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Abstract—A consistent framework for robust linear quadratic
regulators (LQRs) control of power converters is presented. Sys-
tems with conventional LQR controllers present good stability
properties and are optimal with respect to a certain performance
index. However, LQR control does not assure robust stability when
the system is highly uncertain. In this paper, a convex model of
converter dynamics is obtained taking into account uncertainty of
parameters. In addition, the LQR control for switching converters
is reviewed. In order to apply the LQR control in the uncertain
converter case, we propose to optimize the performance index
by using linear matrix inequalities (LMIs). As a consequence,
a new robust control method for dc–dc converters is derived.
This LMI-LQR control is compared with classical LQR control
when designing a boost regulator. Performance of both cases is
discussed for load and line perturbations, working at nominal and
nonnominal conditions. Finally, the correctness of the proposed
approach is verified with experimental prototypes.

Index Terms—Optimal control, power electronics, robustness.

I. INTRODUCTION

SWITCHED-MODE dc–dc converters are used extensively
in modern power electronics devices due to their high

efficiency, low cost, and small size [1]. In order to protect the
source and the load, the dynamic behavior of the switched-
mode converters is driven by means of a control subsystem.
The control law obtained for these control subsystems is usually
based on linear output or state feedback, which is simpler and
of lower cost than other nonlinear approaches, despite that the
converter dynamics are nonlinear due to switching action, feed-
back, and saturation of the duty-cycle. The control objectives
of such devices are 1) to maintain a stable regulation of the
output voltage, 2) to maximize the bandwidth of the closed-loop
system in order to reject disturbances, as well as 3) to satisfy
desirable transient characteristics (as for example, to minimize
output overshoot). The models used to derive the control strat-
egy usually neglect the high-frequency ripple considering that
the switching time is small enough. Usually, such averaged

Manuscript received May 22, 2008; revised December 18, 2008. First
published May 5, 2009; current version published July 1, 2009. This work
was supported in part by the Spanish Ministerio de Educación y Ciencia under
Grants TEC-2004-05608-C02-02 and TEC-2007-67988-C02-02.

C. Olalla, R. Leyva, and A. El Aroudi are with the Departament
d’Enginyeria Electrònica, Elèctrica i Automàtica, Escola Tècnica Superior
d’Enginyeria, Universitat Rovira i Virgili, 43007 Tarragona, Spain (e-mail:
carlos.olalla@urv.cat).

I. Queinnec is with the Laboratoire d’Analyse et d’Architecture des Sys-
tèmes, Centre National de la Recherche Scientifique, Université de Toulouse,
31077 Toulouse, France.

Digital Object Identifier 10.1109/TIE.2009.2017556

models are linearized at a certain operation point in order to
derive a linear controller. Nevertheless, a design that disregards
converter nonlinearities may result in deteriorated output signal
or unstable behavior in presence of large perturbations.

In order to take into account nonlinearities and parameter
uncertainty, the study of converter models and robust control
methods is still an active area of investigation [2]–[6]. In this
paper, we will present a linear control design method based on
linear quadratic regulators (LQRs), in which we achieve robust
stability and performance despite model inaccuracies.

The classic LQR approach (see [7] and [8]) deals with the
optimization of a cost function or performance index. Thus, the
designer can weight which states and which inputs are more
important in the control action to seek for appropriate transient
and steady-state performances. Specifically, in the field of
power conversion, the choice of the cost function parameters
is advantageous, since it can be used to minimize the ripple
present in the feedback signal. It is also worth to point out
that the closed-loop system with such LQR controller presents
interesting properties like a phase margin larger than 60◦ and an
infinite gain margin. Such phase margin specification appears as
a standard requirement in many power electronics applications
[9]. However, unlike other current systematic control design
procedures, like H∞ or μ-synthesis, classic LQR control cannot
cope with system uncertainty.

