

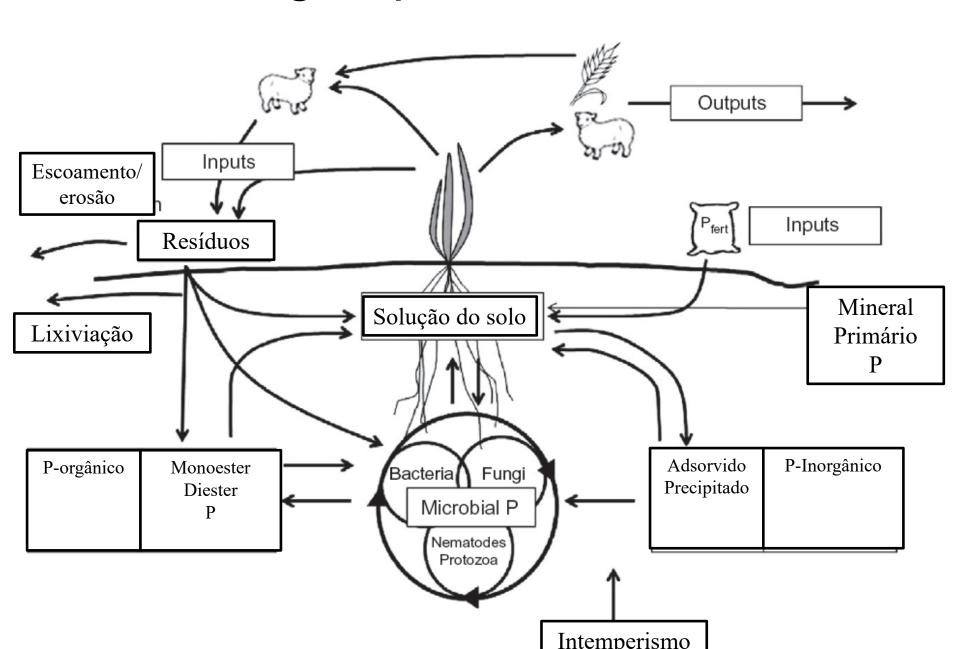
Departamento de Ciência do Solo Laboratório de Microbiologia do Solo

Transformações do **fósforo** e do **enxofre** no solo

Prof. Rafael Vasconcellos

Email: rlfvasc@usp.br

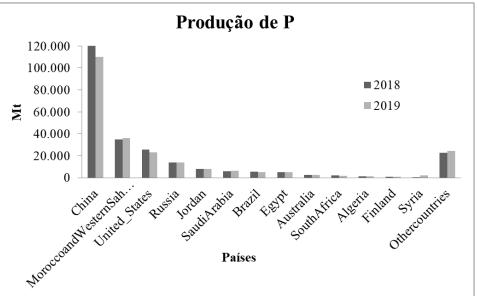
Plano de Aula


- Transformações do fósforo
 - Ciclo Biogeoquímico
 - Formas de P
 - Transformações microbianas
 - Manejo
- Transformações do Enxofre
 - Ciclo Biogeoquímico
 - Reservas de S
 - Formas de Enxofre
 - Transformações microbianas

Competências e Habilidades

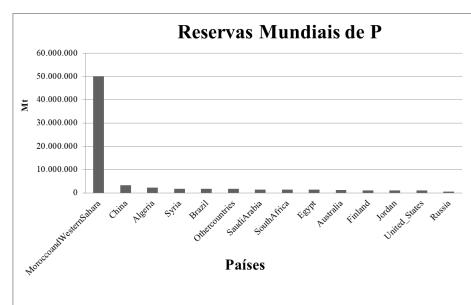
- Conhecer os ciclos do Fósforo e do Enxofre;
- Reconhecer a importância dos microorganismos do solo para a ciclagem do fósforo e do enxofre;
- Entender os processos microbiológicos envolvidos nas transformações dos elementos estudados;
- Reconhecer a importância dos microorganismos para o manejo de fósforo e enxofre nas práticas agrícolas

