CHAPTER 3

Filtering theory

The stochastic state space model introduced in Section 2.4 is an
internal model: its states x, are not observed directly but do
contribute to the observed outputs y, as specified by the observation
equation in (2.4.3). It is natural then to consider the problem of
forming ‘best estimates’ of the state x, give the available data
(0> Y1>---» ). This procedure is known as filtering. There are at least
three situations in which filtering is required. Firstly, it may be an end
in itself: this is the case when, as often happens, the state variables x}
represent important physical quantities in a system which we need to
know as accurately as possible even though they cannot be measured
directly. Secondly, if we wish to control systems described by state
space models then the natural class of controls to consider is that of
state feedback controls where the control variable u, takes the form
u, = u(k, x,). If x, is not ‘known’ then in some circumstances it can be
replaced by a best estimate X, produced by filtering; this topic is
described at length in Chapter 6. Finally, filtering is relevant when we
wish to replace the state space model by an ‘equivalent’ external
model; see section 3.4 below.

Initially we will consider the filtering or estimation problem in a
more general setting than that described above, specializing to state
space models later. The general problem may be described as follows:
one observes the values of random variables Y,..., Y, and wishes to
‘estimate’ the value of another random variable Y,. Here Y':=
(Yy,Y,,...,Y,) is a vector random variable with a given joint
distribution function F. An estimator is any function g(Y) of the
observed vector YT:=(Y,,...,Y,) and this is to be chosen so as to
minimize the mean square error

& =E[Y, —g(Y)]* (3.0.1)

We have already seen in Section 1.1 that the function g which
minimizes the mean square error is the conditional expectation
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0

E[Yo|Y]= J yOdFYo|Y(yOIY)'

However, this may be hard to compute and in any case we may only
know certain parameters of the joint distribution of Y rather than the
function F itself. For these reasons and others which will emerge later,
we are led to study the linear estimation problem where the choice of
estimators g is limited to linear functions, i.e. those of the form

9Y)=a, Y +o, Y, + - +a,Y, (3.0.2)

This is much simpler since we are now just searching for the n-vector
ol =(ay,...,a,) which mininizes (3.0.1) with g given by (3.0.2). Notice
that in this case

it ity
i,j=0
n
=Y wEYY;
i.j
where for notational convenience we have defined o, = — 1. Suppose

that all the random variables have zero mean. Then EY;Y; is just the
(i,j)th entry of the covariance matrix cov(Y), and this shows that in
order to solve the linear estimation problem we only need to know the
means (= 0) and covariances of the random variables. This is much
more reasonable than requiring that the whole joint distribution
function be known. (Of course, the theory only applies when all the
random variables have finite variance, but this is hardly a restriction
in practice.)

The solution of the linear estimation problem in principle is quite
straightforward and in fact a formula for o is given in Theorem 3.1.1
below. The key idea is that the best linear estimate can be thought of
geometrically as the ‘orthogonal projection’ of Y, onto the observ-
ations Y. Section 3.1 is devoted to explaining this idea and its relation
to the conditional expectation mentioned above. What remains is to
develop effective ways of calculating this projection. The main
application we have in mind is estimating the state vector of the state-
space model of Section 2.4 from the output. This problem has a
dynamic structure in that the output values y,, y;,...are measured at
successive instants of time and we wish to ‘keep track of ’ the state
vector x, as it evolves. Thus a recursive algorithm is required which
will take the estimate at time k and, using the new observation y, , ,,
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update it to give the estimate at time k + 1. Such recursive estimators,
or filters, are discussed in general terms in Section 3.2. We then derive
in Section 3.3 the Kalman filter equations which provide a recursive
estimator for the state-space model. Kalman filtering theory is
applied in Section 3.4 to derive the innovations representation of the
state-space model mentioned at the end of Chapter 2.