The aforementioned features of LQR control have prompted
several authors to apply successfully this technique in the field
of switched power converters [10]–[14]. In [10] and [11], the
performance indexes are selected using pole placement rela-
tionships. In [12], the cost function is derived from an initial
controller, which was obtained by frequency domain methods.
Other works [13], [14] make use of simulations to find the
appropriate performance indexes or arbitrarily choose them, in
order to, for example, enforce integral action. In all these works,
the converter model is obtained from a linearization of the
averaged circuit, and consequently, the LQR control properties
are not assured out of the nominal conditions. In these works,
the LQR controller has been derived by solving an algebraic
Riccati equation.

Nevertheless, the LQR problem can also be formulated in
form of linear matrix inequalities (LMIs), and numerically
solved by convex optimization methods [15]. This numerical
approach has several advantages. While the algebraic solution
can only be applied to one plant case, the numerical procedure
can take into account multiple plants, i.e., it can cope with
uncertain systems at different operation points. This approach
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results in robust stability of nonlinear switched-mode con-
verters. Aside from the robust stability, the LMI solution of
the LQR problem can include other design requirements, as
pole placement restrictions [16], saturation constraints [17],
or energy-based specifications [18]. This approach allows the
practicing engineer to combine the properties of LQR control
with uncertainty and other requirements. The resulting con-
troller is not optimal as in the nominal case, but provides an
upper bound (or guaranteed cost) of the performance index.
There exist other gradient-based approaches to obtain robust
LQR controllers [19]. However, these approaches are not easily
adaptable to additional design requirements, and they require
the designer to find expressions of the differential sensitivity
of the system. Finally, we propose to solve this optimization
problem with an interior point algorithm [20], [21] since it is
considered a very efficient numerical method in this kind of
problem [15, Ch. 1].

Thus, in order to control dc–dc converters in large with
robust specifications, we will formulate the LQR control of
a switched-mode converter in terms of LMIs and solve it by
convex optimization methods. Our contribution is to provide a
compact control design procedure which is suitable for non-
linear switching sources. Other authors have also used LMI
control approaches in the field of power electronics [22]. Nev-
ertheless, our approach differs from [22] since we propose an
optimal LQR controller for a boost and a buck converter while
the previous work deals with a minimization of the H∞ norm
for the buck case. In addition, we show an experimental veri-
fication of the proposed design which is in perfect agreement
with the analytical derivations.

The remaining sections are organized as follows. First, in
Section II, we introduce the uncertain models of a buck and
a boost converter. In Section III, we give a basic LMI control
theory background, with the formulation needed to solve the
LQR problem. In Section IV, we present two design exam-
ples to illustrate the advantages of this approach. In the first
example, we obtain an LQR controller of an uncertain buck
converter, while in the second, we build an LQR controller
for an uncertain boost converter. Both examples have been
simulated with a switched-mode circuit using PSIM [23]. The
implementation of the second example has been deployed in
Section IV, where we demonstrate the validity of this design
procedure. The control scheme can be easily implemented by
operational amplifiers (OAs), a pulsewidth modulation (PWM)
circuit and standard analog elements. Section V summarizes the
key aspects of this paper and presents some conclusions.

II. POLYTOPIC MODELING OF UNCERTAIN

POWER CONVERTERS

Linearized models of switched-mode converters are sensitive
to system uncertainty. The steady-state duty-cycle, the load, or
the parametric uncertainty of the storage elements may change
the model response considerably. For these reasons, it is of
major importance that the control design procedures for power
converters may permit a proper treatment of the uncertainty. In
this section, we will introduce the polytopic representation of
uncertainty in a buck and a boost converter.

Fig. 1. Schematic of the buck converter.

Fig. 2. Waveforms of the PWM process.

A. Polytopic Model of an Uncertain PWM Buck Converter

Fig. 1 shows the schematic of a dc–dc step-down (buck)
converter where vo is the output voltage and vg is the line volt-
age. The output voltage must be kept at a given constant value
Vref . R models the converter load, while C and L represent,
respectively, capacitance of the capacitor and inductance of the
inductor, whose equivalent series resistances, RC and RL, are
considered sufficiently small to be neglected. The measurable
states are the inductor current iL and the capacitor voltage vC .

