabetes.

Effects of hyperglycemia

Metabolic dysregulation in diabetes as a result of

prolonged exposure to chronic levels of glucose can

lead to the glycosylation of long-lived proteins and

lipids found in the blood and in the tissues. These

glycosylation products, referred to as advanced gly-

cosylation endproducts (AGEs), have been implicated

as a primary causal factor in the development of

complications associated with diabetes and cardio-

vascular disease in individuals with diabetes

(17, 116). AGEs were identified in 1912 by Louis

Mallard, who reported that this reaction of reducing

sugars with amino acids led to development of a

yellow-brown color and the formation of CO2

(27, 66). Decades later, scientists have hypothesized

that nonenzymatic glycosylation of proteins and

lipids may explain many of the sequelae of diabetes,
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such as vascular lesions, neuropathy, and impaired

immunologic function, and that circulating levels of

certain AGEs are also useful in monitoring glycemic

control. The chronic hyperglycemia state promotes

glycosylation of hemoglobin to form the A1c product.

The measure of glycosylated hemoglobin A1c has

been a reliable measure of glycemic control at 3-

month intervals. However, compared to tissue matrix

AGEs with slower turnover rates, the half-life of

glycosylated hemoglobin A1c is relatively short. AGEs

are a heterogeneous class of structures irreversible in

nature, which are characterized by their yellow-

brown color, fluoresce, have a propensity to form

cross-links, and interact with cellular receptors (18,

20). During normal states of metabolism, early

reversible intermediates of AGEs, called Amadori

products, are formed; with time and ⁄ or abnormal

glucose metabolism, these products become irre-

versible (98). Subsequently, there is an increase in

AGE deposition in matrix tissues as well as an in-

crease in the number of receptors for AGEs on these

tissues and on target cells (27, 107). Receptors for

AGEs (RAGEs) have also been identified and charac-

terized in the literature (15, 137). RAGE is a multi-

ligand receptor that propagates cellular dysfunction

in several inflammatory disorders, in tumors, and in

diabetes. RAGE is expressed at low levels in normal

tissues, but becomes up-regulated at sites where its

ligands accumulate. RAGE may play a dual role in the

inflammatory response:

• interaction of RAGE on leukocytes or endothelial

cells with its ligands results in cellular activation

involving the transcription factor nuclear factor jB;

• RAGE on endothelial cells may also function as

an adhesive receptor that directly interacts with

leukocyte b2-integrins, and are thereby directly

involved in inflammatory cell recruitment (22).

Data available on AGEs and diabetic complications

suggests three general mechanisms of action: alter-

ation of signal transduction pathways involving lig-

ands on extracellular matrix, alteration of the levels of

cytokines, hormones, and free radicals through

interaction with RAGEs, and intracellular glycation of

proteins and nucleic acids that directly alters protein

function (160). The binding of AGEs to monocyte

receptors has been shown by investigators to induce

production of IL-1, insulin-like growth factor-1,

tumor necrosis factor-a, and platelet-derived growth

factor (30, 138). It has been documented that the

interaction of AGEs with their receptors has a

potentially important role in altering cellular function

via binding to cultured endothelial cells and mono-

nuclear phagocytes (87, 124, 161). Thus, the binding

of AGEs to macrophages and other cell types contri-

butes greatly to increased cytokine production, which

can lead to vascular damage such as atherosclerosis

or coronary heart disease, and a more severe and

progressive form of periodontal disease (77).

Although the accumulation of AGEs and monocyte

hypersecretion provide a plausible explanation for

enhanced periodontitis severity in this high risk

group, several alternative hypotheses have been

proposed involving other mechanisms that could

explain the periodontal disease susceptibility in

patients with diabetes. These include abnormality in

neutrophil chemotaxis, chronic bacterial infection
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with lipopolysaccharide up-regulation of monocytes,