3.1 The geomeiry of linear estimation

To introduce the geometric picture of linear estimation let us consider
the problem introduced above with n= 1. Thus (Y,, Y,) are jointly
distributed zero-mean random variables, and we wish to find the
number o which minimizes

& =E[Yy—aY,]? = E(Y2)— 2uE(Y,Y,) + a?E(Y?).

Elementary calculus shows that the right choice is

_E(Y,Y,)
o= BV (3.1.1)
(provided that E(Y?)# 0) resulting in a minimum error of
1
&=EY3})———(E 2
B(YE) = gy (O Yo)

Let gy, 0,, p be the standard deviations and correlation coefficient of
Yy, Y; (see Section 1.1.1). Then the best estimator is

Po=aY,=p20y, (3.1.2)
04
and the error is
- Y, Y
Y0=YO—aY1=ao<—O—p—l> (3.1.3)
oo (o

with variance
& =ad(1—p?).

Now note the crucial fact that the error Y is uncorrelated with the
observed random variable Y1, i.c.

E(Y,Y,)=0.

This is easily seen from (3.1.3). It is also easily seen that the value of «
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Fig. 3.1

given by (3.1.1) is the only one such that (Y, —aY,) and Y, are
uncorrelated.

The geometric picture that goes along with this is as follows:
Suppose v,, v, are vectors in the plane which have lengths g, g,
respectively and intersect at an angle # such that cosf = p (see
Fig. 3.1). The vector v, can be expressed as the vector sum of its
projection v, on to v, and the difference v,=v,— ¥, which is
orthogonal to v,. The projection ¥, is given by

00=000059<Lv1>=p@v1 (3.1.4)
04 0y

Comparing (3.1.2) and (3.1.4) we see that if the random variables Y,
Y, are identified with the vectors v,, v, respectively then the best
linear estimate Y, corresponds to the projection ¥, of v, onto v,. The
inner (or dot) product of the vectors v, and v, is

Vo'V, =000, c0s0 =a,0,p=EY,Y, =cov(Y,,Y,).

Thus the vectors representing the random variables have lengths
equal to the standard deviations of the random variables and inner
product equal to the covariance. Notice in particular that if 6 =0 or
0 = m then the vectors are colinear and v, = + v, = + (6,/0,)v,. Since
p = cosf the equivalent condition on p is that p = + 1. But we already
saw in Chapter [ that if Y,,, Y; have correlation coefficient + I then
they are linearly related: Y, = + (0,/0,)Y,. Thus ‘linear estimation’
can be done with zero error, as the geometric picture indicates.

In order to formalize the above discussion and generalize it to
higher dimensions we need to review the geometrical properties of R?
considered as a vector space. Elements or vectors x of R are n-tuples
of real numbers x = (x,, x,,...,x,). Addition and scalar multiplic-
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ation are defined componentwise: x +y = (x; + y;,...,X; + ¥4 and
ax = (ax,,...,ux,) for ae R. The inner or dot product of two vectors X,
y is defined by

d
Xy= '—Zl XiYi-

The vectors x and y are orthogonal (x Ly) if x'y =0. The norm of a
vector is

x| =/ (x-x).
Fori=1, 2,...,d define
z:=(0,...,0,1,0,...,0) (I in the ith position).
These are the coordinate vectors. They have the following properties:

(a) They are normalized and mutually orthogonal:

1 oi=j
Ziz"_{o i#)

(b) They form a basis for R%: any xeR? can be expressed as x =
Z'i a;z; for some coefficients a;.

It is clear from the definitions that the coefficients g; in (b) are given by
a; = x-z;, so that each xeR? has the representation:

X = .Zd: (x°z))z;.

Any set of vectors z; satisfying (a) and (b) is called an orthonormal
basis of R%. A subspace & of R” is a subset with the property that if
X, ye.& then ax + fye & for any o, feR. The subspace generated
or spanned by any collection of vectors uy,...,u, is denoted by
Z(uy,...,u,)and is the smallest subspace containing the generating
vectors. It is easy to see that

Z(uy,...,u,)= {Zl a;u;:a :(al,...,am)eR'”}.