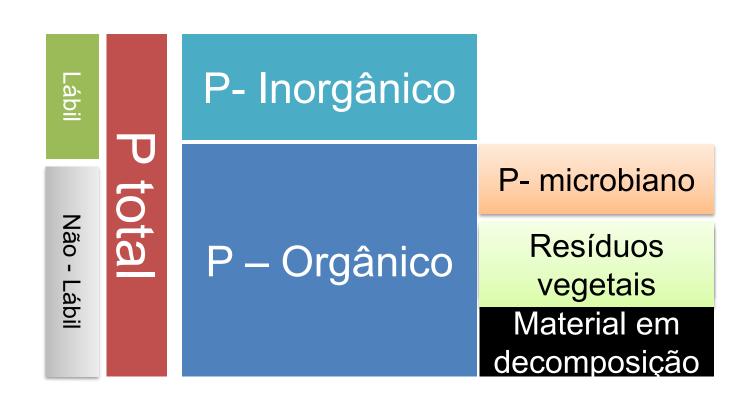
Transformações do Fósforo

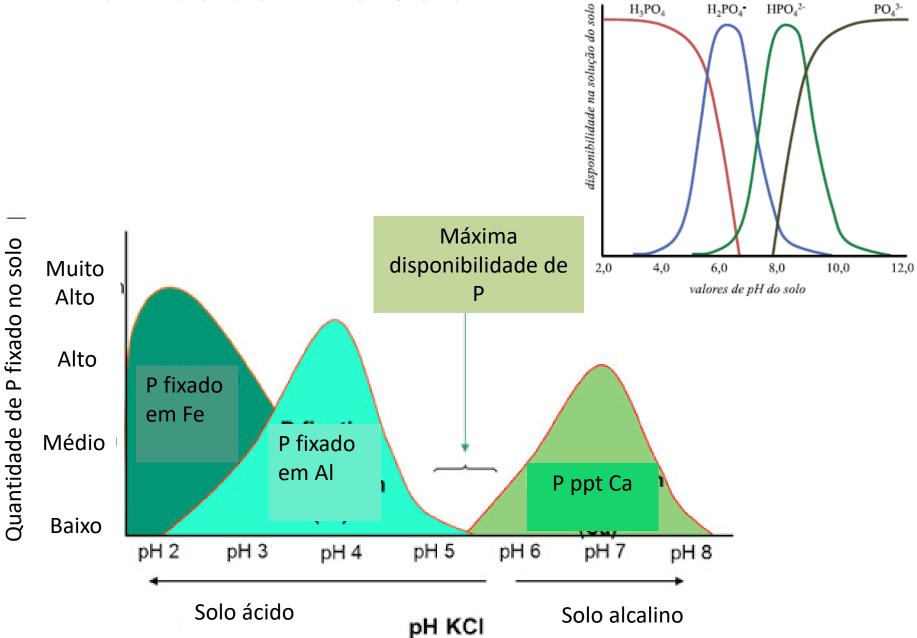

Ciclo Biogeoquímico do Fósforo

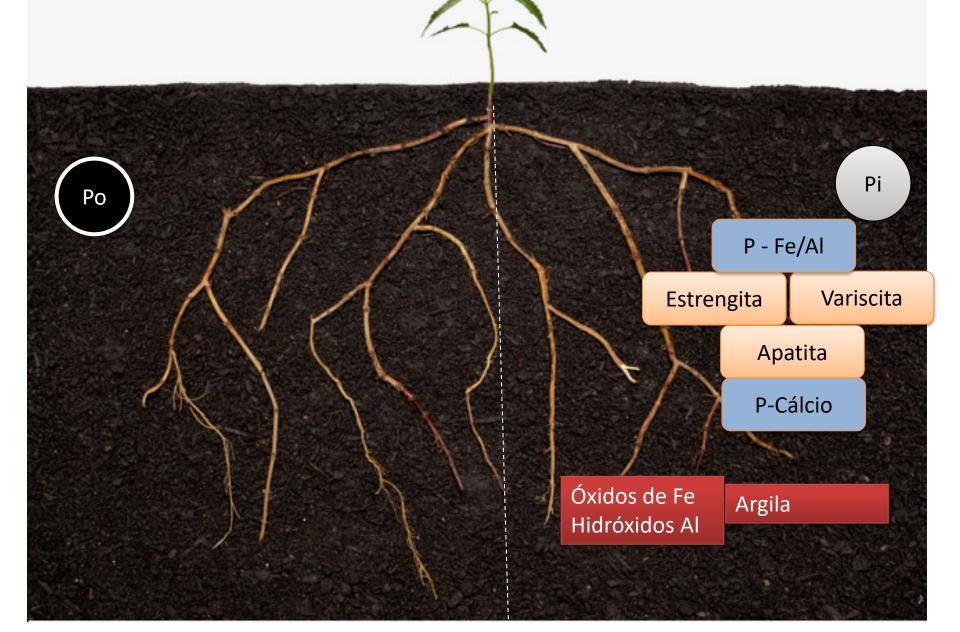
Reservas de Fósforo

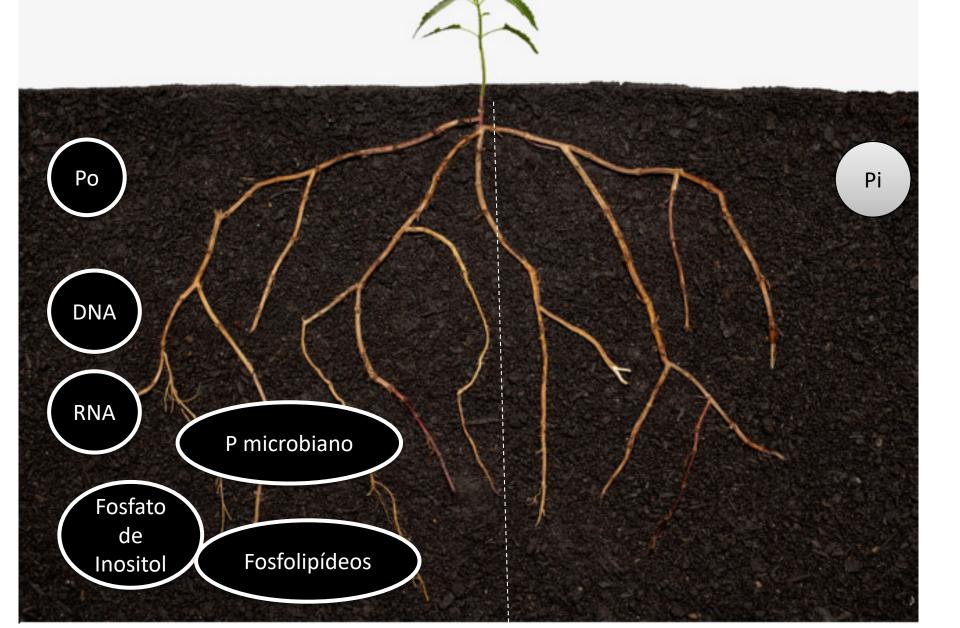
Tabela 10.1 - Reservatórios naturais de fósforo na biosfera (Stevenson, 1994)

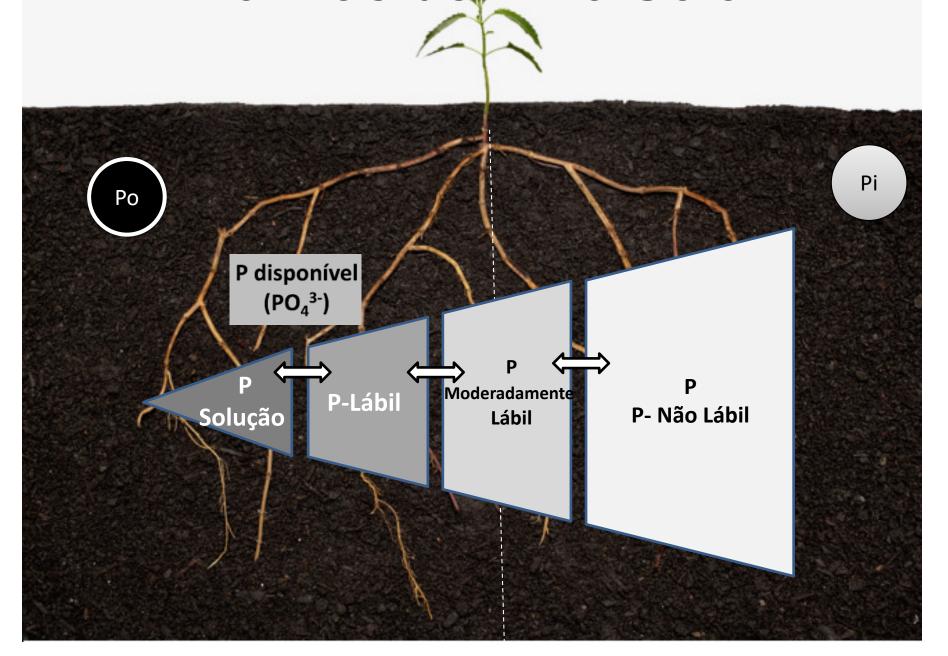

Reservatórios de P	P total x 10 ¹² (kg)						
Oceanos							
Sedimentos	840.000						
Dissolvido (Pi)	80						
Profundeza (detritos)	0,65						
Biota	0,050-0,12						
Terre	estre						
Solo	96-160						
Rochas fosfáticas	19						
Biota	2,6						
Água doce	0,09						