abnormalities of T-cell activation via the Th1

response, and genetic alteration of the HLA-DR

region (3, 7, 24, 32, 109). The role of these mecha-

nisms is still not well delineated and may be partic-

ularly involved in the exacerbation of periodontal

disease in the patient with diabetes. Some of these

alternate mechanisms may also induce a monocytic

hyper-responsiveness. However, the chronic hyper-

glycemic state (AGEs), systemic exposure to inflam-

matory molecules as a result of oral infection, and the

cumulative role of these factors are the most plaus-

ible mechanism linking the presence of chronic

periodontal infection with diabetic coronary heart

disease and glycemic control. S100A12, also called

EN-RAGE (extracellular newly identified receptor for

AGE-binding protein) or calcium-binding protein in

amniotic fluid-1, is also a ligand for RAGE (95). It has

been shown that S100A12 induces adhesion mole-

cules such as vascular cell adhesion molecule-1 and

intercellular adhesion molecule-1 in the vascular

endothelial cell and mediates migration and activa-

tion of monocytes ⁄ macrophages through RAGE

binding. Furthermore, infusion of lipopolysaccharide

into mice causes time-dependent increase of

S100A12 in the plasma (55, 72). Results from that

study suggest that plasma S100A12 protein levels are

regulated by factors related to subclinical inflamma-

tion and glucose control in patients with type 2 dia-

betes.

Recent studies have also identified potential ther-

apies that may be effective in lowering RAGE

expression in human endothelial cells, thus reducing

cardiovascular complications associated with diabe-

tes. Marx and colleagues (90) demonstrated that thi-

azolidinediones, antidiabetic agents used clinically to

treat patients with Type 2 diabetes, can modulate

endothelial RAGE expression, limiting the cells’ sus-

ceptibility to the proinflammatory effects of AGEs.

These data provide new information on therapies

that may be beneficial against complications associ-

ated with diabetes such as coronary heart disease and

potential periodontal disease in the patient with

diabetes. In addition, the metabolic effects of these

drugs could modulate the development of vascular

dysfunction in diabetic patients (90). Other therapies

under investigation include cross-link breakers, or

AGE breakers, that react with and cleave the covalent

AGE-derived protein cross-links. A study by Wolf-

fenbuttel et al. (166) showed that treatment of rats

with streptozotocin-induced diabetes with the AGE-

breaker ALT-711 for 1–3 weeks reversed the diabetes-

induced increase of large artery stiffness as measured

by systemic arterial compliance, aortic impedance,

and carotid artery compliance and distensibility. The

effects of ALT and aminoguanidine have also been

studied in a rat model of periodontitis; the results

showed a reduction of the inflammatory parameters

measured and demonstrated a protective effect

against tissue damage associated with periodontitis

(29). Future therapies such as ALT and aminoguani-

dine may prove useful in reducing complications

such as coronary heart disease and periodontitis that

are associated with diabetes.

Diabetes and periodontal disease

Historically, diabetic patients have been shown to be

at increased risk for infections (73, 79, 86). Past and

present studies have reported periodontal disease to

be one of the most prevalent complications of dia-

betes (52, 61, 88, 94). The classic presentation of

periodontal progression has been associated with

accumulation of plaque and calculus on the tooth

surfaces and potent virulence factors produced by

bacteria, causing destruction of periodontal tissues

and resorption of alveolar bone (83, 146). Studies

demonstrating the relationship between diabetes and

the association of microbial organisms for the pre-

valence and severity of periodontal disease have

shown that the flora associated with diabetes does

not appear to differ from non diabetic flora (68, 172).

Comprehensive evaluation of the literature indicates

that diabetes carries a two to three times higher risk

for both severe periodontitis and the incidence of

periodontal disease progression (152).

Over the past decade, research targeting perio-

dontal diseases has focused on the host immune

response that is triggered by bacteria found in perio-

dontal lesions (69, 143). Components of bacteria,

such as lipopolysaccharide found in their cell mem-

branes, have been shown to be potent stimulators of

cellular secretion of a variety of cytokines and growth

factors via Toll-like receptor-mediated response

(44, 135) Lipopolysaccharide binds to the Toll-like

receptor 4 (113, 119). Downstream signaling from this

interaction involves MyD88, IL-1 receptor associated

kinase, and tumor necrosis factor receptor associated

factor 6, which activates the IjB kinase complex (103,

163). The activation of the Toll-like receptor by bac-

terial products leads to the production of innate

inflammatory cytokine responses, ultimately contri-

buting to tissue damage and destruction.

In addition to virulence factors that activate the

Toll-like receptor, inflammatory mediators of the
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immune response appear to play an important role in

the local tissue destruction observed in periodontal

disease (151). Cytokines most often associated with

tissue destruction following stimulation of macro-

phages include IL-1b, IL-6, tumor necrosis factor-a,
and the lipid mediator prostaglandin E2. These

mediators are very potent in inducing major altera-

tions in the connective or extracellular matrix tissues.