It is always possible to construct an orthonormal basis X, ..., x, of R?
such that L(uy,...,u,) = Z(x,,...,X,) for some k <min{d, m}. This
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can be done by using the Gram—Schmidt orthogonalization procedure,
which we describe next. Supppose, to avoid triviality, that
fu;| >0 for some i (otherwise #(uy,...,u,)={0}); we can then
assume, permuting indices if necessary, that |u, || > 0. Define

1
X, =——u;.
fluy |l

Now suppose that orthogonal vectors x,,..., X, have been found
for some number k(l)<min{d,m} such that #(u,,...,u)=
L(Xy,...,Xyq)- Define
k(1)
Vi=u ey — ~Zl (w4 X)X,
£

Thenv Lx;fori=1,... . k(l). If |[v]| =0, set k(I + 1):= k(I); otherwise,
set k(I +1):=k()+1 and x5 =V/[v]. Then x,,...,X; ;) are
orthonormal and ZL(uy,...,u ;)= 2(X;,..., X+ Since clearly
ZLu) = #(x;) we conclude by induction that Z(u,,...,u,)=
L(Xy,. .., Xgem)- By construction k:=k (m) <m, and k <d since d is
the maximum number of linearly independent vectors in R% If k < d
then orthonormal vectors X, , ;,..., X, can be constructed in a similar
way so that x;,...,x, form a basis of R%. We leave it to the reader to
supply the details.

The orthogonal projection ¥ of veR? onto a subspace %:=
L(uy,...,u,,) is defined by

k
V=Y (vxy)x;
i

where X, ..., X, is an orthonormal basis such that = £ (x,, ..., X,).
v can be characterized in the following two equivalent ways.
(a) ¥ is the unique vector satisfying
vell
v—v.lu
(b) ¥ is the closest point in % to v, i.e.

[v—¥]=min|v—ul.
uey

In (a), v— V¥ L% means that (v— V) Lu for all ue #.
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Both (a) and (b) are very easily established using the basis x,,...,x,,
but note that the statements themselves do not involve any particular
choice of basis. For part (b) we have

Vou=(v; —u)X; + o+ (O — U)Xy F U Xpp g o UXy

where v; = v'x;, u; =wx;. Thus

k d
Iv—ul?=Y (i—u)*+ Y o}
i=1 i=k+1
and this is clearly minimized by taking u; =v;, i <k.

Let us denote v = 2v. Then 2 is a projection operator which maps
each vector in R? to its projection onto the subspace %. We note
the following properties of the projection operator:

(@) 2 is linear: Z(av, + fv,) = aPv, + fPv,, o, feR

(b) 2% =2 (Here 2%v:= P(PV))

(c) 1%’ is a subspace such that %’ > % and 2’ is the projection onto
' then for any veR?

Py = P(PV).

The first two of these are evident. For (c), suppose that % =
L(u,,...,u,) for some m' > m. By means of the Gram-Schmidt
procedure we can construct a basis x,...,x; and numbers k, k" with
k <k’ <d such that % = ¥(x,,...,x,) and %' = ¥L(x,,...,X,). For
veR?, denote v;=v'x;. Then Zv=>%vx;, so that P(P'v)=
dYhvx; = Pv.

Now back to random variables. Suppose as before that Y:=
(Yo, Y,,...,Y,)Tis a random (n + 1)-vector such that for each i

EY,=0,var(Y;) < oo,

and denote Q:=cov(Y). We wish to associate these random vari-
ables with vectors v,...,v, in such a way that

viv;=cov(Y,Y,)=EYY,

More precisely, let # denote the set of all linear combinations of the
random variables Y,,..., Y,, Le.