The binary signal (ub) that turns on and off the switches is
controlled by means of a fixed-frequency PWM (see Fig. 2).
The constant switching frequency is 1/Ts, where Ts is the
switching period equal to the sum of Ton (when ub = 1) and
Toff (when ub = 0) where the ratio Ton/(Ton + Toff) is the
duty-cycle dd. The duty-cycle is compared with a sawtooth
signal vs of amplitude VM = 1. We assume that the converter
operates in continuous conduction mode (CCM) and that the
inductor current is not saturated.

The following expression shows the state-space averaged
model of a PWM converter [24]:

˙̃x(t)=(Aoff − (Aon − Aoff)U) x̃(t) + (Aon − Aoff)x̃(t)
× ũ(t) + ((Aon − Aoff)X + (Buon − Buoff )) ũ(t) (1)

where Aon and Buon are the state-space matrices during Ton

and Aoff and Buoff are the state-space matrices during Toff . The
incremental and equilibrium input vectors are ũ(t) and U while
the incremental and equilibrium state vectors are x̃(t) and X .
The values of vectors and state-space matrices are written as
follows:

ũ(t) = d̃d(t) U = Dd

x̃(t) =
[
ĩL(t)
ṽC(t)

]
X =

[ VgDd
R

VgDd

]

Aoff =Aon =
[

0 − 1
L

1
C − 1

RC

]

Buon =
[Vg

L

0

]
Buoff =

[
0
0

]
. (2)
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Since Aon = Aoff , the averaged model of the buck converter is
linear

˙̃x(t) =
[

0 − 1
L

1
C − 1

RC

]
x̃(t) +

[Vg
L

0

]
ũ(t). (3)

This model is then augmented with an additional state variable
x̃3(t) which stands for the integral of the output voltage error,
i.e., x̃3(t) = −

∫
ṽc(t), such that the steady-state error is zero.

The augmented model is written as

˙̃x(t) = Ax̃(t) + Buũ(t) (4)

where

A =

⎡
⎣ 0 − 1

L 0
1
C − 1

RC 0
0 −1 0

⎤
⎦ Bu =

⎡
⎣ Vg

L
0
0

⎤
⎦ . (5)

Some elements involved in the system matrices may be
uncertain or time varying. Then, matrices A and Bu depend on
such uncertain or time-varying terms, and we can express (4) as
a function of these parameters

ẋ(t) = A(p)x(t) + Bu(p)u(t). (6)

The uncertain terms are grouped in a vector p. In a general
case, the vector p consists of np uncertain parameters p =
(p1, . . . , pnp

), where each uncertain parameter pi is bounded
between a minimum and a maximum value pi and pi

pi ∈ [pi pi]. (7)

In general, the admissible values of vector p are constrained in
an hyperrectangle in the parameter space R

np with N = 2np

vertices {v1, . . . , vN}. The images of the matrix [A(p), Bu(p)]
for each vertex vi corresponds to a set {G1, . . . ,GN}. The
components of the set {G1, . . . ,GN} are the extrema of a
convex polytope which contains the images for all admissible
values of p if the matrix [A(p), Bu(p)] depends linearly on p

[A(p), Bu(p)] ∈ Co {G1, . . . ,GN}

:=

{
N∑

i=1

λiGi, λi ≥ 0,

N∑
i=1

λi = 1

}
. (8)

For an in-deep explanation of polytopic models of uncertainty
see [15, Ch. 4], [20, Ch. 2], and [25].

In this context, we consider that the load R and the line
voltage Vg are uncertain parameters. We also consider that
all other parameters are well known. Then, np = 2 and the
parameter vector p = [1/R Vg], where

1/R ∈ [1/Rmax, 1/Rmin] Vg ∈ [Vgmin, Vgmax]. (9)

Since the buck converter matrices A and Bu depend linearly on
the uncertain parameters 1/R and Vg, we can define a polytope

Fig. 3. Schematic of the boost converter.

of N = 22 vertices that contains all the possible values of the
uncertain matrices. The vertices of the polytopic model are

