- Comando measure .meas
 - Ele permite avaliar grandezas elétricas definidas pelo usuário.
 - O resultado é mostrado no arquivo de log, pelo
 View "Spice Error Log" ou "Crtl + L"

T	LTspice IV - [Draft3.asc]			
🝷 Eile Edit Hierarchy	View Simulate Tools Window	v <u>H</u> elp		
🛛 🖻 📽 🔛 😭	🔍 Zoom <u>A</u> rea C	trl+Z		
	🔍 Zoom <u>B</u> ack — — — — — — — — — — — — — — — — — — —	trl+B		
	💐 Zoom to Eit 🛛 S	ipace		
	🔍 Pan			
	Show Grid Cl	trl+G		
	Mark Unconn. Pins	'U'		
	Mark Text Anchors	'A'		
	Bill of Materials	Þ		
	Efficiency <u>R</u> eport	•		
	SPICE Netlist			
	😭 SPICE Error Log C	ltrl+L		
	Visible Traces			

• O comado MEAS permite:

- Encontrar um valor específico num determinado ponto da variável principal (eixo x) ou quando uma condição específica for satisfeita.
- Encontrar os valores; máximo, mínimo, de pico a pico, RMS, médio.
- Obter valores em um intervalo específico do eixo x (variável).

- Há duas formas diferentes de uso do comando .MEASURE.
 - Uma utiliza os pontos da variável x (abscissa). Variável independente do eixo x, por exemplo tempo na análise transiente .tran
 - A outra utiliza a faixa de valores (range) sobre o eixo x (variável)

- A sintase utilizada para medir um valor em relação a um ponto específico é:
 - .MEAS[SURE] [AC|DC|OP|TRAN|TF|NOISE] <name>
 - + [<FIND|DERIV|PARAM> <expr>]
 - + [WHEN <expr> | AT=<expr>]]
 - + [TD=<val1>] [<RISE|FALL|CROSS>=[<count1>|LAST]]
- As opções das análise (AC,DC,TRAN, etc) devem ser as mesmas da análise sendo efetuada.
 - Isto permite utilizar o comando somente para algumas das análises que estão sendo realizadas.
 - Para cada tipo de análise há opções diferentes

- A sintase utilizada para medir um valor em relação a um ponto específico é:
 - .MEAS[SURE] [AC|DC|OP|TRAN|TF|NOISE] <name>
 - + [<FIND|DERIV|PARAM> <expr>]
 - + [WHEN <expr> | AT=<expr>]]
 - + [TD=<val1>] [<RISE|FALL|CROSS>=[<count1>] LAST]]
- Deve ser dado um nome para cada medida <name>.
- A utilização dos outros parâmetros veremos via exemplos
- Utilizaremos um circuito RC para isto
 - R= 10K e C=1uF, τ=10ms

.MEAS[SURE] [AC|DC|OP|TRAN|TF|NOISE] <name>

- + [<FIND|DERIV|PARAM> <expr>]
- + [WHEN <expr> | AT=<expr>]]
- + [TD=<val1>] [<RISE|FALL|CROSS>=[<count1>|LAST]]

- .MEAS[SURE] [AC|DC|OP|TRAN|TF|NOISE] <name>
- + [<FIND|DERIV|PARAM> <expr>]
- + [WHEN <expr> | AT=<expr>]]
- + [TD=<val1>] [<RISE|FALL|CROSS>=[<count1>|LAST]]

 Se for utilizado um único tipo de análise não é necessário incluir isto no comando .meas, como mostrado a seguir

exemplos-measure.asc		SPICE Error Log: Z:\home\mauricio\Fito\E ×
		Circuit: * Z:\home\mauricio\Fito\Eletronica
		Per .tran options, skipping operating point
	.meas tran Vx 1 ind v(out) at=10ms	vx: v(out)=0.631526 at 0.01
in A out	need tranks find i(C4) when start) = 0	iy: i(c1)=2e-005 at 0.0161126
	.nieas tran ly find I(C1) when V(out)=.8	iyy: i(c1)=1e-005 at 0.0230401
V1 ^{10k} C1	.m.as lyy find (C1) when v(out)=.9	
		Date: Tue Apr 08 15:26:43 2014
1µF		Total elapsed time: 0.070 seconds.
PULSE(0 1 .1ns .1ns .1ns 100ms 200ms)		tnom = 27
		temp = 27
tran Duin		method = modified trap
.tran .2 uic		totiter = 2190
		traniter = 2190
		tranpoints = 1096
		accept = 1093
-		

 Exemplo: Implemente o arquivo de simulação acima e utilize o comando .meas para tempos de 5ms, v(out)=.36 e .5

- Comando .meas e a opção deriv
 - .MEAS[SURE] [AC|DC|OP|TRAN|TF|NOISE] <name>
 - + [<FIND|DERIV|PARAM> <expr>]
 - + [WHEN <expr> | AT=<expr>]]
 - + [TD=<val1>] [<RISE|FALL|CROSS>=[<count1>|LAST]]
- Ela calcula a derivada da expressão.
 - Poder se utilizada para uma determinada tensão
 - Ou pode ser utilizado para um determinado tempo

Comando .meas e deriv

- Exercício 2: No circuito a seguir utilize o comando .meas para verificar os seguintes valores:
 - Tensão no capacitor nos tempos de 2ms e 3ms
 - Corrente no capacitor para o tempo de 4,5ms
 - Derivada da tensão quando Vc1=6V quando o tempo for de 1,1ms

- A segunda forma de utilização do comando é sobre a faixa de valores da variável principal, eixo x da seguinte forma:
 - .MEAS [AC|DC|OP|TRAN|TF|NOISE] <name>
 - + [<AVG|MAX|MIN|PP|RMS|INTEG> <expr>]
 - + [TRIG <lhs1> [[VAL]=]<rhs1>] [TD=<val1>]
 - + [<RISE|FALL|CROSS>=<count1>]
 - + [TARG <lhs2> [[VAL]=]<rhs2>] [TD=<val2>]
 - + [<RISE|FALL|CROSS>=<count2>]
- As opções das análise são (AC, DC, TRAN, TF e NOISE)

• As opção determinam:

- AVG Calcula o valor médio da expressão <expr>
- MAX Procura o valor máximo da expressão <expr>
- MIN procura o valor mínimo da expressão <expr>
- PP Procura o valor de pico-a-pico de <expr>
- RMS Calcula o valor RMS da expressão <expr>
- INTEG Calcula a integral da expressão <expr>

 Verificaremos a aplicação dos comandos utilizando um exemplo com um retificador de meia onda

- Utilizaremos os seguintes comandos para medir valor rms, pico-pico e médio
 - Os valores serão obtidos na entrada (nó ac) e na saída (nó dc)

.meas Vx1 rms v(ac)
.meas Vx2 pp v(ac)
.meas Vy1 avg v(dc)
.meas Vy2 pp v(dc)

• Os resultados são:

- Exercício 3: Utilize o circuito retificador a seguir. Inclua um capacitor de 470uF em paralelo com o resistor R1, carga.
- Utilize o comando measure para obter o valor médio (Vdc) e o ripple do circuito