H = { Y oc,»Yi:a=(o¢0,...,o¢,,)eR"“}-
i=0

We take the function U, V— EUV as an ‘inner product’ for U, Ve#.
Note that EUV is entirely determined by the covariance matrix Q
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since if U, Ve# then U =2a"Y and V =b"Y for some a,beR*" ! and
then EUV =a"Qb. We wish to construct a function ¢:.# — R? for
some integer d with the following properties

(a) @ is linear, one-to-one and onto

(b) @ 1s inner product preserving:

o(U)o(V)=EUV. (3.1.5)

Such a function ¢ always exists. Recall from Proposition 1.1.3 that by
factoring Q in the form Q = AA" we can express Y in the form

Y=4Z

where ZT=(Z,,...,Z,) is a vector of unit variance uncorrelated
random variables and d <n + 1. Now define

o(Z):=1z

where z,,...,z, is the coordinate basis of R? and
d
0@'2):= > az; foraeR"
i=1

Since # = {a"Z:aeR"} this defines @(U) for all Ue #". By construc-
tion, ¢ is linear and onto, and an immediate calculation shows that
(3.1.5) holds. In particular if we define v;:=e(Y)) =0}, a,Z,)
then we see that

viv,=EY; Y,

To check that ¢ is one-to-one, suppose that @(U)= @(V); then
oU—-V)=9(U)—@(V)=0 so that EU-—V)>=¢eU—V)
@(U —V)=0. Recall by the way that EU-=V)*=0
if and only if P[U = V] = 1. Thus this theory does not distinguish
between equivalent random variables, ie. if P[U=V]=1 then
P(U)=p(V).

The existence of the map ¢ means that the geometrical pro-
perties of the space # with ‘inner product’” EUV and ‘distance’
[E(U — V)*]'? are identical to those of Euclidean space RY. To
illustrate the utility of this, let 7" be the subspace spanned by
vi,...,v,wherev; = @(Y)and let v, be the projection of voonto V. Then

0Ozalvl +"'+a"V"
for some constants «,...,a,, and the corresponding element of J# is

)A/Ozzlpﬁl(elo):alyl +"'+O("Y".
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Now recall that ¥, is the closest point in ¥ to v,:

9o = ¥o |l = min|lvo —ul|.
ueV

It follows from (3.1.5) that E(U — V) = | @(U) — @(V)||% thus ¥,
satisfies

E(Y,— Y,)? = min E(Y, — U)?
U

where the minimum is taken over all linear combinations U =
Z’{ «;Y;. But this means that ¥, solves the linear estimation problem.
Y, has the property that E[(Y,— Y,)Y,]=0,i=1,2,...,n, ic. the
error Y, — Y, is uncorrelated with the observed random variables
Y;,..., Y, just as in the scalar case.

We can dispense with explicit mention of the map ¢ and Euclidean
space R?. Just think of the random variables as ‘vectors’ with lengths
equal to their standard deviations and ‘inner product’ given by the
covariance. Thus two random variables are ‘orthogonal’ (and we
write U L V) if they are uncorrelated, and the best linear estimator Y,
is the ‘projection’ of Y, onto the ‘subspace’ #(Y,..., Y,) spanned by
Yi,...,Y,

Let us summarize the results we have obtained. At the same time we
generalize to the vector case, replacing Y, by a p-vector X.

Theorem 3.1.1

Let X and Y be random p- and n-vectors respectively, all components
having zero mean and finite variance. (Here, YT =(Y,,..., Y,).) Then
for each j=1,...,p there is a unique (up to equivalence) random
variable X such that:

(a) X,eZ(Y)
(b) X;— X;L2(Y).

X":=(X,,...,X,) is the minimum mean-square error estimate of X
given Y, ie. for any feR?

E[(B"(X — X)]?* = min E[«"X — U]2

Ue2(Y)

If cov(Y) is non-singular then X is given by

X = E[XYT][cov(Y)] Y. (3.1.6)
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REMARK By a slight abuse of terminology, X is referred to as the
‘projection of X onto #(Y).