Thus, the enhanced secretion of these mediators of

destruction, as seen in peripheral blood monocytes

isolated from diabetics, may provide one possible

mechanism for increased periodontal tissue

destruction seen in these patients. In diabetics, an

abnormal inflammatory response to lipopolysaccha-

ride challenge has been shown to preset monocytes,

resulting in an exaggerated secretion of inflammatory

lipid mediators such as prostaglandin E2 and the

cytokines IL-1b and tumor necrosis factor-a (133,

134, 143). The monocytic hyper-responsive pheno-

type has also been reported to occur in patients with

refractory, early onset, and diabetes-associated perio-

dontal disease and may have a genetic component

(132). The severity of periodontal disease experience

in diabetics might also reflect an alteration in con-

nective tissue metabolism and subsequent impair-

ment of wound healing (35). The diagram in Fig. 2

illustrates a possible linkage between diabetes and

periodontal disease severity. Thus, local periodontal

tissue destruction may be a consequence of an exag-

gerated monocytic inflammatory response induced

by AGE accumulation and may result in increased

secretion of local and systemic mediators, leading to

severe periodontitis.

Potential mechanisms associated
with diabetic periodontal disease
progression

Nuclear factor jB is a protein transcription factor that

is known to initiate the transcription of a variety of

genes such as cytokines, growth factors, adhesion

molecules, and immunoregulatory and acute phase

proteins (13, 47). In addition, nuclear factor jB is

required for maximal transcription of tumor necrosis

factor-a, IL-1, IL-6, and IL-8 genes, which are thought

to be important in mediating acute inflammatory

responses (1, 10, 74). Transcriptional regulation is

important for cytokine production, and transcrip-

tional factors play an important role in regulating

cytokine-mediated inflammation. Nuclear factor jB
is also regulated by a number of reactive oxygen

species. The activation of nuclear factor jB by

Impact of Hyperglycemia on Oral 
Disease Progression

AGE Accumulation
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Fig. 2. Possible linkage between

diabetes and periodontal disease

severity. Thus, local periodontal tis-

sue destruction may be a conse-

quence of an exaggerated monocytic

inflammatory response induced by

AGE accumulation and result in

exaggerated secretion of local and

systemic mediators leading to severe

periodontitis. AGE, advanced glyco-

sylation endproducts; RAGE, recep-

tors for AGEs.
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hydrogen peroxide is cell-specific and distinct from

cytokine activators such as IL-1 and tumor necrosis

factor and is cell- and stimulus-specific, involving

diverse and unexpected targets that may be distinct

from redox modulation (14).

Interestingly, cell surface ligation of RAGE, the

immunoglobulin superfamily cell surface receptor for

AGE, modulates gene expression centrally by trig-

gering a signal transduction cascade that converges

on a nuclear factor jB and involves multiple signaling

pathways, including p21RAS, ERK 1 ⁄ 2 kinases [P44–

P42, P38 and Sin3-associated protein–c-Jun N-ter-

minal (SAP-JNK) kinases], and CDC42–RAC (63, 150,

169). Subsequent to this signaling, a series of phos-

phorylation events takes place. Nuclear factor

jB-associated inhibitory molecules, IjB, retain nuc-

lear factor jB in the cytoplasm (167). Upon phos-

phorylation and ubiquitination of these proteins,

they become degraded by the 26s proteosome, which

enables translocation of nuclear factor jB to the

nucleus. Nuclear factor jB activity is mediated by a

family of transcription factor subunits that bind DNA

as homo- or heterodimers (31). Specific nuclear fac-

tor jB complexes in the monocyte have been iden-

tified as p50 ⁄ p65 (56). In general, the subunits are

identified as p50 ⁄ nuclear factor jB1, p65 ⁄ Rel, c-Rel,
Rel B, and p52 ⁄ nuclear factor jB2. Although various

combinations of these subunits exist within the cell,

classic nuclear factor jB is characterized by the

p50 ⁄ p65 subunits. The p50 and p52 units are derived

from precursor molecules, the p105 and p100,

respectively (12, 131). There are multiple proteins

associated with this group that include IjBa, b, e
(IjBa weak association with p50 and does not stop

nuclear translocation), IjBc ⁄ p105 (serves as an

inhibitor of Rel A), IjBd ⁄ p100, and Bcl-3 (92). These

inhibitors contain ankyrin repeat domains that mask

nuclear factor jB nuclear localization sequences (13).