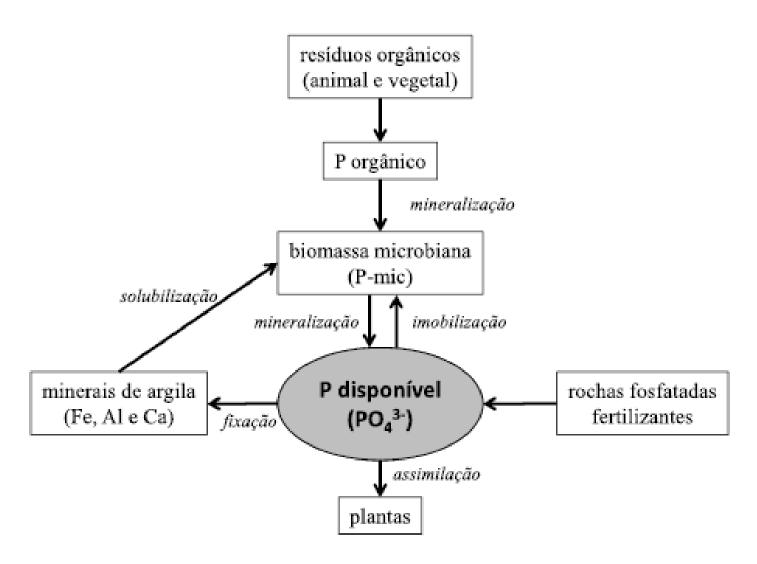



https://pubs.usgs.gov/periodicals/mcs2020/mcs2020.pdf

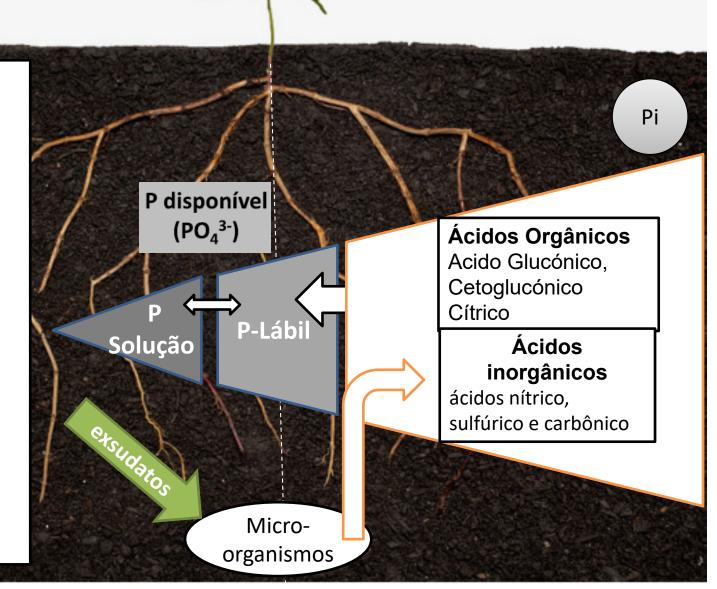

Reserva Mundial : 69 bilhões de toneladas


Exploração do fosfato em Bu Craa, cidade do Saara Ocidental, dominado pelo Marrocos

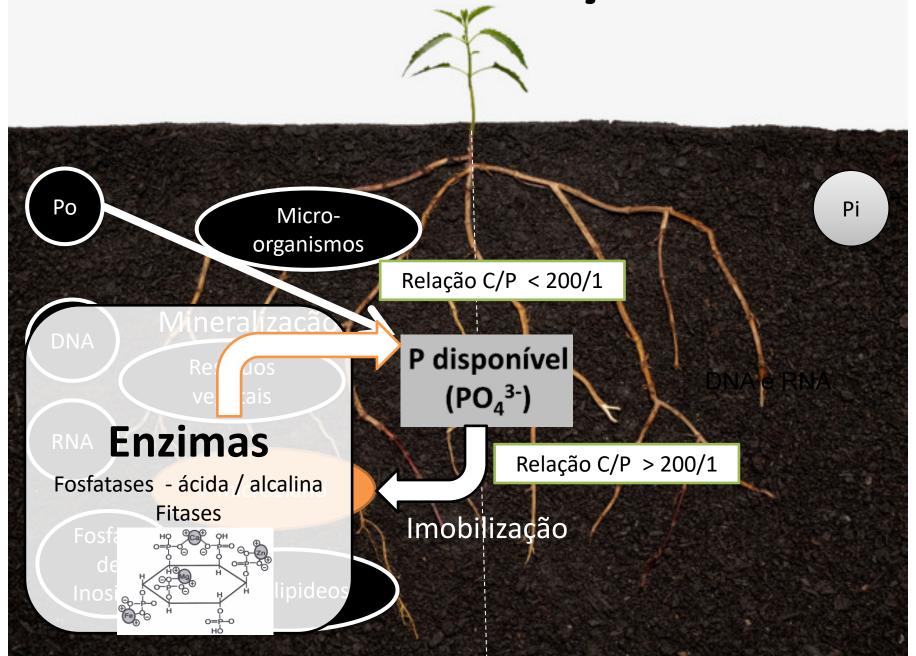




Ciclagem de P no Solo


Mecanismos de solubilização de fósforo

Micro-organismos Bactérias


Bacillus
Micrococcus,
Pseudomonas
Burkholderia,
Rhizobium,
Agrobacterium,
Azotobacter
Erwinia
Streptomyces

