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Abstract: Recently, propositions of new conditions necessary and sufficient in 
the controller’s synthesis, based on linear quadratic problems, have been espe-
cially combined with the mathematical description in the form of Linear Matrix 
Inequalities (LMI), expanding its applications for continuous and uncertain systems 
in convex-bounded domains. In this class of studies, the Linear Quadratic Regulator 
provides a good relationship between performance and eigenvalues allocation, 
based on minimization of energy signals of the state and control variables. Thus, 
this work permits to get less conservative conditions in LMI control through the use 
of parameter-dependent Lyapunov functions in obtaining robust controllers under 
a certain decay rate. Illustratively, application examples evaluate the performance 
of the proposed theorems, whose validation addresses tests of feasibility subject 
to variation limit of the decay rate and the analysis of the temporal behavior of the 
interest signals.
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1. Introduction
The theory of modern control involving the states feedback has advanced in recent years, in applica-
tions to electrical (Ollala, Levya, Aroudi, & Queineec, 2008, 2009), mechanical (Gritli & Belghith, 2017; 
Yue, An, & Sun, 2016), and chemical (Khairy, Elshafei, & Emara, 2010) nature systems, whose bene-
fits are concentrated in the simplicity of implementation of real values instead of using poles and 
zeros. Of course, this fact considers that the variables chosen to compose the vector of states are 
available for sampling through appropriate sensors, or alternatively that they can be estimated.

Among the classes of control decisions, the indices based on quadratic functions stand out for 
presenting versatility as far as the performance, i.e. they use error or energy functions. In addition, 
it is possible to demonstrate a direct relationship between the second method of Lyapunov and the 
indices of quadratic performance in solving problems of optimal control, which consists of finding a 
rule through optimization (minimizing or maximizing) of a cost function, presenting restrictions in 
state and control variables that guarantee the asymptotic stability of the system in closed loop 
(Boyd, Ghaoui, Feron, & Balakrishnan, 1994).

In this context, the Linear Quadratic Regulator (LQR) corresponds to the extension of performance 
indices used in control techniques based in frequency domain, such as the Integral Square Error (ISE) 
and the Integral Absolute Error (IAE), to systems of multiple input and multiple outputs. Among the 
main characteristics of the optimal quadratic controller, it is highlighted: (1) the use of the model of 
representation in states space; (2) obtaining of the optimal control through the resolution of the 
Algebraic Riccati Equation (ARE); and (3) objective function with the weighting matrices  and  in 
state and control vectors, respectively (Kumar, Raaja, & Jerome, 2016).

Among the various approaches to solving the ARE, the formulation by means of Linear Matrix 
Inequalities (LMI) has recently emerged as an efficient tool that introduces the use of matrices deci-
sion variables and convex constraints (Scherer & Weiland, 2005).

This mathematical description introduce facilities in searching for optimal solutions, in particular 
to problems of linear control, through computational packages available in free software, for exam-
ple, the GNU Octave and Scilab (Pakshin, Emelianova, & Mazurov, 2012). Other related advantages, 
corresponds to: (1) structural failures (Assunção, Teixeira, Faria, Silva, & Cardim, 2007; Faria, 
Assunção, Teixeira, Cardim, & da Silva, 2009), guaranteeing robust stability and small oscillations in 
the occurrence of faults; (2) incorporation of performance indices (Corrêa & Freire, 2008; Hamada, 
2016), which may be easily included by means of additional constraints through LMIs formulations 
(Chilali & Gahinet, 1996); however, it is noted that some studies evidence the incorporation of the 
decay rate to the original formulation in synthesis and analysis problems based on LMI (Xie, 2008); 
and (3) uncertainties (Boyd et al., 1994), which essentially studies some characteristics related to 
polytopic and norm-bounded uncertainties models. Notably, the polytopic class presents limited 
interest due to exponential growth in the number of vertices as the uncertainties increase. On the 
other hand, norm-bounded uncertainties (or, structured uncertainties), it is possible to exceed this 
limitation and to achieve less conservative conditions through the S-Procedure (Boyd et al., 1994). 
Furthermore, it is common to find bibliographic references that evaluate these uncertainty models 
in controller’s synthesis (de Souza & Trofino, 2010; Kothare, Balakrishnan, & Morari, 1996; Peres, 
Geromel, & Bernussou, 1993), just as it will be discussed in this work.

However, the formulations in matrices inequalities may present nonlinearities. In this case, it is 
important to apply classical methods that can linearize expressions, such as the Schur complement 
and/or exceed the limitations imposed by LMIs restrictions, through the application of the relaxation 
techniques that allow to reduce the conservatism assumption (Azizi, Torres, & Palhares, 2017; Lee, 
Park, Ji, & Won, 2007), such as Finsler Lemma and Reciprocal Projection Lemma. Consequently, there 
is an expanding of the search areas on convex optimization problems with reduces the controller’s 
norm and increases the computational complexity and feasibility (Buzachero, Assunção, Teixeira, & 
da Silva, 2012; da Silva, Assunção, Teixeira, Faria, & Buzachero, 2011). Thus, adding slack variables 



Page 4 of 27

da Ponte Caun et al., Cogent Engineering (2018), 5: 1457206
https://doi.org/10.1080/23311916.2018.1457206

occurs the decoupling of the Lyapunov matrix in the state feedback matrix (Apkarian, Tuan, & 
Bernussou, 2001; Castelan, Tarbouriech, da Silva, & Queinnec, 2006), allowing the use of parameter-
dependent Lyapunov functions in robust control.

As far as author’s knowledge, this paper has made the first attempt to reduce the LQR controller’s 
conservativeness for uncertain linear systems with polytopic and structured time-varying uncertain-
ties, through a method based on parameter-dependent Lyapunov functions, guaranteeing the �
-stability.

The paper is organized as it follows. Section 2 presents a brief review about LQR controllers and 
uncertainty models. In Section 3, it is proposed the different forms of LQR-LMI controllers subject to 
decay rate applied to uncertain systems, whose cost function is obtained by output energy. Section 
4 presents the development of less conservative conditions by Finsler Lemma applies to uncertain 
systems. In Section 5, it is presented the conditions by Reciprocal Projection Lemma only applied to 
polytopic model. Finally, Section 6 illustrates the validation of results through comparative analyzes 
in numerical applications, by means of a system mass-spring-damper, and practical implementa-
tion, considering the 3-DOF helicopter of Quanser, applied to case of actuators failures used as un-
certain parameters.

Throughout the paper, X ∈ ℜ
nxn such as X′ denotes its transpose, X−1 its inverse, X⟂ corresponds 

to a basis for a null space of X and X > 0(X ≥ 0) means that X is positive (semi-) definite. It is con-
sidered that 0 and I denotes the matrix of elements null and identity matrix, respectively, with ap-
propriate dimensions.

2. Preliminary concepts
Consider the linear time-invariant (LTI) system described by:

where x(t) ∈ ℜ
n is the states vector and u(t) ∈ ℜ

m is the control input. The matrices A and B are 
real constants matrices of appropriate dimensions. Regarding the Equation (1), it will be presented 
below a review preliminary results and fundamental for the demonstration of proposed theorems.

2.1. Uncertainty model
The mathematical description of systems can cause uncertainty for different aspects, outlining er-
rors between mathematical model and real system. In this context, the mathematical descriptions 
of these errors resulted in uncertainty representations, where the most important are the polytopic 
approaches, due to different operation points of the system, and the norm-bounded, based on pre-
diction errors in identification processes (Bombois, 2000).