A variety of stimuli have been shown to activate

nuclear factor jB. These include lipopolysaccharide,

tumor necrosis factor-a, IL-1b, mitogens, viral pro-

teins, ionizing radiation, UV light, some chemical

agents, and AGE (139). Once stimulated, phosphory-

lation, ubiquitination, and degradation of the inhib-

itory units follow, allowing the nuclear localization

signal to be recognized and nuclear factor jB to be

translocated to the nucleus (154).

Of the stimuli that activate gene transcription by

nuclear factor jB, the presence of lipopolysaccharide

and AGE may be very important in mediating severe

periodontal destruction and systemic disease pro-

gression in diabetics. In the case of the Cox-2 gene

(the rate-limiting enzyme for prostaglandin E2),

activated nuclear factor jB is able to bind to one or

both of the consensus sequences located within the

Cox-2 promoter region and initiate mRNA tran-

scription (25). This results in transcriptional up-

regulation of the Cox-2 enzyme with subsequent

arachidonic acid processing and increased prosta-

glandin E2 levels. Elevation of prostaglandin E2 levels

in gingival crevicular fluids has been shown to be

associated with periodontal disease progression and

severity in diabetes patients (6, 132, 134). Unpub-

lished studies from our group show that combined

AGE and Porphyromonas gingivalis lipopolysaccha-

ride stimulation of THP-1 cells results in up-regula-

tion of nuclear factor jB and Cox-2 promoter activity

over time compared to either treatment alone. In

addition, we were able to demonstrate sustained IjBb
degradation and increased IKK activity compared to

either treatment alone in this model. The role of

nuclear factor jB in the promotion of inflammation

in the diabetic patient with coronary heart disease

and periodontal disease is far from being well

understood but this review provides a framework for

understanding the mechanism by which chronic

hyperglycemia and periodontal infection may

enhance inflammatory mediator expression via nuc-

lear factor jB and facilitate oral and systemic disease

progression in the diabetic patient.

Diabetes, oxidative stress, and
coronary heart disease

Micro- and macrovascular diseases of the cardio-

vascular system present major complications in dia-

betics. An increased frequency of hyperglycemia and

dyslipidemia in this population is thought to be a

major contributor to vascular alteration and athero-

genesis (48, 142). Atherosclerosis is responsible for

about 75% of the deaths in diabetic patients (85),

compared to 55% of all US deaths (122). The accel-

erated morbidity associated with coronary heart dis-

ease in diabetes has been well documented in the

literature (53, 110, 162). Seventy percent of individ-

uals with Type 2 diabetes die from premature

cardiovascular disease (101). Even with this demon-

strated association of diabetes and coronary heart

disease, there is still much speculation about the

mechanism of the atherogenic process in this group.

Past investigations have implicated the advanced

glycosylation process and the resultant production of

oxidative stress in tissues as important mechanisms

of coronary heart disease progression in diabetics
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(8, 136, 139). Glycosylation of long-lived proteins

occurs normally with age; however, the hyperglyce-

mic state accelerates the process, which leads to

alteration of tissue and cell function, particularly in

diabetics. In addition to proteins, lipid moieties are

also glycosylated and oxidized (27, 104, 112).

The metabolic syndrome has emerged as an

important cluster of risk factors for atherosclerotic

disease. Common features are central (abdominal)

obesity, insulin resistance, hypertension, and dyslip-

idemia, namely high triglycerides and low high-den-

sity lipoprotein cholesterol. It has been estimated

that one out of four adults living in the United States

merits the diagnosis (according to the clinical criteria

developed by ATP III). The presence of the metabolic

syndrome is highly prognostic of future cardiovas-

cular events. Esposito & Giugliano (34) suggest that

this process may involve a number of factors such as

chronic inflammation, insulin resistance, and adi-

pose tissue. Chronic inflammation may represent a

triggering factor in the origin of the metabolic

syndrome: stimuli such as overnutrition, physical

inactivity, and aging would result in cytokine

hypersecretion and eventually lead to insulin

resistance and diabetes in genetically or metaboli-

cally predisposed individuals. Alternatively, resis-

tance to the anti-inflammatory actions of insulin

would cause enhanced circulating levels of proin-

flammatory cytokines, resulting in persistent low-

grade inflammation. A generally enhanced adipose

tissue-derived cytokine expression may be another

plausible mechanism for the inflammation ⁄ meta-

bolic syndrome relationship. The role of adipose tis-

sue as an endocrine organ capable of secreting a

number of adipose tissue-specific or enriched hor-

mones, known as adipokines, is being increasingly

appreciated. Although the precise role of adipokines

in the metabolic syndrome is still being debated, an

imbalance between increased inflammatory stimuli

and decreased anti-inflammatory mechanisms may

be an intriguing working hypothesis. The proinflam-

matory state that accompanies the metabolic syn-

drome is associated with both insulin resistance and

endothelial dysfunction, providing a connection

between inflammation and metabolic processes that

is highly deleterious for vascular functions (34).