A1 =

⎡
⎣ 0 − 1

L 0
1
C − 1

RmaxC 0
0 −1 0

⎤
⎦ Bu1 =

⎡
⎣ Vg min

L
0
0

⎤
⎦

A2 =

⎡
⎣ 0 − 1

L 0
1
C − 1

RminC 0
0 −1 0

⎤
⎦ Bu2 =

⎡
⎣ Vg max

L
0
0

⎤
⎦

A3 =A2 Bu3 = Bu1

A4 =A1 Bu4 = Bu2. (10)

This model will be used in Section IV to find an LQR
controller for the buck converter. It is worth to point out that
the same procedure can be used to take into account more
uncertain terms. Nevertheless, as much uncertainty there is in
the converter, lower performance level can be assured [26]. The
conservatism is even increased when uncertain parameters do
not appear linearly. Such case is shown in the next section,
which deals with a PWM boost converter.

B. Polytopic Model of an Uncertain PWM Boost Converter

Fig. 3 shows the circuit diagram of a dc–dc step-up (boost)
converter. In order to simplify the notation, we retake the nam-
ing convention of the previous example. All the assumptions
made for the previous section also hold, i.e., the converter
operates in CCM and the stray resistances RC and RL are
sufficiently small to be neglected.

The averaged model of the boost converter has the form pre-
sented in (1). The state-space matrices for the boost converter
are written as follows:

ũ(t) = d̃d(t) U = Dd

x̃(t) =
[
ĩL(t)
ṽC(t)

]
X =

[ Vg

D′2
d R
Vg
D′

d

]

Aoff =
[

0 0
0 − 1

RC

]
Aon =

[
0 − 1

L
1
C − 1

RC

]

Buon = Buoff =
[ 1

L

0

]
(11)

where D′
d is the complementary operating point duty-cycle

D′
d = 1 − Dd. Since we consider the control of the boost

converter around the equilibrium point, we can neglect the
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nonlinear term of the converter model and obtain a linearized
augmented model as in (4), where the system matrices are as
follows:

A =

⎡
⎣ 0 −D′

d
L 0

D′
d

C − 1
RC 0

0 −1 0

⎤
⎦ Bu =

⎡
⎢⎣

Vg
D′

dL

− Vg

(D′2
d R)C

0

⎤
⎥⎦ . (12)

We consider that the load R and the duty-cycle D′
d at

the operating point are uncertain parameters. Since the boost
converter matrices A and Bu do not depend linearly on the
uncertain parameters D′

d and R, we define two new uncertain
variables δ = 1/D′

d and β = 1/(D′2
d R), in order to meet with

a linear dependence. Thus, the parameter vector is defined
as p = [1/R D′

d δ β]. The components of the parameter
vector are restricted inside the following intervals:

1/R ∈ [1/Rmax, 1/Rmin]

D′
d ∈ [D′

dmin,D′
dmax]

δ ∈
[
1
/
D′

dmax, 1
/
D′

dmin

]
β ∈

[
1
/ (

D′2
dmaxRmax

)
, 1

/ (
D′2

dminRmin

)]
. (13)

Note that the uncertain model is inside a polytopic domain
formed by N = 24 vertices.

The introduction of these new parameters δ and β implies
a relaxation in the uncertainty constraints, since we assume
the independence between uncertain parameters in order to
have linear relations. Consequently, the new relaxed model
considers dynamic responses that do not correspond to any real
case. Therefore, we will obtain a potentially more conservative
solution.

In the following sections, we will derive a control law
which assures an upper bound of the cost index at the model
description vertices, and therefore for all possible cases of the
uncertain boost converter.

III. LMI FORMULATION OF THE LQR PROBLEM

This section presents the key concepts of the robust LQR
control method proposed in this paper. First of all, we introduce
the basic result of quadratic stability in form of LMI and its
relation with polytopic uncertainty. Second, we will formulate
the uncertain LQR problem in form of LMI. These concepts
will be applied in Section IV to derive an LQR controller for a
buck and a boost converter.