Therefore, to characterize these uncertainties, consider the system (1) and a pre-defined set in 
shape [A B] ∈ Ω, with the set Ω describing the “uncertainty” in the matrices A and B. Thus, it is 
possible to constitute a polytopic system, through the set ΩP, i.e.

which corresponds to a convex set of   vertices. In this case, it is possible to notice that the vertices 
[Ai Bi] of the polytope are obtained by combination of extreme values assumed by uncertain vari-
ables in the set 

{
𝜉i :𝜉imin

< 𝜉i < 𝜉imax
, i = 1,… , l

}
, with �i the time-varying parametric uncertainty and 

 = 2l. In particular, this paper considers the parameter �i belonging to the unit simplex. On the 
other hand, the norm-bounded uncertainties are equivalent to:

(1)ẋ(t) = Ax(t) + Bu(t)

(2)ΩP = Co
{
[A1 B1], [A2 B2],… , [A B ]

}
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where Λ:ℜ
+
→ ℜ

r×r, q(t), p(t) ∈ ℜ
r are norm bounded time-varying uncertain matrix, regulated 

output and perturbation, respectively. The matrices Bp, Cq, and Dq are real constants matrices of ap-
propriate dimensions. It is possible to obtain useful variation, such as ||Λ|| ≤ 1 or ||Λi|| ≤ 1. However, 
the matrix constraint considered will be ||Λi|| ≤ 1, i.e.

Furthermore, to describe the norm-bounded uncertainties the set ΩN has the form,

It is observed that uncertainty region should contain the real system through a probability level, 
in which the uncertain parameters belong to the ellipsoid interior (�) (Bombois, 2000),

with � the uncertain parameters, �̂� the estimated parameter, P
�
 the covariance matrix of �̂� and  the 

desired level of probability. In some cases, it is possible to approximate the polytopic uncertainty in 
a norm-bounded uncertainty (Boyd et al., 1994); it reduces the number of LMIs lines, for example, in 
controller’s synthesis. Throughout, Figure 1 illustrates the uncertainties regions described previously 
in the case of two uncertainties applied in a system.

(3)

ẋ(t) = Ax(t) + Bu(t) + Bpp(t)

q(t) = Cqx(t) + Dqu(t)

p(t) = Λq(t)

(4)Λ =

⎡
⎢⎢⎣

Λ1 ⋯ 0

⋮ Λi ⋮

0 ⋯ Λr

⎤
⎥⎥⎦

(5)ΩN =

{
[A + BpΛCq B + BpΛDq]:||Λi|| ≤ 1,Λ diagonal

}

(6)𝜀 =
{
𝜆:(𝜆 − �̂�)

�P−1
𝜆
(𝜆 − �̂�) < }

Figure 1. Uncertainty regions 
for polytopic and norm-
bounded models, respectively.
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2.2. Linear quadratic regulators
Consider the system (1). The problem LQR consists of finding a control law u(t) that minimizes a 
quadratic function  = f (x,u) such that (Kumar et al., 2016):

where the weighting matrices  = �
> 0 and  = �

> 0 are known. In this problem, the control 
variables are expressed by a constant state feedback K, i.e.

Now, consider a quadratic Lyapunov function V(x(t)) = x(t)�Px(t) to search a solution of the optimi-
zation problem,

Therefore, the problem solution by minimizing of   (applied to deterministic systems), can be ex-
pressed by,

such that P satisfies the Riccati equation,

3. Linear quadratic regulator using linear matrix inequalities
In recent studies, there is a growing interest in linear quadratic problems, which have been widely 
combined to control theory, more specifically involving the synthesis of controllers by states feed-
back and the mathematical descriptions in terms of LMIs (Chancelier, Pakshin, & Soloviev, 2011; 
Dallali, Lee, Tsagarakis, & Caldwell, 2015; Fischer & Bhattacharya, 2009; Pandey, Mohanty ,Kishor, & 
Catalão, 2013; Priess, Conway, Choi, Popovich, & Radcliffe, 2015; Yang, Wu, & Chang, 2010). Thus, it 
will be proposed original formulations of robust LQR subject to decay rate, applied to convex-bound-
ed domains.

3.1. Robust control
In general lines, the LQR control corresponds to a quadratic criterion that, by means of an optimiza-
tion linear process, defines an optimal control law associated with energy functions of the state and 
control variables, seeking to balance the response speed of the system and the intensity of the con-
trol signal. This compromise between the energy functions allows defining the objective function,

It is observed that it is possible to obtain a preference relation among the values of the main diago-
nal elements of the matrix . Similarly, it is applied this concept of weighting for diagonal elements 
of the matrix . Furthermore, it is possible to derive an upper bound for (12), as discussed in the next 
subsection, using the concept of maximum energy of the output.

3.2. Derivation of the upper bound using bounds on output energy
Consider the objective function (12). In Boyd et al. (1994), its possible to define the following 
relation,

(7) ≡ �
∞

0

(x(t)�x(t) + u(t)�u(t))dt

(8)u(t) = −Kx(t)

(9)x(t)�( + K�K)x(t) = −
d(x(t)�Px(t))

dt
.

(10)u(t) = −Kx(t) = −()
−1B�Px(t)

(11)A�P + PA − PB()
−1B�P + = 0

(12) = min �
∞

0

[x(t)�x(t) + u(t)�u(t)]dt

(13)V(x) + �
∞

0

x(t)�( + K�K)x(t)dt < 0.
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Now, if the initial condition x(0) is known, an equivalent expression is,

Consider closed-loop system has all eigenvalues with real part negative, it has been x(∞) → 0, veri-
fied that,

It is noted; however, there is a close relationship between the initial condition and Lyapunov func-
tion with respect to inequality (15). At this point, it is important to get equivalent expression in terms 
of LMIs, with upper bound equals the output energy, i.e.

Finally, using Schur complements and W = P−1, it is implying,

where ∗ represents terms readily inferred from symmetry.

As an extension, we seek a polytope ΩC = Co
{
x1(0), x2(0),… , x (0)

}
, whose maximum energy 

is at one of the vertices (Boyd et al., 1994). Therefore, we obtain the new upper bound on the output 
energy by the objective function,

3.3. Linear quadratic regulators with restriction of decay rate
In control systems, there is requirement to attend performance specifications that implies desired 
behavior of the output signals, i.e. the eigenvalues placement of closed-loop system. Such condi-
tions may be easily included by means of additional constraints in the form of LMIs (Ollala et al., 
2008). However, the disadvantage related to the process of eigenvalues placement is increased 
computational complexity. So, to reduce impacts on the computer processing, it is desirable to incor-
porate the decay rate in the original formulation of LMIs (Xie, 2008), i.e. we include the largest 
Lyapunov exponent in polytopic Linear Differential Inclusions (LDIs) (Ge, Chiu, & Wang, 2002) and 
norm-bound LDIs (Boyd et al., 1994), extended to LDI more general in terms of diagonal norm-
bound, as proposed in the Theorems 3.1 and 3.2 of the following subsections. In fact, to the best of 
the author’s knowledge, LQR robust control design based on LMI with decay rate constraints is not 
well discussed in the literature.