PROOF Only the last part remains to be established. By definition,
X = AY for some p x nmatrix A. Using the orthogonality relation (b)
we see that for any feR?, yeR"

E[F"(X —AY)"Y)]=0
i.e.
BEXYT—AYY")]y=0.
This implies that
E[XYT]— AE[YY"] =0

and hence that A = E[LXY"][cov(Y)] ! if cov(Y) is non-singular. If
cov(Y)issingular then some components of Y are linearly related and
it may be possible to express X in several different but equivalent
ways.

Random variables with non-zero mean

Let us consider the same problem as above (with scalar Y,) but
supposing now that the random variables have possibly non-zero
means

EY,=m, i=0,1,....m.

This situation easily reduces to the zero-mean case. Rather than a
linear estimator, it is preferable now to use an affine (linear +
constant) estimator:

Yo=Y, + - +0,Y,+ .

We have to choose a,...,a,, f to minimize E[ Y, — ¥,]. Minimiz-
ation can be carried out over these coefficients in any order, so let us
fix oy,..., 2, and minimize first over f. Define

U=Yy—o, Y, — " —a,Y,.
Then
E[Y,— ¥,]* = E[U — BJ?
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It was shown in Proposition 1.1.1 that this is minimized by taking
p=EU=my—omy — - —a,m,.

Incidentally, this justifies our previous implicit choice =0 for the
zero-mean case. With the above choice of f§ we see that

E[Yy— Y, =E[Y{—(, Y + -+ +a,Y5)]? (3.1.7)

where Y¢is the ‘centered’ random variable Y¢ = Y, — m;. We now have
to choose ay,...,a, to minimize (3.1.7), but this is the zero-mean
problem that was solved before. Let P be the covariance matrix of Y,
now given by

Pij =E[(Y,— m.’)(Y,’ - mj)]'
If P is non-singular, then from Theorem 3.1.1
Yo=(Y —=m)TP YE[(Y —m)(Yo — my)] + mq (3.1.8)

where m" = (m,,...,m,). Notice that the error Y, — Y, always has zero
mean.

To get the geometric picture for this case we adopt the rather
artificial, but convenient, stratagem of adjoining to the observations
another random variable denoted 1 which takes on the value 1 with
probability one (thus no new ‘information’ has been added). Y, can
then be regarded as a linear (no longer affine) combination of the
observations:

Yo=B1+o, Y, + " +0a,Y,

As before, random variables U, V are regarded as vectors with inner
product EUV, but note that this is not now the covariance, which is
E(U—-EU)V —EV). Now U L1 if EQU)=EU =0 and thus if we
express U as

U =(EU) + U®

then the first term on the right is the projection of U onto the one-
dimensional subspace spanned by the random-variable 1. Thus the
random variables 1,Y,..., Y, form a vector space of dimension
k <n + 2 consisting of a (k — 1)-dimensional subspace of zero-mean
random variables (spanned, in fact, by Y§,..., Y;)and a 1-dimensional
subspace spanned by 1. The best estimate of Y, is the sum of its
projection into Z(Y9,..., Y;) and its projection onto (1) and these
projections are the two terms on the right of (3.1.8), respectively.
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The normal case

As pointed out at the beginning of this chapter, only means and
covariances are required to calculate best linear estimators. If we
suppose that the random variables involved are jointly normally
distributed then we get the following result strengthening Theorem
3.1.1.

Theorem 3.1.2

Let X and Y be as in Theorem 3.1.1 but with possibly non-zero means
and suppose that X and Y are jointly normally distributed. Then the
best affine estimate of X given Y coincides with the conditional
expectation E[X|Y].