Fungos

Aspergillus Penicillium

Mecanismos de mineralização de fósforo

Manejo do P do solo

Manejo do P do solo

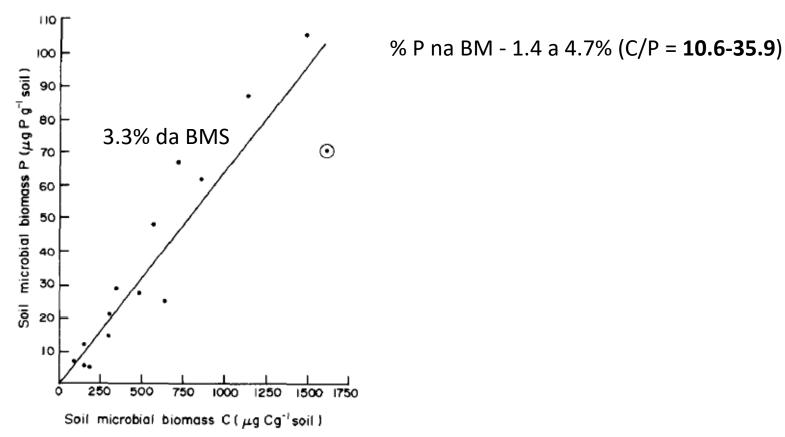
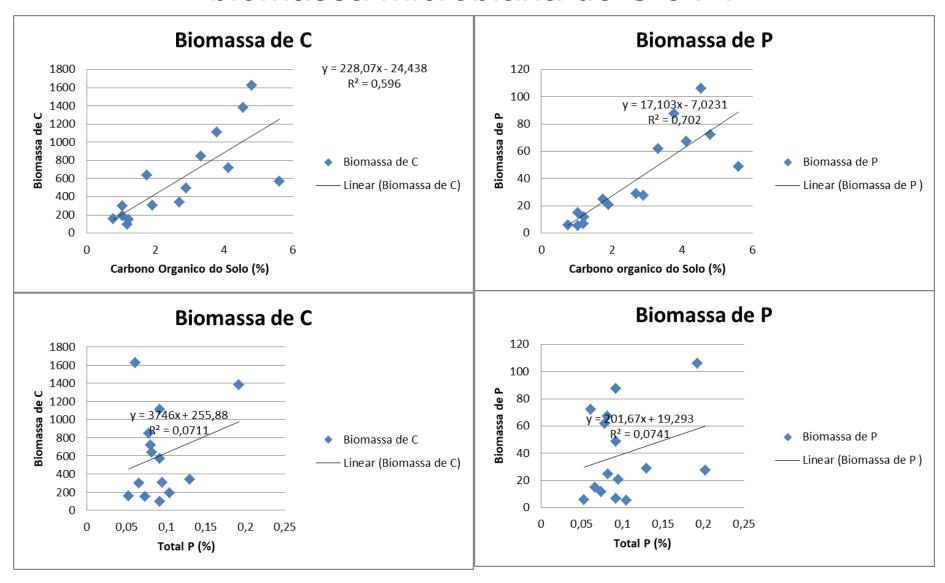


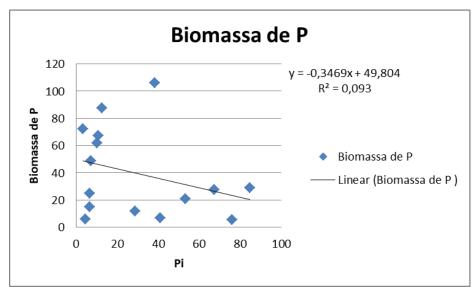
Fig. 1. Relationship between phosphorus and carbon in the soil microbial biomass. Encircled value—see text.

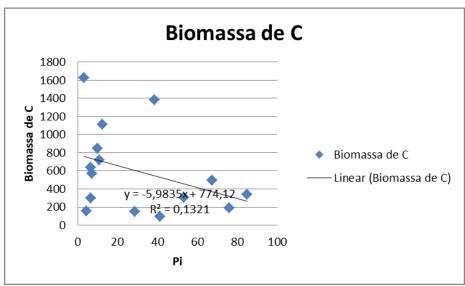
Manejo do P do solo

Table 3. Soil biomass P expressed as a percentage of total soil organic P

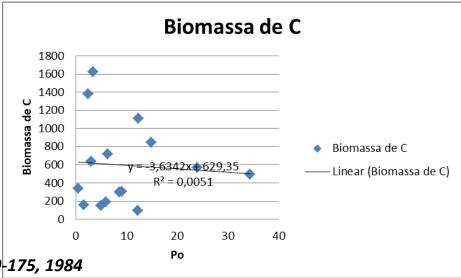

Soil	Agricultural	Total soil organic P	Biomass P	Biomass D as 9/ of
No.	history	(μg P g	Biomass P as % of total soil organic P	
1.	Arable	180	6.0	3.3]
2.	Arable	210	5.3	2.5
11.	Arable	242	7.0	$\frac{2.5}{2.9}$ $\frac{3.0^{2} \pm 0.5}{2.9}$
15.	Arable/grass	810	27.5	3.4)
7.	Arable out of grass	270	21.0	7.8
5.	Grassland	330	72.3	21.9
8.	Grassland	352	61.7	17.5
10.	Grass/clover ley	190	15.0	70
12.	Grassland	210	12.0	$\begin{array}{c} 7.5 \\ 5.7 \end{array} \} 13.7^{a} \pm 3.$
13.	Grassland	500	24.8	5.0
14.	Grassland	200	48.6	24.3
4.	Deciduous woodland	350	67.2	19.2

^{*}Mean and standard error.


Soil No.	Site and cropping history	Total N (%)	Organic C	Total P -	P extracted by 0.5 M NaHCO ₃ from non-fumigated soil		133
1.	Broadbalk Plot 03	0.108	0.77	0.053	()	rg P g ⁻¹ so	il)
2.	(Continuous wheat) Broadbalk Plot 08	0.108	1.04	0.105	P,	Pe	P,
	(Continuous wheat)			,	4.3	1.6	5.9
3.	Broadbalk Plot 022	0.250	2.69	0.130			
	(Continuous wheat)		4.5		76.0	5.9	81.9
4.	Broadbalk Wilderness (Deciduous woodland)	0.371	4.13	0.081	84.8	0.5	85.3
5.	Park Grass Plot 3a	0.453	4.81	0.061	10.8	6.3	17.1
6.	(Unmanured permanent grass Park Grass Plot 4/1a	0.423	4.55	0.192	3.1	3.4	6.5
7.	(Permanent grass) Highfield Permanent Arable	0.186	1.91	0.095	38.3	2.5	140.8
8.	(Arable rotation) Highfield Permanent Grass	0.322	3.32	0.078	53.2	9.1	62.3
9.	(Permanent grass) Non-experimental Permanent	0.357	3.78	0.092	10.0	14.9	24.9
10.	Grassland (Highfield) Woburn Long Term Phospha	0.120	1.04	0.066	12.4	12.3	24.7
	(Nil Plot) (grass/clover ley)				6.5	8.6	15.1
11.	Woburn Permanent Arable	0.119	1.19	0.092	41.1	12.2	
12.	(Arable rotation) Woburn Permanent Grass	0.115	1.21	0.074	41.1	12.2	53.3
12.	(8 yr grass ley)	0.115	1.21	0.074	28.6	5.0	33.6
13.	Saxmundham Rotation I (Bonemeal Plot) (grass ley)	0.194	1.76	0.082	6.5	3.1	9.6
14.	Counteswells (Permanent grass)	0.390	5.61	0.092	7.2	23.9	31.1
15.	Tarves (Barley/grass-clover/roots	0.332	2.90	0.202	67.4	34.4	101.8
	rotation)						


			anu 1 t
Soil	Biomass C	Biomass P	% P in biomass*
No.	(μg g	soil)	
1.	158	6.0	1.9
2.	190	5.3	1.4
3.	342	28.9	4.2
4.	715	67.2	4.7
5.	1627	72.3	2.2
6.	1379	106.0	3.8
7.	305	21.0	3.4
8.	847	61.7	3.6
9.	1112	87.6	3.9
10.	300	15.0	2.5
11.	99	7.0	3.5
12.	148	12.0	4.l
13.	635	24.8	2.0
14.	569	48.6	4.3
15.	492	27.5	2.8
Mean and	standard error		
Slope of re	$3.25^{b} \pm 0.25^{c}$		

Qual a relação do Carbono e Fósforo do solo com a biomassa microbiana de C e P?