A. Quadratic Stability of an Uncertain Plant

Given a linear time-invariant system

ẋ = A x (14)

it is well known that Lyapunov theory states that the existence
of a matrix P such that the quadratic function

V (x) = x′Px > 0 ∀x �= 0 (15)

which satisfies

V̇ (x) = x′(A′P + PA)x < 0 ∀x �= 0 (16)

is a necessary and sufficient condition to assure that the system
is quadratically stable (i.e., all trajectories converge to zero)
[15]. In the following, we will write P > 0 to note that the
matrix P is positive definite. If there exists a P > 0 such that

V̇ (x)=x′ (A′
iP+PAi)x<0 ∀x �=0; ∀ i=1, . . . , N

(17)

where Ai are the vertices of a polytopic model Co{G1, . . . ,GN}
defined in the previous section, then it is assured quadratic
stability for any plant inside the uncertainty range (see, for
example, [25]).

In the inequality (16), P is the matrix variable (noted in bold
notation) that must be found to assure quadratic stability. This
inequality is an LMI since it presents linear dependence on the
variable and can be solved by convex optimization methods.

We will take advantage of such convex optimization methods
that have been implemented in computer algorithms [20], [21],
not only to assure quadratic stability of the system but also to
solve the LMIs that arise in the LQR control of a switched-
mode dc–dc converter.

B. LQR Problem

We are interested in an LMI formulation of the LQR prob-
lem, adapted from [27].

Given the system presented in (4), the optimal LQR con-
troller is obtained by using the state-feedback gain K (ũ =
Kx̃) that minimizes a performance index

J =

∞∫
0

(x̃′Qwx̃ + ũ′Rwũ)dt (18)

where Qw is a symmetric and semidefinite positive matrix
and Rw is a symmetric and definite positive matrix. The pair
(A Bu) must be controllable.

The LQR problem can be viewed as the weighted minimiza-
tion of a linear combination of the states x̃ and the control
input ũ. The weighting matrix Qw establishes which states
are to be controlled more tightly than others. Rw weights the
amount of control action to be applied depending on how large
is the deviation of the state x̃i. This optimization cost weight
constraints the magnitude of the control signal.

The LQR controller is obtained by using the feedback
gain K such that, in closed loop, the performance index (18)
is rewritten

J =

∞∫
0

(x̃′(Qw + K′RwK)x̃) dt. (19)

By using the trace operator Tr(·), which satisfies a′Xb =
Tr(Xba′), the performance index is equivalent to

J =

∞∫
0

Tr ((Qw + K′RwK)x̃x̃′) dt

=Tr ((Qw + K′RwK)P) (20)
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where P =
∫ ∞
0 (x̃x̃′)dt is a definite positive symmetric matrix

that will satisfy

(A + BuK)P + P(A + BuK)′ + x̃0x̃
′
0 = 0 (21)

where x̃0 represents the state initial condition.
The optimal feedback gain K can be found by minimization

of the following expression:

min
P,K

Tr(QwP) + Tr
(
R

1
2
wKPK′R

1
2
w

)
subject to

(A + BuK)P + P(A + BuK)′ + x̃0x̃
′
0 < 0. (22)

Nevertheless, (22) is not linear because the objective function
involves the multiplication of variables P and K. In [27], it
is shown that introducing a new variable Y = KP, we can
rewrite (22) as follows:

min
P,Y

Tr(QwP) + Tr
(
R

1
2
wYP−1Y′R

1
2
w

)
subject to

AP + PA′ + BuY + Y′B′
u + x̃0x̃

′
0 < 0. (23)

The inequality (A + BuK)P + P(A + BuK)′ + x̃0x̃
′
0 < 0 is

homogeneous concerning matrices P and Y, i.e., for any
matrices P∗ and Y∗ satisfying this LMI, μP∗ and μY∗, with
μ > 0, will also fulfill the inequality. Note that in this case, K =
YP−1 will not depend on the magnitude of μ [28]. Therefore,
if the pair (Ax̃0) is controllable, the LMI can be rewritten as
(A + BuK)P + P(A + BuK)′ + I1 < 0.