PrROOF Consider first the zero mean case. Since X = AY for some
matrix A, the random variables (X,X,Y) are jointly normally
distributed, and (X; — X,) is uncorrelated with and hence independ-
ent of Y, for each i, j. Using the properties of conditional expectation
given in Proposition 1.1.4 we see that, with X = X — X,

E[X|Y]=E[X + X|Y]
=X + E[X|Y]
=X+EX=X
If X,Y have non-zero means my,m,, write X=X —my, Y=
Y —my. Then

E[X|Y] = E[X®+ my|Y] =my+ E[X9Y].

It follows from Proposition 1.1.7 that E[X¢|Y] = E[X°|Y¢] and the
latter expression coincides with the best linear estimator. This
completes the proof. O

This result shows that in the normal case X is the best estimate of X
not only in the class of affine functions AY + b but also in the class of
all finite-variance functions g(Y). It also shows that the conditional
distribution of X given Y is normal with mean X and covariance
cov(X — X). This follows from the fact that X = X + X where X is a
function of Y and X is independent of Y. We have thus, somewhat
belatedly, completed the proof of Proposition 1.1.7(¢) of Chapter 1.
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3.2 Recursive estimation

The idea of recursive estimation arises when random variables
Y,,Y,,...are observed sequentially and we wish to process them in
real time to form successive best estimates of an unobserved random
variable Y,. At time n we can form the best linear estimate Y, , of Y,
given Y,,..., Y, by using formula (3.1.9) (supposing that all means are
zero and that the covariance matrix P,=cov(Y,,...,Y,) is non-
singular). Note that this involves inverting the n x n matrix P,. At the
next time instant we have one more observation, Y, ;. How are we to
compute 170’,” 1?7 The most obvious way would be to apply the
same formula again. However, if we do this successively for
n=1,2,3,..., then:

(a) It is necessary to store the entire observation record as this
becomes available; and,
(b) At each time n, an n x n matrix must be inverted.

Obviously, the computational effort required to do this becomes
massive even for moderate n. Is it really necessary, at each stage, to
throw away the results of all previous calculations, or is there some
method by which Y, , can be updated using the new observation Y, , ,
to give Y, , . ;? The simplest form such an updating could take is as
follows:

s70.n+1 =an?0,n+bny;|+1 (321)

i.e. the next estimate is a linear combination of the current estimate
and the next observation. Only in special cases will a formula such as
(3.2.1) be possible, but these include important applications such as
the Kalman filter discussed in Section 3.3.

In this section we discuss the general relation between successive
estimates. In view of later applications it is convenient to deal from
the outset with the vector case. Thus suppose x is an n-vector random
variable and y,, y,,...are r-vectors of observed random variables.’
All random variables will be taken to have zero mean and finite
variance, and to avoid difficulties with non-uniqueness it will be
supposed that the covariance matrix of the rk-vector y*=
col{y(,y,-. yx} is non-singular for each k.

*In accordance with the established notational conventions of Kalman filtering theory
these are denoted by lower-case letters.
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Denote by #(y*) the linear subspace spanned by the observations
up to time k, and by %, the best linear estimate of x given )*, i.e. the
projection of x onto #(y*). (Recall the notational conventions for
projection of vector r.v.s introduced in Section 3.1).

ZL(y*1!) is a subspace of #(y*). Let y,,_, be the projection of y,
onto £(y*~') and j,, , the error: j,, , =y — Py ;- The random
variables { ﬁqu- ,i=1,2,...,r} span the orthogonal complement of
PL(y*~ 1) in £(y"), so that any r.v. Z in £()*) has a unique orthogonal
decomposition

Z=2,+2,
where Z,e£(y*"!) and Z, is a linear combination of {Jij, ,i=
1,...,r}. Take in particular Z = %;; then we claim that Z, =%} _,.
Indeed, let % = x' — %i be the estimation error at time k. Then
X=X+ =2, +(Z,+ %)
where Z,e Z(y*~ ') and (Z, + %) L Z(y*~'). But we also have