Qual a relação do Fósforo Orgânico e Inorgânico do solo com a biomassa microbiana de C e P?

Fluxo anual de P

Table 4. The soil biomass phosphorus contents and calculated annual P flux through the biomass in the 0-10 cm soil layer. Crop P removals given where available

Soil No.	Agricultural history	Soil weight (t ha ⁻¹ < 6.24 mm in a 10 cm soil depth) ^b	Biomass P (kg P ha ⁻¹)	Annual biomass P flux (kg P ha ⁻¹ yr ⁻¹) ^a	P removed in crop (kg P ha ⁻¹ yr ⁻¹
1	Arable	1135	6.8	2.7	9.3
2	Arable	1048	5.6	2.2	22.8
3	Arable	948	27.4	11.0	28.8
7°	Arable out of grass	1200	25.2	$\{0.1\}$ $\{6.8^{d} \pm 1.7\}$	ND
11°	Arable	1620	11.3	4.5	ND
15	Arable/grass	940	25.9	10.4 🕽	ND
5	Grassland	952	68.8	27.5	8.0
6	Grassland	952	100.9	40.4	12.0
8c	Grassland	1050	64.8	25.9	ND
9	Grassland	1050	92.0	36.8 $22.7^{d} \pm 4.3$	ND
10	Grassland	1500	22.5	9.0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	9.0
12 ^c	Grassland	1500	18.0	7.2	ND
13	Grassland	1522	37.8	15.1	17.8
14	Grassland	1018	49.5	19.8]	ND
4	Woodland	808	54.3	21.7	NA

Qual o impacto do plantio convencional e rotação de cultura sobre o P da biomassa?

Table 2 Microbial biomass C, N, P and S as affected by different tillage and crop rotation systems

Crop rotation	Microbial b	Microbial biomass										
	С	С		N		P						
	CT	NT	CT	NT_plus	СТ	NT	СТ	NT				
	μg g ⁻¹ soil											
0- to 5-cm dep	th											
S/W ^a M/W C/W	223 b ^b A ^c 181 bA 145 bA	369 aA 389 aA 372 aA	23.4 bA 17.5 bA 17.2 bA	33.6 aA 27.6 aA 28.3 aA	10.8 aA 9.0 bB 10.7 bA	12.1 aB 12.1 aB 18.3 aA	17.0 aA 16.8 aA 12.2 aA	8.9bB 12.7aA 12.0aAB				
5- to 10-cm de	pth											
S/W M/W C/W	105 aB 195 aA 105 bB	154 aB 185 aAB 268 aA	14.1 bB 19.9 aA 8.4 bC	23.7 aA 19.3 aA 22.4 aA	5.6 aB 9.0 aA 8.6 aA	5.6 aB 8.2 aAB 10.0 aA	14.8 aB 19.7 aA 16.3 aAB	16.5aA 14.5bAB 10.1bB				
10- to 20-cm d	epth											
S/W M/W C/W	220 aA 225 aA 111 bA	269 aA 195 aA 195 aA	25.4 aA 22.0 aA 11.5 aB	24.4 aA 16.7 aA 15.5 aA	8.8 aB 12.0 aA 8.0 aB	8.4 aA 7.3 bA 8.4 aA	9.5 bB 14.0 aA 7.2 aB	14.2aA 13.1aA 13.2aA				

^a S Soybean, W wheat, M maize, C cotton

^b Values followed by the same lower case letter comparing tillage within crop rotation are not significantly different at $P \le 0.05$

^c Values followed by the same upper case letter comparing crop rotations within tillage regime are not significantly different at $P \le 0.05$

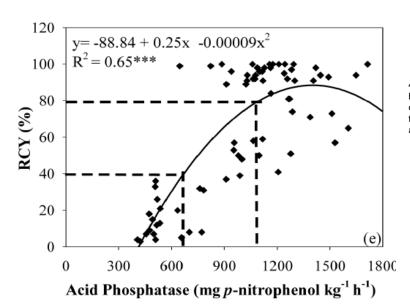
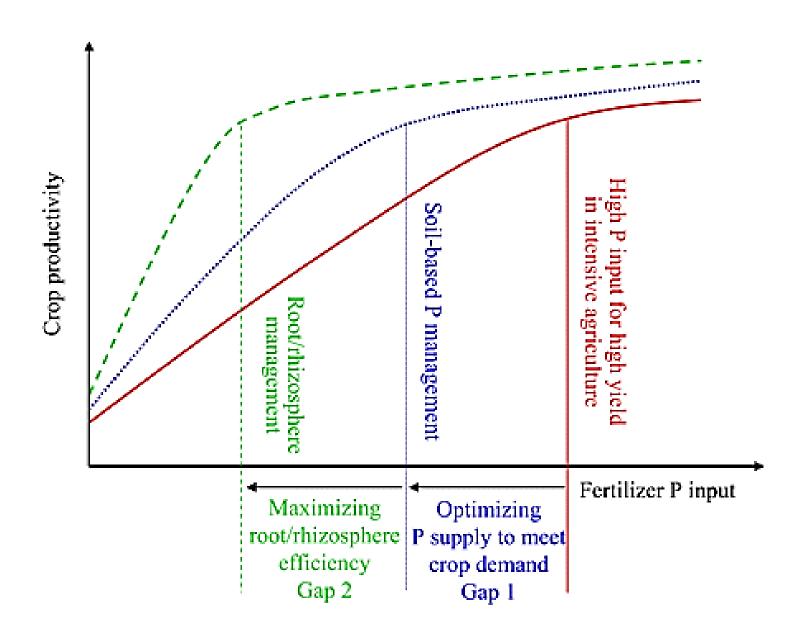

Enzimas do P

Table 2. Enzyme activities in soils under different tillage and crop rotations systems.