3.3.1. Polytopic uncertainty

Theorem 3.1 The system (2) is stable by u(t) = −Kx(t), using decay rate greater than or equal to � and 
guaranteed cost   inferior to �, if there exist matrices W =W�

> 0 ∈ ℜ
n×n and Z ∈ ℜ

m×n, such that:

Subject   to

(14)V(x(∞)) − V(x(0)) + �
∞

0

x(t)�( + K�K)x(t)dt < 0.

(15)�
∞

0

x(t)�( + K�K)x(t)dt < V(x(0)) = x(0)�Px(0).

(16)x(0)�Px(0) ≤ �

(17)

[
� ∗

x(0) W

]
≥ 0

(18)

[
� ∗

xi(0) W

]
≥ 0, i = 1,… ,

min
�,W,Z

�
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where i = AiW +WA�

i + BiZ + Z
�B�i + 2�W. Therefore, state-feedback gain is K = −ZW−1.

Proof Multiplying every block (19) by �i ≥ 0, with i = 1 to i =  , results in,

where (�) = (
∑

i=1 �iAi)W +W(
∑

i=1 �iAi)
�
+ (

∑
i=1 �iBi)Z + Z

�
(
∑

i=1 �iBi)
�
+ 2�W.

Using Schur complement, we obtain the equivalent LMI,

Performing the change of variable Z = −KW and multiplying the inequality (22) on the left and on 
the right by W−1

= P, and, after that, by x(t)� on the left and by x(t) on the right, can be found,

where Af (�) = (A(�) − B(�)K). Thus, considering the equation in state space systems, it is defined,

or, simply,

Remark 1 In Equation (24), there was a change in the relation between Lyapunov inequality and 
guaranteed cost function. Consequently, the effect on inclusion of the term 2�V(x) on inequality (13) 
motivates a re-evaluation of the expression given in (17). Thus, let V(x) be Lyapunov function (positive 
definite, by definition) and positive scalar �. We can without loss of generality to assume the quadratic 
function  = f (x,u) as the upper bound for −2�V(x) − x(t)�(K�K +)x(t), i.e. it is possible to define a 
equivalent form such that V̇(x) ≤ −2𝛼V(x) − x(t)�(K�K +)x(t) ≤ −x(t)�(K�K +)x(t). Therefore, this 
condition is applies in all LMIs subject to decay rate that involve the upper bound for   in this work.

The proof of Theorem 3.1 is complete.

3.3.2. Norm-bounded uncertain

Theorem 3.2 The system (3) is stable by u(t) = −Kx(t), using decay rate greater than or equal to � 
and guaranteed cost   inferior to �, if exists matrices W =W�

> 0 ∈ ℜ
n×n, Z ∈ ℜ

m×n and Δ ∈ ℜ
r×r, such 

that:

Subject   to

(19)
⎡⎢⎢⎢⎣

i ∗ ∗

W −−1
∗

Z 0 −−1

⎤⎥⎥⎥⎦
≤ 0

(20)

[
� ∗

x(0) W

]
≥ 0

(21)
⎡
⎢⎢⎣

(�) ∗ ∗

W −−1
∗

Z 0 −−1

⎤
⎥⎥⎦
≤ 0

(22)A(�)W +WA(�)� + B(�)Z + Z�B(�)� + 2�W + Z�Z +WW ≤ 0

(23)x(t)�PAf (�)x(t) + x(t)
�Af (�)

�Px(t) + 2�x(t)�Px(t) ≤ −x(t)�(K�K +)x(t)

(24)V̇(x) + 2𝛼V(x) ≤ −x(t)�(K�K +)x(t)

(25)V̇(x) + 2𝛼V(x) ≤ 0, 𝛼 > 0

min
�,W,Z,Δ

�
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with 𝛿
1
,… , 𝛿r > 0 such that:

where Ξ =WA�
+ AW + Z�B� + BZ + 2�W + BpΔB

�

p. Therefore, state-feedback gain is K = −ZW−1.

Proof Assuming u(t) = −Kx(t) the feedback states gain, we can rewrite the equation of the states 
derived by,

In fact, imposing that ||Λi|| ≤ 1, results in,

or,

where Cq,i and Dq,i to denote the ith row of Cq and Dq, as well as pi(t) and qi(t) represent ith element 
of vectors p(t) e q(t).

Now, consider the closed-loop equation of the LQR controller subject to decay rate,

However, considering the Equation (32) and applying the S-Procedure, it is possible to obtain (33). 
Then the inequality (34) it is obtain through the expansion of the operator sum, where the matrix 
variable to perform S-procedure Δ̂ implies in the existence of nonnegative 𝛿i, i.e.

(26)

⎡⎢⎢⎢⎢⎢⎣

Ξ ∗ ∗ ∗

W −−1
∗ ∗

Z 0 −−1
∗

CqW + DqZ 0 0 −Δ

⎤
⎥⎥⎥⎥⎥⎦

≤ 0

(27)

[
� ∗

x(0) W

]
≥ 0

(28)Δ =

⎡
⎢⎢⎢⎢⎢⎣

𝛿
1

0 ⋯ 0

0 𝛿
2

⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝛿r

⎤
⎥⎥⎥⎥⎥⎦

> 0

(29)ẋ(t) = (A − BK)x(t) + Bpp(t)

(30)pi(t)
�pi(t) ≤ qi(t)�qi(t), i = 1,… , r

(31)p2i (t) ≤ x(t)�(Cq,i − Dq,iK)�(Cq,i − Dq,iK)x(t)

(32)ẋ(t)�Px(t) + x(t)�Pẋ(t) + 2𝛼x(t)�Px(t) ≤ −x(t)�( + K�K)x(t).

(33)

ẋ(t)�[P(A − BK) + (A − BK)�P]x(t) + 2x(t)�PBpp(t) + 2𝛼x(t)
�Px(t)

+

r∑
i=1

𝛿i

(
x(t)�(Cq,i − Dq,iK)

�
(Cq,i − Dq,iK)x(t) − pi(t)

�pi(t)
)

≤ −x(t)�( + K�K)x(t)

(34)

x(t)�(A − BK)�Px(t) + p(t)�B�pPx(t) + x(t)
�P(A − BK)x(t)

+ x(t)�PBpp(t) + 2𝛼x(t)
�Px(t) − p(t)�Δ̂p(t)

+ x(t)�( + K�K + (Cq − DqK)
�
Δ̂(Cq − DqK))x(t) ≤ 0.
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Finally, isolating the vector [x(t)� p(t)�] on the left and the vector 
[
x(t)

p(t)

]
 on the right, results in 

(35). Now, multiplying on the left by 
[
W 0

0 I

]
 and right by 

[
W 0

0 I

]′
 the inequality (35), with 

W = P−1, it is obtained the inequality (36).