In addition, in [27], it is shown that the nonlinear term
Tr(R1/2

w YP−1Y′R
1/2
w ) can be replaced by a second auxiliary

variable X

min
X

Tr(X) subject to X > R
1
2
wYP−1Y′R

1
2
w (24)

which, in turn, can be decomposed by Schur’s complement (see
[15, Ch. 1])

X > R
1
2
wYP−1Y′R

1
2
w ↔

[
X R

1
2
wY

Y′R
1
2
w P

]
> 0. (25)

Therefore, the complete LMI formulation of the LQR
problem is

min
P,Y,X

Tr(QwP) + Tr(X)

subject to

AP + PA′ + BuY + Y′B′
u + I1 < 0[

X R
1
2
wY

Y′R
1
2
w P

]
> 0 P > 0. (26)

Once this minimization under constraints is solved, the optimal
LQR controller can be recovered by K = YP−1.

Thus, we can formulate the classical LQR problem as a con-
vex optimization problem. The main advantage of this formula-

TABLE I
BUCK CONVERTER PARAMETERS

tion is that the solution may include uncertainty while classical
LQR control is only valid for systems without uncertainty. As
shown in the previous section, the extension to consider the
polytopic uncertainty model consists on replacing the constraint
involving matrices A and Bu with N constraints corresponding
to the vertices of the polytope Ai and Bui.

IV. DESIGN EXAMPLES

In this section, we show two examples of robust LQR control
solved via LMIs applied to power converters, in order to illus-
trate the versatility of the presented framework. In the first case,
we design the LQR control of a step-down converter, taking
into account load and input voltage uncertainty. This example
emphasizes the control effort limitations due to the switching
nature of power converters. The second example proposes an
LQR control for a step-up converter, allowing working con-
dition uncertainty. The boost converter is a nonlinear system
whose linearization yields a nonminimum phase model. The
main concern in this example will be to assure robust stability
with an upper cost bound of the performance index.

A. Robust LQR Control of a PWM Buck Converter

As a first example, we propose to find the robust LQR
controller for an uncertain buck converter. In order to preserve
simplicity, there are no additional restrictions. The LQR con-
troller is found by optimization of the polytopic version of (26)
with the polytopic model defined in (10).

The values of converter parameter set are shown in Table I.
The nominal values of the load and the supply voltage are 25 Ω
and 24 V, respectively. Stability and an upper cost bound are
assured for loads between 5 and 50 Ω and supply voltages in
24 ± 20% V. The resulting controller is quadratically stable
for arbitrarily fast changes of the uncertain parameters [22],
which is of interest in presence of switched loads or fast-varying
supply sources.

The performance index, and concretely the cost weights Qw

and Rw, are selected such that the control signal enforces
the integral action x̃3 and also the regulated output voltage
ṽC . It is important to remark that measurable states vC and
iL will contain high-frequency ripple. The inductor ripple at
the switching frequency is specially large, and it cannot be
completely filtered without modifying the dynamics. In this
case, the performance weights are particularly useful, in order
to obtain a smooth enough control signal.

In order to exemplify this issue, we have obtained ro-
bust LQR controllers for the two following sets of weighting
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Fig. 4. Simulated transient of the nominal buck converter in presence of a
input voltage perturbation of ±4.8 V, with controllers (a) Ka and (b) Kb.

matrices:

Qwa =

⎡
⎣ 1 · 101 0 0

0 1 0
0 0 2 · 108

⎤
⎦ Rwa = 1

Qwb =

⎡
⎣ 1 · 10−1 0 0

0 10 0
0 0 2 · 108

⎤
⎦ Rwb = 2. (27)

Using a standard interior points optimization algorithm [20],
the state-feedback controllers for the given performance in-
dexes (Qwa, Rwa) and (Qwb, Rwb) are

Ka = [−3.25 − 3.96 14 046.05]

Kb = [−0.48 − 1.86 7049.38]. (28)

Matrices Qwa and Qwb present different gains for the state vari-
ables ĩL and ṽC , while the control effort coefficient is Rwb =
2Rwa. As a result, Kb presents smaller gains than Ka. The
performance of both controllers is compared in Fig. 4, in which
we present the results of a PSIM simulation of the nominal
switched converter in presence of an input voltage perturbation
of ±4.8 V. It can be observed in controller Ka that a smaller
restriction of the control effort allows a better rejection of per-
turbations. However, the duty-cycle control signal propagates

TABLE II
BOOST CONVERTER PARAMETERS

a larger ripple of the state variables, which may result in an
impractical controller for experimental implementation.