Individuals with the metabolic syndrome are at risk

of developing type 2 diabetes and coronary heart

disease. Of the components of the metabolic syn-

drome, obesity and abnormal carbohydrate metabo-

lism are the most significant predictors of the

development of diabetes (149). Dyslipidemia invol-

ving hypertriglyceridemia and low levels of

high-density lipoproteins is a common finding in

diabetics that is thought to be predictive of cardio-

vascular mortality (75, 126). Lipoproteins (low-den-

sity, high-density lipoproteins and very-low-density),

particularly low-density lipoproteins, are thought to

be intimately associated with the development of

atherosclerosis (46, 65, 71). However, oxidized forms

of these lipids are believed to be the most pathogenic

forms. Oxidative stresses including products of

oxidized arachidonic acid (prostaglandin E2 and

malonyldialdehyde) are potent catalytic inducers of

oxidized low-density lipoprotein formation (57, 140).

Infection and poor oxygen perfusion represent two

potential causes of oxidative stress (80, 158, 170). The

peroxidation process involving lipoproteins is

thought to contribute to atheroma formation by the

following interactions:

• impairment of the low-density lipoprotein receptor

recognition of modified low-density lipoprotein,

and cholesterol transport by high-density lipopro-

teins;

• stimulation of platelet aggregation, and foam cell

formation;

• the formation of immune complexes and reactive

oxygen species (21, 157).

The cumulative effects of these mechanisms may

subsequently contribute to vascular wall injury and

atherogenesis.

In conjunction with the role of low-density lipo-

proteins in lesion formation, glycosylation and oxi-

dation of low-density lipoproteins (ox-LDL) have

been shown to alter gene expression for several

cytokines and growth hormones in vitro (23). The

unsaturated fatty acid core of lipoproteins has been

shown to be particularly susceptible to oxidative

damage (65, 85). The ox-LDL molecule is cytotoxic to

cells in culture and is a potent stimulator of

macrophage foam cell formation (64, 100, 140). Along

with direct cell injury, glycated and oxidized lipo-

proteins may have a role in altering tissue and cell

function, in particular �monocytic priming�. Lopes-

Virella et al. demonstrated that the uptake of

low-density lipoprotein-immune complexes by

macrophages leads to activation and release of pro-

inflammatory cytokines, which have been implicated

in tissue destruction, especially vascular and poten-

tially periodontal disease (82, 159). The release of

these monocyte-derived macrophage mediators is

not only associated with periodontitis but may

also be involved in the early and later stages of

atheroma formation. Transformed monocytes in

advanced atherosclerotic lesions have also been

shown to secrete other mediators such as interferon,
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fibroblast growth factor, platelet-derived growth fac-

tor (30, 105), prostaglandin E2 (40), proteases (102),

and collagenases (111, 129). Other studies have

shown that glucose-oxidized low-density lipoproteins

resulted in phosphorylation of extracellular signal-

regulated kinase and protein kinase B ⁄ Akt and sti-

mulated proliferation of isolated macrophages (78).

This effect was mediated by CD36 and induced by

protein kinase C-dependent and phosphatidylinositol

3-kinase-dependent pathways in the study. Thus,

hyperglycemia is not sufficient to stimulate macr-

ophage proliferation in lesions of atherosclerosis or in

isolated macrophages. A combination of hypergly-

cemia and hyperlipidemia stimulates macrophage

proliferation by a pathway that may involve the

glucose-dependent oxidation of low-density lipopro-

teins (75, 78, 127). As mentioned in the discussion

of periodontal disease severity and progression in

diabetics, AGEs once formed can bind to monocytic

receptors (RAGEs) and alter the cell phenotype. The

primed monocyte upon stimulation during an infec-

tious challenge (i.e. by lipopolysaccharide) may pro-

duce excessive amounts of cytokines or inflammatory

products. In addition to AGEs, markers of coronary

heart disease such as unsaturated fatty acids and

modified lipoproteins are capable of inducing a

similar increase in monocytic secretion of cytokines

(11, 49, 123, 144). The effects of these metabolic

hormones are not only observed locally in the oral

cavity but also systemically and may significantly

contribute to a more progressive periodontal infec-

tion, and increased morbidity and mortality associ-

ated with coronary heart disease in the individual

with diabetes.