Crop	Amy	ylase	Cellu	ılase	Arylsu	lfatase	Acid Phos	sphatase	Alkaline P	hosphatase
Rotation ¹	CT	NT	CT	NT	CT	NT	CT	NT	CT	NT
		1	mg GLU g	¹ d ⁻¹			mg	PNP g-1 h	-1	
	* 1+0, * 0 a				0 -	- 5 cm				
S/W	461b2A3	670 aA	118 aA	150 aA	8.9 bA	18.7 aB	621 bA	792 aA	147 bA	186 aA
M/W	451 bA	750 aA	94 bA	193 aA	8.4 bA	32.7 aA	572 bAB	832 aA	127 bA	207 aA
C/W	490 bA	929 aA	86 bA	220 aA	7.6 bA	$28.0\mathrm{aAB}$	$508\mathrm{bB}$	852 aA	86 bB	187 aA
					5 -	10 cm				
S/W	392 bB	648 aA	67 aB	96 aA	8.0 bB	20.4 aA	482 bB	633 aA	103 bB	160 aA
M/W	730 aA	595 bA	139 aA	144 aA	12.5 bA	27.1 aA	608 aA	658 aA	133 aA	159 aA
C/W	350 bB	615 aA	87 aB	98 aA	4.1 bC	26.3 aA	495 bB	711 aA	75 bB	161 aA
					10	– 20 cm				
S/W	496 bAB	601 aA	92 aA	105 aA	6.1 bA	20.7 aB	615 aA	688 aA	134 aA	152 aA
M/W	546 bA	587 aA	105 aA	118 aA	6.7 bA	25.9 aA	625 bA	777 aA	142 bA	191 aA
C/W	446 bB	573 aA	82 aA	90 aA	4.2 bA	19.2 aB	458 bB	685 aA	100 aB	139 aA

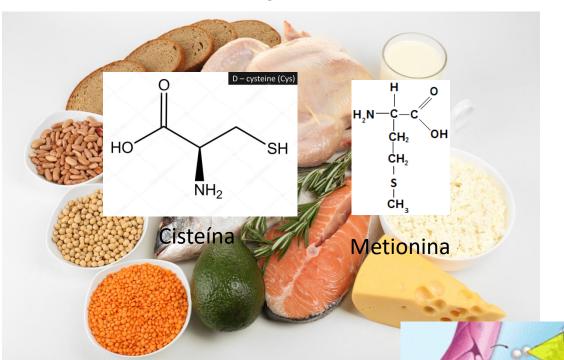
S: Soybean; W: Wheat; M: Maize; C: Cotton; ² Values within a row of the same depth followed by same lower case letter comparing tillage are not significantly different at P≤0.05; ³ Values within a column of the same depth followed by same upper case letter comparing crop rotation are not significantly different at P≤0.05.

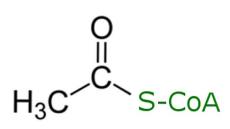
Enzimas do P

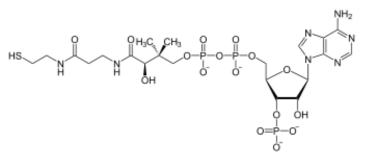


4. Relationships among relative cumulative yield (RCY) and (a) microbial biomass C (MBC), (b) basal respiration, (c) cellulase, d) b-glucosidase, (e) acid phosphatase, and (f) arylsulfatase. The data points represent the three field replicates of the 24 selected treatments. Dashed lines represent the limits of the interpretative classes: £40% RCY: low, 41 to 80% RCY: moderate and > 80% RCY: adequate. ***Significant at P < 0.001.

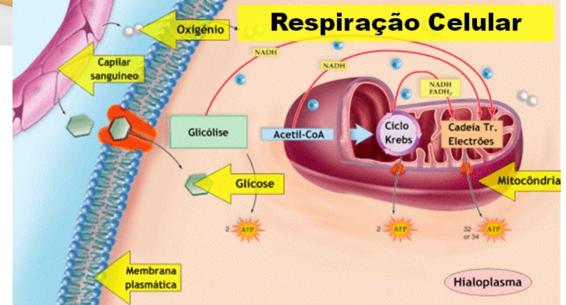
Table 4. Interpretative classes for microbial indicators in a clayey Red Latosol of the Cerrado region (0–10-cm depth) as a function of the relative cumulative yield (RCY).

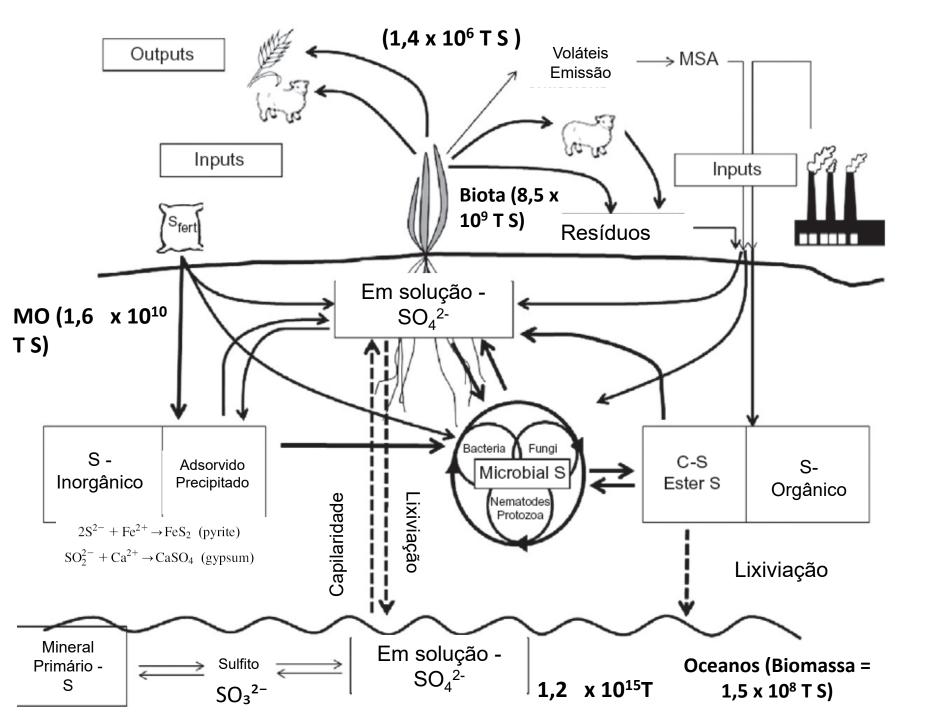

Adiquabial indicator	Interpretative class as a function of RCY†				
Microbial indicator	Low	Moderate	Adequate		
Microbial biomass C, mg C kg ⁻¹ soil	≤215	216–375	>375		
Basal respiration, mg C kg ⁻¹ soil	≤40	41–90	>90		
Acid phosphatase, mg p-nitrophenol kg ⁻¹ soil h ⁻¹	_ ≤680	681–1160	>1160		


[†] Interpretative classes are: <40% RCY: low; 41–80% RCY: moderate; and >80% RCY: adequate.


