AGA0414 Scheduling

Prof. Alessandro Ederoclite

What is a survey?

Hard to get a good definition. One could be:

An observation which takes a considerable amount of telescope time.

Two main types:

1. "Pencil beam": observing one field for a long time, e.g. the Hubble Deep Field
2. "Wide Field Surveys": observing thousands of square degrees (e.g. SDSS)

Survey \#1

Given 10 stars https://en.wikipedia.org/wiki/Solar analog :

- When is it the best moment to observe each of them?
- Is there a good date to observe most of them?
- Assume that it takes 20minutes (including overheads) to observe each of them, how long would it take to observe them all?

Starobs

Optimum observing time, Mauna Kea Observatory
204.5317E 19.8250, year 2019

Sunlass hours above altitugust 55°
Circles above frame represent Full Moon and the "c" symbol on a curve means the Moon is closer than 15° The thick dotted line above the curves represents the total sunless hours for each day of the year

Mode	Starobs ${ }^{\sim}$
Night	$20 \leqslant$ March $2019 \leqslant$ or date when the local night starts. Staralt,
	Startrack only.
Observatory	Mauna Kea Observatory (Hawaii, USA) $\widehat{\text {) }}$
	Select one above or specify your own site with this format:
	Longitude (${ }^{\circ} \mathrm{E}$) Latitude(${ }^{\circ} \mathrm{N}$) Altitude(metres) UT-offset(hours)
	Ex.: $289.2767-30.2283$ 2725-4
Coordinates	Formats can be any of these: name hh mm ss $\pm d \mathrm{~mm}$ ss
	name ddd.ddd dd.ddd
	name must be a single word with no dots, avoid using single numbers. Every entry must be in the same format, do not use different formats with different entries. We recommmend a maximum of 100 targets per submission.
	$\begin{array}{llllllllll}18 \text { Sco } & 16 & 15 & 37.3 & -08 & 22 & 06\end{array}$
	HD150248 $164149.8-452207$
	HD164595 1800038.9293419
	HD195034 202811.8220744
	HD117939 $133432.6-385426$
	HD_71334 $0812549.5-295550$
	Hipl-98649 1112051.8 -23 1302
	$\cdots{ }_{H}^{H}$
	HIP_11915 023349.0
	HD_101364 1114028.5690031
	$\begin{array}{llllllllllllllll}\text { Kepler-452 } & 19 & 44 & 00.9 & 44 & 16 & 39.2\end{array}$
	YBP_P_1194 085100.8114853
	Alternatively, you can upload a file with coordinates. You can use the same format as in the TCS catalog. Target names must be single words with no dots.
	No file selected.
Options	\square Included on plot. Moon coordinates at $\sim 02: 00$ UT. Staralt only.
	$55^{\circ}, \mathrm{X}=1.2 \quad$ - Min. elevation (or max. airmass X). Starobs, Starmult only.
	GIF [inline] \quad Output format
Submit	Retrieve Help

Survey \#1

Given 10 stars:

- When is it the best moment to observe each of them? 18Sco, beginning of October,...
- Is there a good date to observe most of them? End of September / Beginning of October is best for 7 out of 16
- Assume that it takes 20 minutes (including overheads) to observe each of them, how long would it take to observe them all? $16 \times 20 \mathrm{~min}=320 \mathrm{~min}$ $=5.3 \mathrm{~h}$

Survey \#2

J-PLUS has ~4,000 pointings.
Assuming that each pointing takes about 1 h of observing time (including overheads):

- How long would it take to complete the survey (one can assume that the average night at OAJ is 8 h long)?
- How long would it take to complete the survey, if only 75% of the time is available because of lunar illumination?
- What if one also adds that the sky has transparency conditions good for J-PLUS for only 50% of the time?
- Are you able to simulate a realistic scenario, taking into account the RA distribution of the sources?

Survey \#2

J-PLUS has ~4,000 pointings.
Assuming that each pointing takes about 1 h of observing time (including overheads):

- How long would it take to complete the survey (one can assume that the average night at OAJ is 8 h long)? $1 \mathrm{~h} /$ pointing*4000 pointings $=4000 \mathrm{~h}=>4000 \mathrm{~h} / 8 \mathrm{~h} / \mathrm{night}=500 \mathrm{nights}$
- How long would it take to complete the survey, if only 75% of the time is available because of lunar illumination? 500nights * 100 / $75=666$ nights
- What if one also adds that the sky has transparency conditions good for J-PLUS for only 50% of the time? 666nights * 2 = 1333,3nights (=3.6 years)
- Are you able to simulate a realistic scenario, taking into account the RA distribution of the sources?

Messier Marathon

https://en.wikipedia.org/wiki/Messier object
How would you plan a Messier Marathon from Hawaii on Mar21?
When is the best date for a Messier Marathon from Hawaii?
How would you plan a Messier Marathon from OPD on Mar21?

Messier Marathon

https://en.wikipedia.org/wiki/Messier object
How would you plan a Messier Marathon from Hawaii on Mar21? Night goes from LST 7:15 until LST 16:45.

When is the best date for a Messier Marathon from Hawaii?
How would you plan a Messier Marathon from OPD on Mar21? M81 and M82 are barely observable from OPD.

Exercises

Plan a Messier Marathon from Paris and one from São Paulo for 1st April 2020
(1st step: find the coordinates of the Messier objects in decent format to put them in Staralt ... and pass them to Ale :-))