X =Xy + Koy

and again Xi_,e2(* "), xi_, LZL(G* ). Since such orthogonal
decompositions are unique, it must be the case that Z, = X} _,, as
claimed. As to Z,, this is the projection of £} onto Z(j,,_,) and this is
the same as the projection of x' onto L (V) since (P, ) <= LM,
But this projection can be calculated using formula (3.1.9) again.
Collecting the above results we see that X, can be written in the form

X=X+ E[xyzk~I](E[j;k|k—l.}71\‘!-|k—l])- Y — Puk—1)- (3.2.2)

In general this is not a recursive formula for %,, since y,, , depends
on y;,...,Yx—;. It is a recursive formula precisely when this de-
pendence factors through X, ,. Let us examine an important
example where this occurs.

Example 3.2.1
Suppose
Ve=Hx+z,

where H is an r x n matrix and z,,z,,...is a sequence of mutually
uncorrelated random variables with zero mean and common cova-
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riance cov(z,) = N > 0. We also suppose x and z, are uncorrelated for
each k. Thus y, represents a sequence of ‘measurements’ of x with
uncorrelated measurement errors z,. Let P be the covariance matrix
of x.

In this example y,, , is the projection of y, = Hx +z, onto
Z(y*~1) and this is the same as the projection of Hx onto #(y* 1)
since z, L Z(y*~1). Thus

JA/k|k—l =HX, _,
and (3.2.2) becomes
X =%X-1 + K(k)(y, — HX, - 1) (3.2.3)

where K(k) denotes the matrix coefficient in (3.2.2). This is a recursive
formula for %, and it only remains to calculate K(k). We will do this in
two ways: the ‘slick’ way specifically adapted to this problem, and by
use of a general technique which will be useful in connection with the
Kalman filter in the next section.

The slick way is to notice that the y, are interchangeable, in that if

XB=Ay+ -+ Ay

then all the A; must be the same, since the correlation structure of the
random variables would be completely unchanged if any two
observations y; and y; were permuted. Denote by y, the sample mean

y —li —Hx+1
yk_ki:lyi_ ki

M=

Z,'=Hx—Z_k.

1

The noise sample mean z, has covariance N/k and our contention is
that

X =AY
for some n x r matrix A. The orthogonality condition is
x—Xy=(I—AH)x — Az, L y,= Hx + z; i=1,...,k

Since x is uncorrelated with z; and Z,, this is equivalent to requiring
that

(I — AH)E[xx"]H" — AE[z,z]]1=0.

Now E[xx"] = cov(x) = P and E[Z,z]] = N/k since the z; are mutu-
ally uncorrelated. The fact that this expression is independent of i
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confirms the ‘interchangeability’ argument. Thus the orthogonality
requirement is:

1
(I~ AH)PHT = AN
and hence A4 is given by
1 -1
A= PHT[HPHT + EN:l .

Notice that (HPH™ + (1/k)N) is non-singular, since by assumption
N > 0. Thus

1 I R
)%k=Ayk=EPHT[HPHT+EN] (_;yk). (3.2.4)

Comparing this with (3.2.3), we see that the coefficient of y, is K(k) and
hence

1 1 ]!
K(k)=EPHT|:HPHT+EN:| . (3.2.9)
The more general method of obtaining this result is to calculate

K(k) from the expression for it in (3.2.2). Now
)7;(;1(71 =V — j}k|k—1 =(Hx+z)—HxX,_,
=HX,_1+2z, (3.2.6)
where X,_, = x — X, _, is the error at time k — 1. Thus
E[xj)lek_l] = E[XEk—l]HT
= E[% - % - JH!
since x=%X,_,+X,-; and X,_,1%,_,. We denote Pk—1)=
cov(X,_,) (the error covariance at time k — 1). Similarly,
E[Pye_Jg_ 1= EL(HZ, -, + z)(HX - + 2,)"]
=HP(k—1)H" + N.
This is non-singular since N > 0, and hence
K(k)=P(k — 1)H"[HP(k — 1)HT + N]~!