TRANSFORMAÇÕES DO ENXOFRE

Importância do Enxofre




Acetil-Coenzima A

Coenzimas: tiamina, biotina

e coenzima A

Microbiota do Solo - S

- Acidothiobacillus
- Sulfobacillus,
- Thiomicrospira
- Achromatium
- Beggiatoa
- Thermothrix

Quimioautotróficos obrigatórios ou facultativos

$$S^{0} + 1.5O_{2} + H_{2}O \rightarrow SO_{4}^{2-} + 2H^{+}$$

 $H_{2}S + 1/2O_{2} \rightarrow S^{0} + H_{2}O$

- Chlorobium
- Chromatium
- Ectothiorhodospira
- Thiopedia
- Rhodopseudomonas

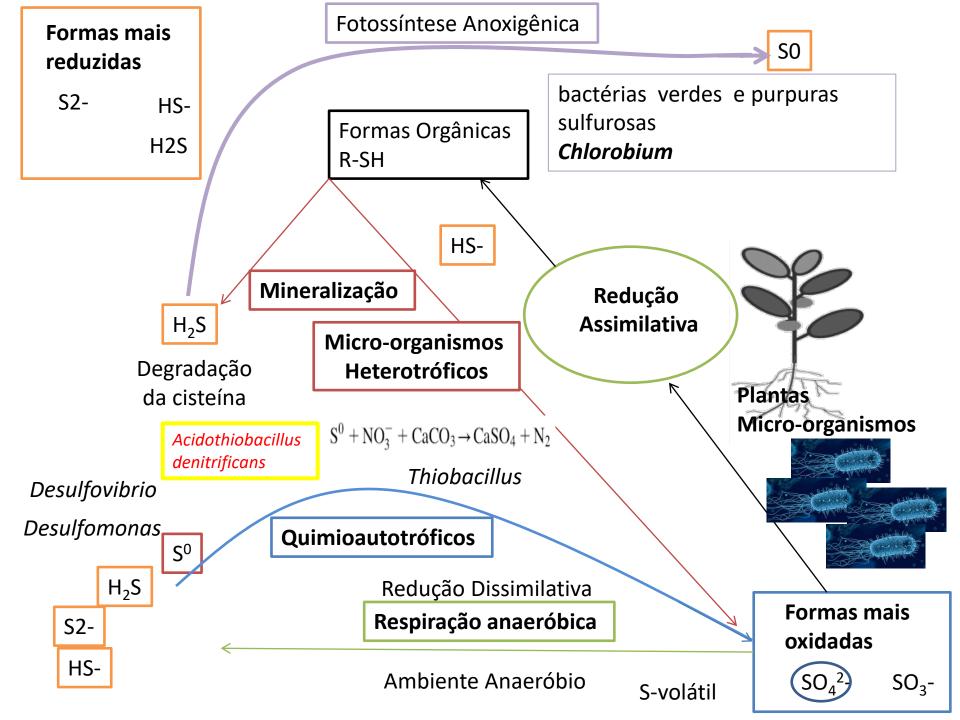
Fototróficos anaeróbicos

$$CO_2 + H_2S \rightarrow S^0 + fixed carbon$$

- Desulfobacter
- Desulfobulbus
- Desulfococcus
- Desulfonema
- Desulfosarcina
 Desulfotomaculum
- Desulfovibrio

Quimiheterotróficos anaeróbicos

$$CH_3COOH + 2H_2O + 4S^0 \rightarrow 2CO_2 + 4S^{2-} + 8H^+$$


$$4H_2 + SO_4^{2-} \rightarrow S^{2-} + 4H_2O$$

$$4CH_3OH + 3SO_4^{-2} \rightarrow 4CO_2 + 3S^{2-} + 8H_2O$$

Estado de oxidação do Enxofre

Estado de oxidação	Espécie	
+6	H ₂ SO ₄ , XSO ₄	
+4	so₂ ↑	
+2	so ↑	
+1	HSO ↑	
0	s ↑	
-1	SH ↑	
-2	H ₂ S, COS, CS ₂	

Martins, Cláudia Rocha, & Andrade, Jailson Bittencourt de. (2002). Química atmosférica do enxofre (IV): emissões, reações em fase aquosa e impacto ambiental. *Química Nova*, *25*(2), 259-272. https://dx.doi.org/10.1590/S0100-40422002000200015

Enzimas do S

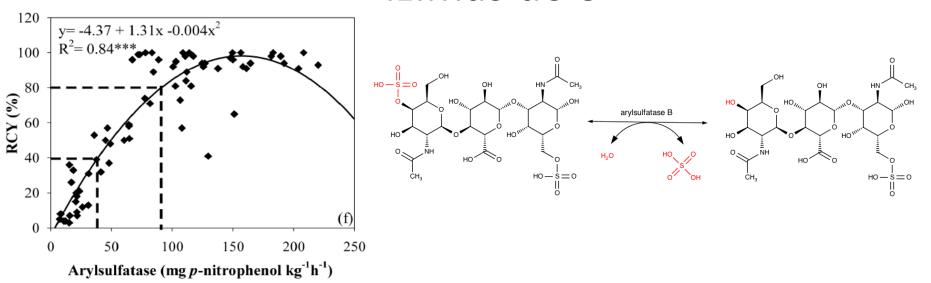


Table 4. Interpretative classes for microbial indicators in a clayey Red Latosol of the Cerrado region (0–10-cm depth) as a function of the relative cumulative yield (RCY).

Address Interest to all and an	Interpretative class as a function of RCY†					
Microbial indicator	Low	Moderate	Adequate			
Microbial biomass C, mg C kg ⁻¹ soil	≤215	216–375	>375			
Basal respiration, mg C kg ⁻¹ soil	≤40	41–90	>90			
	_					
Arylsulfatase, mg p-nitrophenol kg ⁻¹ soil h ⁻¹	≤40	41–90	>90			

[†] Interpretative classes are: \leq 40% RCY: low; 41–80% RCY: moderate; and >80% RCY: adequate.

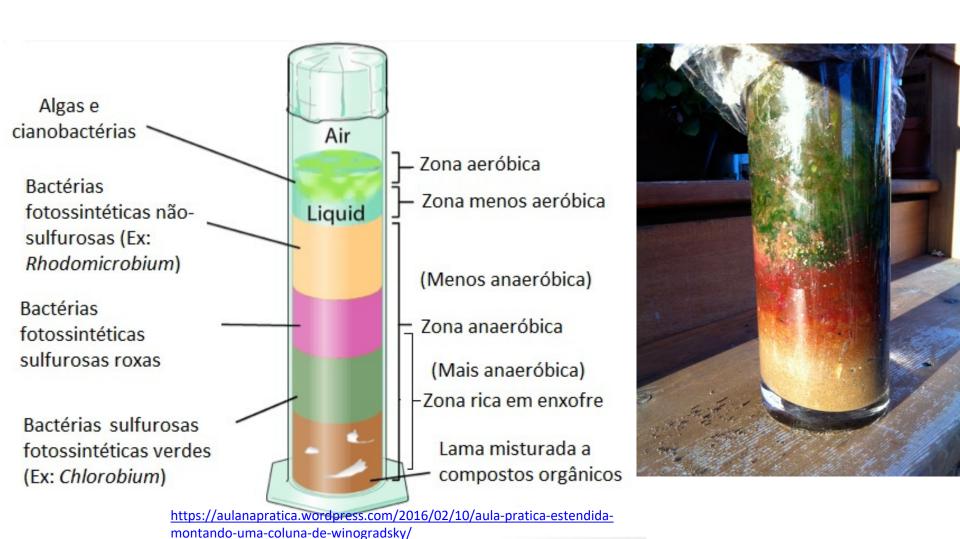

Qual impacto do manejo sobre a atividade da enzima Arylsulfatase

Table 6
Microbial biomass-C and enzymatic activity in soils under different managements in Brazil.