Applying the Schur complement with the change of variables Δ = Δ̂
−1 (described by Equation 

(28)) and Z = −KW, the inequality (36) is equivalent to,

The proof of Theorem 3.2 is complete.  ☐

4. Extended stability via Finsler Lemma
The use of relaxation techniques, in optimization problems with quadratic constraint, allows the expan-
sion of the feasibility regions without to increase considerably the computational cost. Among the most 
widespread proposals, Finsler Lemma has been highlighted on applications of the continuous and dis-
crete control theory, with interesting advantages in controller synthesis, for example, decoupling the 
Lyapunov matrix of states feedback gain (Castelan et al., 2006). This fact permits the use of less conserva-
tive functions, i.e. parameter-dependent Lyapunov functions (Buzachero et al., 2012). The consequence of 
this condition corresponds to increase of the feasibility regions in convex optimization problem, introduc-
ing a new (slack) matrices variable (de Oliveira & Skelton, 2001). Thus, in the following subsections, we 
propose the Theorems 4.1 and 4.2 that establish the lower bound on the decay rate of the LDIs in order to 
obtain less conservative original formulations of robust LQR-LMI. In addition, in the use of parameter-
dependent Lyapunov functions for diagonal norm-bound LDIs, we considered the procedures adopted in 
Theorem 1 of Kunee and Banjerdpongchai (2008). To the author’s knowledge, these less conservative 
conditions of LQR robust design, obtained via Finsler Lemma, are not established in the literature.

4.1. Polytopic uncertain

Theorem 4.1 The system (2) is stable by u(t) = −Kx(t), using decay rate greater than or equal to � 
and guaranteed cost   inferior to �, if for a given scalar b > 0, exists matrices Y ∈ ℜ

n×n, Z ∈ ℜ
m×n and 

i =  �

i > 0 ∈ ℜ
n×n, with i = 1, 2,… , , such that:

Subject   to

(35)

�
x(t)�

p(t)�

��⎡
⎢⎢⎣

�
(A − BK)�P + P(A − BK) + 2𝛼P+

 + K�K + (Cq − DqK)
�
Δ̂(Cq − DqK)

�
∗

B�pP −Δ̂

⎤
⎥⎥⎦

�
x(t)

p(t)

�
≤ 0

(36)
⎡
⎢⎢⎣

�
W(A − BK)� + (A − BK)W + 2𝛼W +WW+

WK�KW +W(Cq − DqK)
�
Δ̂(Cq − DqK)W

�
∗

B�p −Δ̂

⎤
⎥⎥⎦
≤ 0.

(37)

⎡⎢⎢⎢⎢⎣

WA�
+ AW + Z�B� + BZ + 2�W + BpΔB

�

p ∗ ∗ ∗

W −−1
∗ ∗

Z 0 −−1
∗

CqW + DqZ 0 0 −Δ

⎤
⎥⎥⎥⎥⎦
≤ 0.

min
�,i ,Z,Y

�

(38)

⎡
⎢⎢⎢⎢⎢⎣

AiY + BiZ + Y
�A�

i + Z
�B�i + 2𝛼i ∗ ∗ ∗

i − Y
�
+ bAiY + bBiZ −bY − bY �

∗ ∗

Y 0 −−1
∗

Z 0 0 −−1

⎤
⎥⎥⎥⎥⎥⎦

< 0
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where K = −ZY−1.

Proof Consider the simplex unit, 
∑

i=1 �i = 1, �i ≥ 0. Multiplying every block (38) by �i ≥ 0, with 
i = 1 to i =  , results in (40).

Let the variables, w =

[
x

ẋ

]
,  = [(A(�) − B(�)K) − I], ⟂

=

[
I

(A(�) − B(�)K)

]
 and 

 =

[
2�P(�) + K�K + ∗

P(�) 0

]
, with P(𝜉) = P(𝜉)� > 0. Thus, the development of conditions of the 

Finsler Lemma, results in:

(1)  If ∃P(𝜉) = P(𝜉)� > 0, such that w′w ≤ 0 then, 

and, expanding the vector multiplication, 

or, simply, 

In addition, we consider the condition w = 0, i.e. 

and, is equivalent to 

(2)  If ∃P(𝜉) = P(𝜉)� > 0, such that, ⟂
′⟂, then, 

or, expanding, 

(39)

[
� ∗

x(0) Y �
+ Y −i

]
≥ 0

(40)

⎡
⎢⎢⎢⎢⎢⎣

�
A(𝜉)Y + Y �A(𝜉)�+

B(𝜉)Z + Z�B(𝜉)� + 2𝛼(𝜉)

�
∗ ∗ ∗

(𝜉) − Y �
+ bA(𝜉)Y + bB(𝜉)Z −bY − bY �

∗ ∗

Y 0 −−1
∗

Z 0 0 −−1

⎤
⎥⎥⎥⎥⎥⎦

< 0.

(41)
[
x

ẋ

]�[
2𝛼P(𝜉) + K�K + ∗

P(𝜉) 0

][
x

ẋ

]
≤ 0

(42)x�P(𝜉)ẋ + ẋ�P(𝜉)x + 2𝛼x�Px ≤ −x�(K�K +)x

(43)x�P(𝜉)ẋ + ẋ�P(𝜉)x + 2𝛼x�Px ≤ 0.

(44)
[
(A(𝜉) − B(𝜉)K) −I

][ x

ẋ

]
= 0

(45)ẋ = (A(𝜉) − B(𝜉)K)x

(46)
[
I

A(𝜉) − B(𝜉)K

]�[
2𝛼P(𝜉) + K�K + ∗

P(𝜉) 0

][
I

A(𝜉) − B(𝜉)K

]
< 0

(47)(A(�) − B(�)K)�P + P(A(�) − B(�)K) + 2�P(�) ≤ −(K�K +).
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 At this point, it is observed that the conditions 1 and 2 of the Finsler Lemma are satisfied, then the 
inequality (38) is obtained by:

(3)  If ∃ ∈ ℜ
2n×n, P(𝜉) = P(𝜉)� > 0, then, 

 Let us consider  =

[
X1
X2

]
, such that, 

 or, 

 For an arbitrary choice of X1 = M and X2 = bM, then, 

 Now, applying the congruence transformation 
[
M−1 0

0 M−1

]
 on the left and 

[
M−1 0

0 M−1

]�
 on 

the right is found (52). Through the variables changes Y = (M�
)
−1 and Z = −KY, it is determined the 

inequality (53). 

 Since (�) = Y �P(�)Y, implies that, 

(48)

[
2𝛼P(𝜉) + K�K + ∗

P(𝜉) 0

]
+ [

(A(𝜉) − B(𝜉)K) −I
]
+

[
(A(𝜉) − B(𝜉)K)�

−I

]
 �

< 0.

(49)

[
2𝛼P(𝜉) + K�K + ∗

P(𝜉) 0

]
+

[
X1(A(𝜉) − B(𝜉)K) −X1
X2(A(𝜉) − B(𝜉)K) −X2

]
+

[
(A(𝜉) − B(𝜉)K)�X�

1 (A(𝜉) − B(𝜉)K)�X�

2

−X�

1 −X�

2

]
< 0

(50)
⎡⎢⎢⎣

�
X1(A(𝜉) − B(𝜉)K) + (A(𝜉) − B(𝜉)K)�X�

1+

2𝛼P(𝜉) + K�K +
�

∗

P(𝜉) − X�

1 + X2(A(𝜉) − B(𝜉)K) −X2 − X
�

2

⎤⎥⎥⎦
< 0.

(51)
⎡⎢⎢⎣

�
M(A(𝜉) − B(𝜉)K) + (A(𝜉) − B(𝜉)K)�M�

+

2𝛼P(𝜉) + K�K +
�

∗

P(𝜉) −M�
+ bM(A(𝜉) − B(𝜉)K) −bM − bM�

⎤⎥⎥⎦
< 0.