It remains to calculate P(k — 1). Subtracting x from both sides of
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(3.2.2) and using (3.2.6) gives
X =X—1 — K(K)(HX, - | + 2,)
=(I — K(k)H)X, _; + K(k)z,.

The two terms in this expression are orthogonal since
Xy 1€L(X,215...,2,~1). Thus

P(k) = E[%51] = (I — K(k)H)P(k — 1)(I — K(k)H)" + K(K)NK (k).
(3.2.7)

Now substitute for K(k)from (3.2.5). After a little algebra one finds that
(3.2.7) becomes simply

P(k)=P(k —1)— P(k— ))H"[HP(k — 1)H" + N]"'HP(k — 1).
(3.2.8)

Together with the initial condition P(0) = P = cov(x) this provides a
recursive algorithm for generating P(1), P(2),...and hence K(k) from
(3.2.5). In this example one can in fact obtain a closed-form expression
for P(k) from (3.2.4). Indeed, subtracting x from both sides of (3.2.4)
and using the fact that y, = Hx + z, we see that

1 -1
X = <I— PHT|:HPHT +§N:| H)x

1 -1
+ PHT[HPHT + EN] Z,.
Again, the two terms on the right-hand side are orthogonal, and
calculating the sum of their covariances we find that

1 -1
P(k)y=P — PHT[HPHT + EN] HP.

Some laborious algebra confirms that this indeed satisfies (3.2.8).
In this example the recursive estimator (3.2.3) offers no advantages
over the non-recursive form (3.2.4): in either case the main comput-
ational task at each stage is to invert an r x r matrix, so the general
problem of having to invert matrices of growing dimensions has been
avoided. The storage requirements are also similar: in (3.2.4) one
requires the sample mean y, at each stage and this can be updated as

follows:
_ k—1)\_ 1
Y= K Yi-1 +Eyk'
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Thus in neither case is it necessary to store the complete observation
record. In more general problems such as the Kalman filter consi-
dered below, it is usually not possible to obtain simple closed-form
expressions for the estimator, but the recursive solution may still be
viable. From the implementation point of view this is perfectly
satisfactory. The coefficient matrices K(k) can be computed in
advance and then the ‘data processing’ consists of on-line implement-
ation of the very simple algorithm (3.2.3).

3.3 The Kalman filter

The Kalman filter is a recursive algorithm for estimating the state
x, of a state-space model given the values of the observed outputs
V"= Y0,¥1>Y2>--+»Vx-1)- The equations describing the model are

X+ 1 = A(k)x, + B(kyu, + Clk)w, (3.3.1)
Vi = H(k)x, + G(k)w,. (33.2)

Here, {w,} is an [-vector white-noise process with unit covariance
(Ew,wf =1I,) and the initial random variable x, is uncorrelated with
{w,}, with known mean and covariance m,, P, respectively. The
coefficient matrices A(k), etc., may be time-varying, as indicated by
their dependence on k in (3.3.1), (3.3.2). The model is, in this respect,
more general than that of Section 2.4. We assume that

G(k)G™(k) >0 (3.3.3)

(in particular this implies that [ >r, r being the dimension of y,).
If this were not the case then there would exist vectors 4 such that
ATG(k) =0, so that, from (3.3.2),

lTYk =1"H (K)x

ie. certain linear combinations of components of x, could be
measured exactly. Thus (3.3.3) says essentially that all observations
and linear combinations of observations are ‘noisy’.

The sequence u, is the m-vector control input. In this section we
suppose that this is a deterministic sequence. In future sections we shall
wish to consider feedback controls, where u, depends on the observed
outputs y*, but this presents a more delicate situation, consideration
of which we defer to Section 6.3 below.

The example considered in the preceding section is a special case of