Diabetes, periodontitis, and
coronary heart disease

Periodontal infection is involved in the local

destruction of underlying bone and connective tissues

and, as the disease progresses, loss of the integrity of

the periodontal attachment, which can result in

transient bacteremias. The systemic challenge of

bacterial toxin derived from periodontal lesions rep-

resents an important link between periodontitis, the

monocytic inflammatory response, and metabolic

dysregulation in certain disease states. Studies have

implicated bacteria in the occurrence and progression

of coronary heart disease as well (11, 33, 91). Cyto-

kines common to the pathology of periodontitis, such

as tumor necrosis factor-a and IL-6, have been shown

to have important effects on glucose and lipid

metabolism, especially following an infectious chal-

lenge or trauma (36, 37). Tumor necrosis factor-a, a
proinflammatory cytokine, is well known for its sys-

temic effects on lipid metabolism during a condition

known as cachexia (96). It has been shown to interfere

with lipid metabolism by increasing serum triglycer-

ide levels primarily by stimulating hepatic lipid

secretion (39). In addition to these other functions,

tumor necrosis factor-a is important for signaling the

release of another metabolic hormone, IL-6. Unlike

tumor necrosis factor-a, IL-6 is thought to have

mostly an inhibitory action in the presence of

inflammation (89). However, IL-6 is considered a

pleiotropic mediator and is involved in the regulation

of hematopoiesis and the acute phase response (155).

Because IL-6 and tumor necrosis factor-amay share a

role in promoting the hyperglycemic state during an

inflammatory response, it is important to account for

the systemic as well as local effects of these mediators

and their effect on periodontal and diabetic status.

The majority of clinical and epidemiologic evidence

suggests that individuals with Type 1 and Type 2

diabetes tend to have a higher prevalence of both

vascular disease (43, 84, 128, 147) and more severe

and rapidly progressive periodontal disease than

people without diabetes (152, 156). The relationship

between diabetes and coronary heart disease (2, 108,

122) and diabetes and periodontal disease is well

described in the literature (42, 51, 60, 81, 99, 156, 168).

Periodontal infection is also thought to have a role in

cardiovascular and atherosclerotic disease progres-

sion (120) and periodontal pathogens have been

identified in atherosclerotic plaques (19, 93, 121).

There are components of periodontitis and coronary

heart disease that are similar in terms of patho-

physiology. For example, they both are multifactorial

and have been associated with infectious agents and

have a characteristic inflammatory component. The

similarities in disease presentation and supporting

evidence from epidemiologic studies suggest a poss-

ible adverse interaction between coronary heart dis-

ease and periodontal disease. The combined effect of

chronic periodontitis and diabetes could potentially

constitute an even greater risk for developing sub-

clinical coronary artery disease than would be pre-

dicted by either diabetes or periodontal disease alone.

Although diabetes is well established as a major

risk factor for periodontal disease and cardiovascular

disease, the cellular and molecular basis for this

association is not clear. It is important to determine

whether the combined effect of AGEs and bacterial

endotoxins exacerbates diabetic oral and systemic

disease through inflammatory responses to a number

137

Periodontitis, diabetes, and coronary artery disease



of pathogenic stimuli. A bacterial infectious challenge

can induce a metabolic diabetic state that is generally

considered reversible. However, it is not known what

metabolic changes occur when this process is not

acute, but chronic and asymptomatic in nature, and

occurs in an already compromised system, such as

that observed in the individual with diabetes. Future

studies should examine the following:

• the impact of periodontal infection on glycemic

control;

• the role of periodontal disease and diabetes in

development and progression of coronary heart

disease;

• the molecular mechanisms that may be involved in

the interaction between AGE- and lipopolysaccha-

ride-induced hyper-inflammatory responses.

To better understand the relationship between

these chronic disease processes (diabetes, coronary

heart disease, and periodontitis) it is important to

delineate the interactions between and among all

three processes. Additional studies are needed both

on an epidemiologic and on a molecular level. Fig. 3

provides an illustration of key components that need

to be closely examined, placing inflammation at the

core of these processes, if we are to make any pro-

gress in continuing to unravel the very complex

relationship of diabetes, coronary heart disease, and

periodontitis.
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