(52)

⎡⎢⎢⎢⎢⎣

⎛⎜⎜⎝

(A(𝜉) − B(𝜉)K)(M�
)
−1
+

M−1
(A(𝜉) − B(𝜉)K)� + 2𝛼M−1P(𝜉)(M�

)
−1
+

M−1K�K(M�
)
−1

+M−1(M�
)
−1

⎞⎟⎟⎠
∗

M−1P(𝜉)(M�
)
−1

−M−1
+ b(A(𝜉) − B(𝜉)K)(M�

)
−1

−b(M�
)
−1

− bM−1

⎤
⎥⎥⎥⎥⎦
< 0

(53)
⎡⎢⎢⎣

�
A(𝜉)Y + B(𝜉)Z + Y �A(𝜉)� + Z�B(𝜉)�+

2𝛼Y �P(𝜉)Y + Z�Z + Y �Y
�

∗

Y �P(𝜉)Y − Y �
+ bA(𝜉)Y + bB(𝜉)Z −bY − bY �

⎤⎥⎥⎦
< 0.

(54)
⎡⎢⎢⎣

�
A(𝜉)Y + B(𝜉)Z + Y �A(𝜉)� + Z�B(𝜉)�+

2𝛼(𝜉) + Z�Z + Y �Y
�

∗

(𝜉) − Y �
+ bA(𝜉)Y + bB(𝜉)Z −bY − bY �

⎤⎥⎥⎦
< 0.
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 Using Schur complement, in order to decompose the terms related to  and , we obtain the 
equivalent LMI, 

 where Y ∈ ℜ
n×n, Y ≠ Y ′, Z ∈ ℜ

m×n, (�) = Y �P(�)Y, P(𝜉) = P(𝜉)� > 0 and K = −ZY−1. Finally, the 
expansion of the uncertain matrices through its vertices results in (38).

Proof The proof of Theorem 4.1 is complete.

Proposition 4.1 Consider the system (2). Given an initial condition x(0), positive definite matrices  
and , assume that exists matrices Y and Z, symmetric matrices i =  ,∀i = 1,… ,  and a positive 
scalar b such that (38) and (39) are feasible. Then, this result converges in the particular case using 
a quadratic Lyapunov functions.

Remark 2 It is verified, through practical tests, that as the parameter b becomes small enough, 
there is a increase of the feasibility region in controllers design obtained by Finsler Lemma (Geromel 
& Korogui, 2006). Thus, parameterized by the results presented in Geromel and Korogui (2006), it 
was decided to adopt the values of the millesimal order in practical applications, as it will be shown 
in Section 6 of this work.

4.2. Norm-bounded uncertain

Theorem 4.2 The system (3) is stable by u(t) = −Kx(t), using decay rate greater than or equal to � and 
guaranteed cost   inferior to �, if for a given scalar b > 0, exists matrices Y ∈ ℜ

n×n, Z ∈ ℜ
m×n, Δi ∈ ℜ 

and i =  �

i > 0 ∈ ℜ
n×n, with i = 1, 2,… , r, such that:

Subject   to

(55)

⎡
⎢⎢⎢⎢⎢⎣

�
A(𝜉)Y + Y �A(𝜉)�

+B(𝜉)Z + Z�B(𝜉)� + 2𝛼(𝜉)

�
∗ ∗ ∗

(𝜉) − Y �
+ bA(𝜉)Y + bB(𝜉)Z −bY − bY �

∗ ∗

Y 0 −−1
∗

Z 0 0 −−1

⎤
⎥⎥⎥⎥⎥⎦

< 0

min
�,i ,Z,Y ,Δ

�

(56)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

AY + BZ + Y �A�
+ Z�B� + 2𝛼i + Bp,iΔiB

�

p,i ∗

i − Y
�
+ b(AY + BZ + Bp,iΔiB

�

p,i) b(bBp,iΔiB
�

p,i − Y
�
− Y)

Y 0

Z 0

Cq,iY + Dq,iZ 0

∗ ∗ ∗

∗ ∗ ∗

−−1
∗ ∗

0 −−1
∗

0 0 −Δi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(57)

[
� ∗

x(0) Y �
+ Y −i

]
≥ 0
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with,

where state feedback gain is recovered as K = −ZY−1.

Proof Consider the auxiliary variables from the Finsler Lemma:

w =

⎡⎢⎢⎣

x

ẋ

p

⎤⎥⎥⎦
,  = [(A − BK) − I Bp] and  =

⎡⎢⎢⎣

2�Pi + K
�K + ∗ ∗

Pi 0 ∗

0 0 0

⎤⎥⎥⎦
If ∃Pi = P

�

i > 0, such that, w′w ≤ 0, then,

Now, considering the results of Kunee and Banjerdpongchai (2008) and using the S-Procedure to 
inequality (60), results in,

where we have used Bp,i to denote the ith column of Bp. Thus, with  =

⎡⎢⎢⎣

X1
X2
0

⎤⎥⎥⎦
, we have,

By a simple change of variables, X1 = M and X2 = bM, we can obtain an equivalent LMI,

or,

(58)Δ =

⎡
⎢⎢⎢⎢⎢⎣

Δ
1

0 ⋯ 0

0 Δ
2

⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ Δr

⎤
⎥⎥⎥⎥⎥⎦

> 0

(59)
⎡⎢⎢⎣

x

ẋ

p

⎤⎥⎥⎦

�⎡⎢⎢⎣

2𝛼Pi + K
�K + ∗ ∗

Pi 0 ∗

0 0 0

⎤⎥⎥⎦

⎡⎢⎢⎣

x

ẋ

p

⎤⎥⎥⎦
≤ 0.

(60)

⎡
⎢⎢⎣

2𝛼Pi + K
�K + ∗ ∗

Pi 0 ∗

0 0 0

⎤
⎥⎥⎦
+ �

(A − BK) −I Bp,i

�
+

⎡⎢⎢⎣

(A − BK)�

−I

B�p,i

⎤
⎥⎥⎦
 �

+

⎡⎢⎢⎣

(Cq,i − Dq,iK)
�
Δ̂i(Cq,i − Dq,iK) ∗ ∗

0 0 ∗

0 0 −Δ̂i

⎤
⎥⎥⎦
< 0

(61)

⎡
⎢⎢⎣

2𝛼Pi + K
�K + ∗ ∗

Pi 0 ∗

0 0 0

⎤
⎥⎥⎦
+

⎡
⎢⎢⎣

X1
X2
0

⎤
⎥⎥⎦

�
(A − BK) −I Bp,i

�
+

⎡⎢⎢⎣

(A − BK)�

−I

B�p,i

⎤
⎥⎥⎦

⎡
⎢⎢⎣

X1
X2
0

⎤
⎥⎥⎦

�

+

⎡⎢⎢⎣

(Cq,i − Dq,iK)
�
Δ̂i(Cq,i − Dq,iK) ∗ ∗

0 0 ∗

0 0 −Δ̂i

⎤
⎥⎥⎦
< 0.