Vegetation	MB-C $\mu g g^{-1}$	Carbon cycle		Nitrogen cycle	:	Phosphorus cycle		Sulfur cycle	Reference
type		β-glucosidase (EC 3.2.1.21) μg PN g ⁻¹ h ⁻¹	Cellulase (EC 3.2.1.4) μg GLg ⁻¹ d ⁻¹	Urease (EC 3.5.1.5) μg N g ⁻¹ h ⁻¹	Amidase (EC 3.5.1.4) μg GLg ⁻¹ d ⁻¹	Aci. phosphatase (EC 3.1.3.2) μg PN g ⁻¹ h ⁻¹	Alk. phosphatase (EC 3.1.3.1) μg PN g ⁻¹ h ⁻¹	Arylsulfatase (EC 3.1.6.1) μg PN g ⁻¹ h ⁻¹	
Caatinga	102	64	nd	nd	nd	335	166	nd	Wick et al. (2000)
Buffel grass	79	42	nd	nd	nd	264	124	nd	
Joazeiro	159	187	nd	nd	nd	389	384	nd	
Umbuzeiro	124	136	nd	nd	nd	403	199	nd	
Cerrados	402	47	nd	nd	nd	383	nd	99	Matsuoka et al. (2003)
Vineyard	153	41	nd	nd	nd	291	nd	34	
NT	99	52	nd	nd	nd	281	nd	17	
Cerrados	444	26	nd	nd	nd	868	nd	73	Mendes et al. (2003)
NT	214	52	nd	nd	nd	499	nd	48	
CT	125	24	nd	nd	nd	257	nd	16	
CT 1	146	nd	118	nd	461	621	147	9	Balota et al. (2004b)
CT 2	153	nd	94	nd	451	572	127	8	
CT 3	170	nd	86	nd	490	508	86	8	
NT 1	286	nd	150	nd	670	792	186	19	
NT 2	303	nd	193	nd	750	832	207	33	
NT 3	269	nd	220	nd	929	852	187	28	
NT	432	783	nd	384	nd	601	nd	nd	Trannin et al. (2007)
Pasture	329	863	nd	154	nd	692	nd	nd	
Cerrados	480	322	nd	nd	nd	374	191	nd	Jakelaitis et al. (2008)
Pasture	133	127	nd	nd	nd	317	33	nd	
NT	126	145	nd	nd	nd	354	148	nd	

nd = not determined in the study; PN = p-nitrophenol; GL = glucose; N = N-NH₄; Aci. = acid; Alk. = alkaline; NT, no-tillage; CT, conventional tillage. 1,2 and 3 are different crop rotations, whose plant species were not informed. Plant species: Joazeiro (Ziziphus joazeiro Mart.); Umbuzeiro (Spondias tuberosa Arr. Com.), Buffel grass (Cenchrus ciliaris L.); Vineyard (within lines) (Vitis vinifera L.); Eucaliptus (Eucaliptus spp); Pasture (Brachiaria spp.).

Coluna de Winogradsky

Exercícios

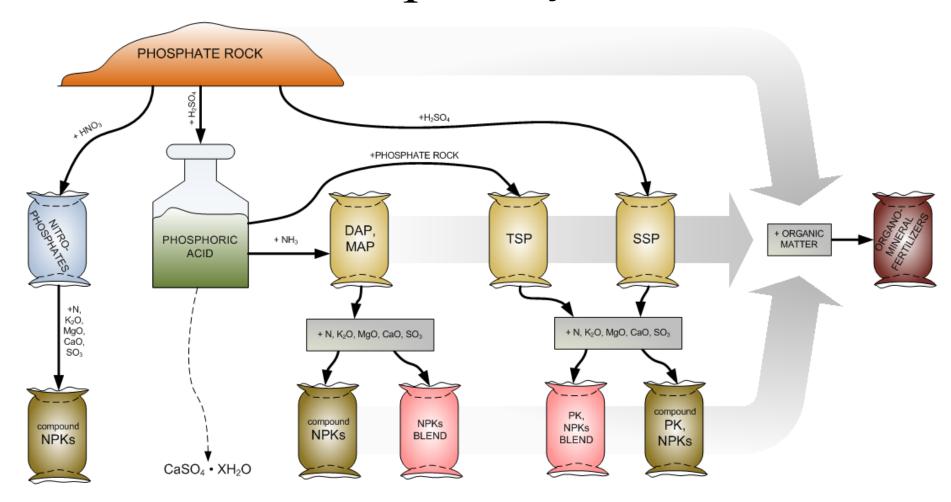
- Como os micro-organismos agem sobre o fósforo do solo e qual importância (econômica e ambiental) desses para o manejo de P no solo?
- 2. Como manejar a microbiota do solo quanto ao P?

Exercícios

- 1. O enxofre elementar deve ou não deve ser utilizado como fertilizante? Por que?
- 2. Como a arilsulfatase pode ser utilizada em estudos de solo? O que ela representa?

Table 3 Microbial biomass ratio (C:N:S:P) and C_{mic}/C_{org} percentage as affected by different tillage and crop rotations systems^a

Crop rotation	C:N:S:P Ratios		C _{mic} /C _{org}	
	CT	NT	CT	NT
			%	
0–5 cm				
S/W M/W C/W	21:2:2:1 20:2:2:1 14:2:1:1	30:3:1:1 32:2:1:1 22:2:1:1	1.5 a ^b A ^c 1.2 bA 1.0 bA	1.8 aA 1.7 aA 1.8 aA
5-10 cm				
S/W M/W C/W	19:3:3:1 22:2:2:1 12:1:2:1	27:4:3:1 22:2:2:1 27:2:1:1	0.8 aB 1.3 aA 0.8 bB	0.9 aA 1.0 aA 1.4 aA
10-20 cm				
S/W M/W C/W	25:3:1:1 19:2:1:1 14:1:1:1	32:3:2:1 27:2:2:1 23:2:2:1	1.5 aA 1.4 aA 0.8 aA	1.7 aA 1.1 aB 1.2 aAB


^a S Soybean, W wheat, M maize, C cotton

Qual o impacto do plantio convencional e rotação de cultura sobre o P da biomassa?

^b Values followed by the *same lower case letter* comparing tillage within crop rotation are not significantly different at $P \le 0.05$

^c Values followed by the *same upper case letter* comparing crop rotations within tillage regime are not significantly different at $P \leq 0.05$

Processo de produção de P fert