(62)

⎡⎢⎢⎣

2𝛼Pi + K
�K + + (Cq,i − Dq,iK)

�
Δ̂i(Cq,i − Dq,iK) ∗ ∗

Pi 0 ∗

0 0 −Δ̂i

⎤⎥⎥⎦
+

⎡
⎢⎢⎣

M

bM

0

⎤⎥⎥⎦

�
(A − BK) −I Bp,i

�
+

⎡⎢⎢⎣

(A − BK)�

−I

B�p,i

⎤
⎥⎥⎦

⎡
⎢⎢⎣

M

bM

0

⎤⎥⎥⎦

�

< 0
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Now, pre-multiplying by 
⎡⎢⎢⎣

M−1 0 0

0 M−1 0

0 0 M−1

⎤⎥⎥⎦
 and post-multiplying by 

⎡
⎢⎢⎣

M−1 0 0

0 M−1 0

0 0 M−1

⎤
⎥⎥⎦

�

 

the inequality (64), it is yield,

Let Y = (M�
)
−1, then,

and, through of the change of variable i = Y
�PiY,

Now, applying the congruence transformation 
⎡⎢⎢⎣

I 0 0

0 I 0

0 0 (Y �
)
−1

⎤⎥⎥⎦
 on the left and 

⎡⎢⎢⎣

I 0 0

0 I 0

0 0 (Y �
)
−1

⎤
⎥⎥⎦

�

 

on the right is found (67).

In order to eliminate the nonlinearities, it is applied the Schur complement with the change of 
variables Z = −KY and Δi = Δ̂

−1
i , such that (56) is obtained.

(63)

⎡
⎢⎢⎢⎢⎣

�
M(A − BK) + (A − BK)�M�

+ 2𝛼Pi + K
�K+

 + (Cq,i − Dq,iK)
�
Δ̂i(Cq,i − Dq,iK)

�
∗ ∗

bM(A − BK) −M�
+ Pi −bM�

− bM ∗

B�p,iM
� bB�p,iM

�
−Δ̂i

⎤
⎥⎥⎥⎥⎦
< 0.

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎝

(A − BK)(M�
)
−1

+M−1
(A − BK)� + 2𝛼M−1Pi(M

�
)
−1
+

M−1K�K(M�
)
−1

+M−1(M�
)
−1
+

M−1
(Cq,i − Dq,iK)

�
Δ̂i(Cq,i − Dq,iK)(M

�
)
−1

⎞
⎟⎟⎠

b(A − BK)(M�
)
−1

−M−1
+M−1Pi(M

�
)
−1

M−1B�p,i

(64)
∗ ∗

−bM−1
− b(M�

)
−1

∗

bM−1B�p,i −M−1
Δ̂i(M

�
)
−1

⎤⎥⎥⎦
< 0

(65)

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎝

(A − BK)Y + Y �
(A − BK)� + 2𝛼Y �PiY+

Y �K�KY + Y �Y+
Y �
(Cq,i − Dq,iK)

�
Δ̂i(Cq,i − Dq,iK)Y

⎞
⎟⎟⎠

∗ ∗

b(A − BK)Y − Y �
+ Y �PiY −bY �

− bY ∗

Y �B�p,i bY �B�p,i −Y �
Δ̂iY

⎤
⎥⎥⎥⎥⎥⎦

< 0

(66)

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎝

(A − BK)Y + Y �
(A − BK)� + 2𝛼i+

Y �K�KY + Y �Y+
Y �
(Cq,i − Dq,iK)

�
Δ̂i(Cq,i − Dq,iK)Y

⎞
⎟⎟⎠

∗ ∗

b(A − BK)Y − Y �
+i −bY �

− bY ∗

Y �B�p,i bY �B�p,i −Y �
Δ̂iY

⎤
⎥⎥⎥⎥⎥⎦

< 0

(67)

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎝

(A − BK)Y + Y �
(A − BK)� + 2𝛼i+

Y �K�KY + Y �Y+
Y �
(Cq,i − Dq,iK)

�
Δ̂i(Cq,i − Dq,iK)Y

⎞
⎟⎟⎠

∗ ∗

b(A − BK)Y − Y �
+i −bY �

− bY ∗

B�p,i bB�p,i −Δ̂i

⎤
⎥⎥⎥⎥⎥⎦

< 0
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The proof of Theorem 4.2 is complete.

Proposition 4.2 Consider the system (3). Given an initial condition x(0), positive definite matrices  
and , assume that exists matrices Y, Z and Δ, symmetric matrices i =  ,∀i = 1,… , r and a posi-
tive scalar b such that (56)–(58) are feasible. Then, this result converges in the particular case using 
a quadratic Lyapunov functions.

4.3. Derivation of the upper bound
This subsection is dedicated to demonstrate the extension to upper bound via Finsler Lemma, i.e.

In this case, for the sufficiency proof, it will be considered the results of Daafouz and Bernussou 
(2001), such that (68) is feasible and, therefore, Y �

+ Y −i ≥ 0. So, given Y (full rank) and i 
(strictly positive definite), we have,

or, equivalently, Y−1
i Y

� ≥ Y �
+ Y −i. Thus, the equivalent LMI is,

Now, decomposing the terms 
[
I 0

0 Y

]
 on the left and 

[
I 0

0 Y

]′
 on the right, results in,

In order to apply the complement of Schur, we show that,

and, with the change of variable, i = Y
�PiY, yields the LMI condition:

Finally, consider the simplex unit, 
∑r

i=1 �i = 1, �i ≥ 0. Multiplying (73) by �i, with i = 1 to i = r, results 
in x(0)�P(Δ)x(0) ≤ �.

Remark 3 It is observed, in this case, that the only procedure variation involves the limits of variable 
i, where in the model of polytopic uncertainty it is considered the number of vertices and the model 
of bounded-norm uncertainty by the number of uncertain parameters.

5. Extended stability via reciprocal projection lemma
In this subsection, it is proposed through the Theorem 5.1 new LMI-based LQR design via Reciprocal 
Projection Lemma (Apkarian et al., 2001). Here, we consider the polytope described by the vertices 
in the form of Co

{
[A1 B1 x1(0)],… , [A+ B+ x+ (0)]

}
. Lastly, we get less conserva-

tive conditions subject to decay rate without the use of additional LMIs lines.

Theorem 5.1 The system (2) is stable by u(t) = −Kx(t), using decay rate greater than or equal to � and 
guaranteed cost   inferior to �, if there exist matrices V ∈ ℜ

n×n, Z ∈ ℜ
m×n and Xi = X

�

i > 0 ∈ ℜ
n×n, such 

that:

(68)

[
� ∗

x(0) Y �
+ Y −i

]
≥ 0.

(69)(i − Y)−1
i (i − Y)

� ≥ 0

(70)

[
� ∗

x(0) Y−1
i Y

�

]
≥ 0

(71)
[
I 0

0 Y

][
� ∗

Y−1x(0) −1
i

][
I 0

0 Y

]�
≥ 0.

(72)x(0)�(Y �
)
−1iY

−1x(0) ≤ �

(73)x(0)�(Y �
)
−1Y �PiYY

−1x(0) ≤ �.

min
�,Xi ,Z,Y

�
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Subject   to

with i = 1,… , + . Thus, the state feedback gain is recovered as K = −ZV−1.

Proof Consider the Riccati equation subject to decay rate and, initially, a Lyapunov inequality on P, 
such that:

Assume that Ψ = K�K +, S = P(A − BK) + �P and S� = (A − BK)�P + �P. Thus, consider the 
condition (2) from the Reciprocal Projection Lemma, such that,

Applying the congruence transformation 
[

(W�
)
−1 0

0 P−1

]
 on the left and 

[
(W�

)
−1 0

0 P−1

]�
 on the 

right, is found (78).

Defining the variables, X = P−1 and V =W−1, we can express (78) as follows,

Now, proceeding a new change of variables T = X−1 and Z = −KV, results in,

By application of the Schur complement, decomposing the quadratic terms, yields,

and, expanding the inequality (81) in terms of polytope vertices, it is given by,

(74)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−(V �
+ V) ∗ ∗ ∗ ∗

AiV + BiZ + 𝛼V + Xi −Xi ∗ ∗ ∗

V 0 −Xi ∗ ∗

V 0 0 −−1
∗

Z 0 0 0 −−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(75)

[
� ∗

xi(0) Xi

]
≥ 0

(76)P(A − BK) + (A − BK)�P + 2�P + K�K + ≤ 0.

(77)

[
K�K + + T − (W +W�

) ∗

P(A − BK) + 𝛼P +W −T

]
< 0.

(78)
⎡⎢⎢⎣

�
(W�

)
−1K�KW−1

+ (W�
)
−1W−1

+

(W�
)
−1TW−1

− ((W�
)
−1

+W−1
)

�
∗

(A − BK)W−1
+ 𝛼W−1

+ P−1 −P−1TP−1

⎤
⎥⎥⎦
< 0

(79)

[
V �K�KV + V �V + V �TV − (V �

+ V) ∗

(A − BK)V + 𝛼V + X −XTX

]
< 0.

(80)
[
Z�Z + V �V + V �X−1V − (V �

+ V) ∗

AV + BZ + 𝛼V + X −X

]
< 0.

(81)

⎡⎢⎢⎢⎢⎢⎣

−(V �
+ V) ∗ ∗ ∗ ∗

AV + BZ + 𝛼V + X −X ∗ ∗ ∗

V 0 −X ∗ ∗

V 0 0 −−1
∗

Z 0 0 0 −−1

⎤
⎥⎥⎥⎥⎥⎦

< 0
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Finally, consider the simplex unit, 
∑+

i=1 �i = 1, �i ≥ 0. Multiplying (82) by �i ≥ 0, the inequality (83) 
is obtained.

The proof of the inequality (75) is found in Section (3.2), assuming in (18) the  +  vertices of the 
polytope.

The proof of Theorem 5.1 is complete.

Remark 4 Clearly, the design methodologies proposed in this work are conducted in off-line. How-
ever, problems of industrial scale need to be mitigated quickly, either for economic reasons or for 
reasons of safety in the operation of processes. In this case, LQR control has beem used in industrial 
applications of control engineering (continuous stirred tank reactor, for example) to design Propor-
tional-Integral-Derivative (PID) controllers (Ge et al., 2002). Furthermore, the computational effort 
to search solutions in control varies with the uncertainty and the dimensions of the plant model. A 
drawback refers to severe delays in the implementation of a controller that attend the new design 
conditions. These facts motivate the application of techniques that provide real-time solutions with 
less complexity, and therefore, we aim to reduce the number of lines of LMIs to be programmed in 
control algorithms and to apply different kind of uncertainty models. It is also important to design 
such controllers to be robust to uncertainties of real process. However, from a control theory point of 
view, the use of one single Lyapunov function to define a state feedback control law leads to some 
conservativeness, seem in the Theorems 3.1 and 3.2. Thus, we consider techniques of relaxation 
matrices, discussed in Sections 4 and 5, that allowed to adopt parameter-dependent Lyapunov func-
tions and has had advantages in terms of extended marginal stability, i.e. larger feasibility regions 
in terms of decay rate, which yields reduced magnitudes of the designed controllers (an important 
condition in practical implementations) besides to insure the robust stability of LDIs.

6. Numerical example and practical implementation
At this section, it will be submitted two applications to explain the advantages and disadvantages 
between models of uncertainties and relaxation techniques, based on theorems proposed in this 
work. It is informed that the computational package LMIlab and interface YALMIP (Löfberg, 2004), in 
MATLAB environment, were used to compute the solution of the optimization problem. As far as 
author’s knowledge, this paper has made the first attempt to apply uncertainty models in the case 
of extended stability in LQR-LMI control subject to decay rate, that considers an upper bound based 
on maximum energy of the output. Therefore, do not involve comparative analyzes with literature.

6.1. Practical application in the 3-DOF helicopter
Consider the schematic model of Figure 2 of the 3-DOF helicopter. Two DC motors are mounted at 
the ends of a rectangular frame and drive two propellers. The motors axis are parallel and the thrust 
vector is normal to the frame (Quanser, 2002).

(82)

⎡
⎢⎢⎢⎢⎢⎣

−(V �
+ V) ∗ ∗ ∗ ∗

AiV + BiZ + 𝛼V + Xi −Xi ∗ ∗ ∗

V 0 −Xi ∗ ∗

V 0 0 −−1
∗

Z 0 0 0 −−1

⎤
⎥⎥⎥⎥⎥⎦

< 0.

(83)

⎡
⎢⎢⎢⎢⎢⎣

−(V �
+ V) ∗ ∗ ∗ ∗

A(𝜉)V + B(𝜉)Z + 𝛼V + X(𝜉) −X(𝜉) ∗ ∗ ∗

V 0 −X(𝜉) ∗ ∗

V 0 0 −−1
∗

Z 0 0 0 −−1

⎤
⎥⎥⎥⎥⎥⎦

< 0.
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As described in Buzachero et al., (2012) the arm is gimbaled on a 2-DOF instrumented joint and it 
is free to pitch and yaw. The other end of the arm carries a counterweight which makes the effective 
mass light enough to enable the motors to raise the helicopter. A positive voltage applied on the 
front motor (Vf ) causes a positive pitch, while a positive voltage applied to the back motor (Vb) 
causes a negative pitch (angle pitch (�)). A positive voltage to either motors causes an elevation of 
the whole body (angle elevation (�) of the arm). If the body pitches, the impulsion vector results in 
the displacement of the system (angle travel (�) of the systems). The purpose of this experiment is 
to design a control system to track and regulate the elevation and travel of the 3-DOF helicopter. The 
trajectory of the helicopter was divided into three stages: (a) to elevate the helicopter 27.5◦ reaching 
the yaw angle � = 0◦; (b) the helicopter travels 120◦, and (c) the helicopter performs the landing 
recovering the initial angle (� = −27.5◦ ≈ −0.48 rad).

In the state space model that describes the helicopter the state is x(t), the control is u(t) and A, B 
are defined by:

x(t) = [𝜀 𝜌 𝜆 �̇� �̇� �̇� 𝜉 𝛾]
�, u(t) =

[
Vf
Vb

]

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0
(2mf la−mwlw )g

2mf l
2
a+2mf l

2
h+2mf l

2
w

0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Figure 2. Schematic drawing 
of 3-DOF helicopter (Quanser, 
2002).
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Remark 5 The state variables � and � represent the integrals of the angles � and �, respectively, and 
occurs that the system does not reach the null values for these state variables. In addition, in Table 1 
are described the constants that appear in the matrices A and B.

Now, to add uncertainty to the system, it was implemented a loss of 50% of the power in back 
motor, by insertion a timer switch connected to an amplifier with a gain of 0.5 acting directly on 
engine. Thus, it was constituted a polytope of two vertices with an uncertainty in the input matrix of 
the system.

The performance analysis of the proposals, with polytopic uncertain, it was evaluated through the 
feasibility regions based on upper bounds obtained by Theorem 3.1 (quadratic stability), Theorem 4.1 
(extended stability via Finsler Lemma), and Theorem 5.1 (extended stability via Reciprocal Projection 
Lemma). In this case, the graphic lists the parameter � (integer values) and the power loss (constant 
kfault) described as a failure, where kfault = 1.0 correspond the case of no actuator failure. It was also 
adopted that  = 0.025 × diag(1, 1) and  = diag(100, 1, 10, 0.01, 0.01, 2, 10, 0.1).

In the graphic of Figure 3, the Theorem 5.1 presents difficulties to search feasibility solutions, es-
pecially for severe failures; however, it is noticed some improvements in relation to Theorem 3.1 for 
kfault > 0.6. Furthermore, the results obtained by Theorem 4.1 presents higher levels of feasibility, 
due to choose of the constant b, which contributes to decay rate increase. On the other hand, the 
solution associated with kfault = 0.7 and � = 11, derived from Theorem 4.1, was unfeasible. Thus, it 
was explored a nearness region to this condition, that is � = 11.01, which led to convergence of the 
algorithm, as expected.

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0
lakf

mwl
2
w+2mf l

2
a

lakf

mwl
2
w+2mf l

2
a

1

2

kf

mf lh
−
1

2

kf

mf lh

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Table 1. Helicopter parameters
Power constant of the propeller (found experimentally) Kf 0.1188

Mass of the helicopter body (kg) mh 1.158

Mass of counterweight (kg) mw 1.87

Mass of the whole front of the propeller (kg) mf mh∕2

Mass of the whole back of the propeller (kg) mb mh∕2

Distance between each axis of pitch and motor (m) lh 0.1778

Distance between the lift axis and the body of the helicopter (m) la 0.6604

Distance between the axis of elevation and the counterweight (m) lw 0.4699

Gravitational constant (m/s2) g 9.81

k
f
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Furthermore, Figure 4 illustrates an analysis of the eigenvalues behavior of the uncertain closed-
loop system, by varying the parameter �, partitioned in 125 values in (2), taking into account their �
-stability and the condition ||K|| ≈ 250. Therefore, it is verified that the Theorem 5.1 further a signifi-
cant spreading of eigenvalues in the complex plane, by restricting of the real part of the eigenvalues 
to values greater than −8.5283, this implies directly in reduced norm of K. In contrast, we have the 
value −11.4199 by Theorem 4.1 and −13, 4860 by Theorem 3.1.

Finally, it was evaluated the behavior of the state variable (elevation (�), pitch (�), travel (�)) and 
the voltages on the front and back motors, under a 50% drop in power of the back motor (in the in-
stant 30s) and attends the condition ||K|| ≈ 120, as shown in Figure 5 (it is observed that application 
was limited to Theorems 3.1 and 4.1). Based on this figure, its notes a significant improvement in the 
state steady on the range of 0 to 30 seconds, due to the increase on the decay rate. There was also 
a little reduction in the altitude loss of the system after the failure application, without requiring high 
levels of electrical voltage in actuators, confirmed by signs Vf (t) and Vb(t).

Let us now to perform tests of impact on computational processing when an uncertainty (U) is added 
to the system. Thus, Table 2 illustrates the computational complexity required in terms of the number of 
scalar variables (V) and the number of LMIs lines (L). In this case, its evaluated the condition of 50% drop 

Figure 4. Eigenvalues 
behavior of the uncertain 
closed-loop system (black 
color: Theorem 3.1; red color: 
Theorem 4.1 and blue color: 
Theorem 5.1).

Figure 3. Feasibility regions 
to polytopic uncertain (◦: 
Theorem 3.1; ×: Theorem 4.1; 
grey color: Theorem 5.1).
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Figure 5. Practical 
implementation of the 
designed K, (a) Theorem 3.1 and 
(b) Theorem 4.1.

Table 2. Numerical complexity to polytopic uncertains
Method U V L
Theorem 3.1 1 53 53

2 53 116

Theorem 4.1 1 153 86

2 225 172

Theorem 5.1 1 153 102

2 225 204
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in power of the back motor and ||K|| ≈ 250. Later, it was added a new uncertainty to initial condition, i.e. 
the angle elevation belongs on the range of � = −27.5◦(≈ −0.48rad) and � = −1◦(≈ −0.0175rad).

6.2. Mass-spring-damper
Consider a stabilizable system (Figure 6), described in (84).

where − ∈ [−1.2, −0.8] and − ∈ [−2.2, −1.8] are uncertain parameter, in appropriate 
units.

Let u(t) the action of the external force, x1(t) the position and x2(t) the speed of the mass. 
Therefore, the uncertain system based on norm-bound LDIs is described by,

Weight matrices of the performance index are  = 10 and  = diag(1, 1), with the initial condi-
tion x0 = [1 0]�. It is observed that �1 = �2 = 0 implies in the nominal system. Moreover, in Figure 
7, can be seen a performance analysis through feasibility regions, where it can be concluded that 
through the combination between Finsler Lemma and S-Procedure, applied to norm-bounded uncer-
tain, it is ensures a largest bound on the decay rate. Furthermore, under the same conditions, the 
Theorem 3.2 ensured a greater feasibility region in controllers design than Theorem 3.1.

The computational complexity of the algorithm based on uncertain models is illustrated in  
Table 3. Thus, based on this table, it is noted that the L variable of Theorem 3.1 is equivalent to 
Theorem 4.2, however, the upper limit of the decay rate for norm-bounded uncertain is more advan-
tageous than polytopic uncertain.

(84)
ẋ(t) =

[
0 1

− −
]
x(t) +

[
0

1

]
u(t)

y(t) = [1 0]x(t)

(85)
ẋ(t) =

([
0 1

−1 −2

]
+

[
0 0

0.2 0.2

][
𝜆1 0

0 𝜆2

][
1 0

0 1

])
x(t) + Bu(t)

y(t) = [1 0]x(t)

Figure 6. Mass-spring-damper 
system.
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We, finally, consider the state and control signals applied to the nominal system in (84), as show 
in Figure 8. In this case, the Theorem 4.2 presented disadvantages as overshoot in control signals, 
i.e. a greater effort in the actuators; however, there was an improvement in the state steady with 
low decay rate.

Figure 7. Number of feasibility 
regions for uncertainty models.

Table 3. Numerical complexity for uncertainty models
Method U V L
Theorem 3.1 2 6 25

Theorem 3.2 2 8 14

Theorem 4.2 2 15 28
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Figure 8. Responses to control 
and states signals in function 
of the decay rate (dark gray 
surface: Theorem 3.2; white 
surface: Theorem 4.2).



Page 26 of 27

da Ponte Caun et al., Cogent Engineering (2018), 5: 1457206
https://doi.org/10.1080/23311916.2018.1457206

7. Conclusions
In this study, less conservative LMIs formulations are proposed to synthesize linear robust quadratic 
regulators based on state feedback and applied to uncertain models most relevant in the literature. 
The proposals presented in this work allow us to set a bound of decay rate in the complex plane of �
-eigenvalues, from which the designers in control systems can perform a fine tune through the ma-
trix , and, consequently, to improve the temporal behavior of the interest signals. A numerical ex-
ample illustrate the advantages of norm-bounded uncertainties in terms of implementation cost 
and of the limit variation in decay rate, and at the 3-DOF practical application, the controllers de-
signed by Finsler and Reciprocal Projection lemmas increase the feasibility regions for systems sub-
ject to structural failure, guaranteeing robust stability and reduced controller’s norm when using 
parameter-dependent Lyapunov functions.
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