Therefore, the choice of a performance index will have
influence in the duty-cycle bandwidth. The effect of the ripple
propagation has been investigated in [29] and [30], where it was
shown that a ripple index ddripple/VM less than approximately
0.2 (20% of VM ) avoids the nonlinear behaviors of the PWM
circuitry. Thanks to LQR control matrices Qw and Rw, we
can modify the influence of noisy states directly, in contrast
with other approaches in which control effort must be limited
indirectly.

In the next section, we will describe the LQR controller
design for a boost converter, whose linearized model is highly
uncertain due to its nonlinear nature.

B. Robust LQR Control of a PWM Boost Converter

As in the previous section, the design of a robust control
for a boost converter consists of solving the polytopic version
of optimization problem (26) for the parameter set shown in
Table II.

Matrices Ai, Bui now correspond to the vertices of the
polytopic uncertainty model of the boost converter, which was
defined in Section II-B. The nominal values of the converter pa-
rameters are R = 25 Ω and D′

d = 0.5. The uncertain variables δ
and β, defined in (13), belong to the intervals [1.42, 3.33] and
[0.04, 1.11], respectively. The main concern of this example is
to assure robust stability in a broad range of operation, since the
changes in the steady state duty-cycle D′

d cause important vari-
ations of the converter dynamics. In order to demonstrate the
advantages of the LMI approach, we will compare the robust
LQR controller with a conventional LQR without uncertainty.

In this case, note that the boost converter model is bilinear
(1) and, in closed loop, can be written as

˙̃x(t) = (A + BuK + Bnx̃(t)K) x̃(t) (29)

where Bn = Aon − Aoff , A, Bu are defined in (12) and Aon,
Aoff are defined in (11). Consequently, the stability properties
of the system with these controllers are local. Once a controller
for the linear model has been found, the states inside the region
of attraction of the nonlinear system satisfy

(A + BuK + Bnx̃(t)K) P

+ P (A + BuK + Bnx̃(t)K)′ + I1 < 0 (30)
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Fig. 5. Simulated transient of the boost converter under a load step transient
with (solid line) the robust LQR controller KLMI−LQR and (dashed line)
the nonrobust LQR controller KLQR. (a) Load step of 0.48 A under nominal
condition D′

d = 0.5. (b) Load step of 0.48 A out of nominal condition D′
d =

0.3. (c) Load step of 1.44 A under nominal condition D′
d = 0.5. (d) Load step

of 1.44 A out of nominal condition D′
d = 0.3.

Fig. 6. Simulated transient of the boost converter in presence of an input
voltage perturbation, with (solid line) the robust LQR controller KLMI−LQR

and (dashed line) the nonrobust LQR controller KLQR. Top waveform: output
voltage. Bottom waveform: supply voltage.

Fig. 7. Implementation diagram of a boost converter with state-feedback
regulation.

where Bnx̃(t)K is the bilinear term that was neglected in the
linearization.

Weight matrices of the performance index, Qw and Rw, are
chosen such that the integral action is enforced and that the
control duty-cycle ripple is lower than 5% of the PWM ramp
amplitude VM = 1

Qw =

⎡
⎣ 1 · 10−3 0 0

0 1 · 10−3 0
0 0 1 · 107

⎤
⎦ Rw = 1. (31)

The conventional LQR controller for this performance index
and the nominal plant is found using the lqr MATLAB com-
mand. The resulting controller gain vector is

KLQR = [−0.12 − 0.53 3162.28]. (32)

On the other hand, in the uncertain case, we obtain the robust
LQR controller by solving (26) with the polytopic uncertainty
framework. The resulting controller gain vector is

KLMI−LQR = [−0.86 − 1.39 3159.54]. (33)
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Fig. 8. Detail of the circuit implementation of the robust LQR controller KLMI−LQR with the PWM regulator.

It is worth to remark that there exist no remarkable dif-
ferences between the obtained feedback gain vectors KLQR

and KLMI−LQR, despite that the LMI optimization guarantees
robust regulation of the uncertain converter, while the classic
LQR control only considers the performance index over one
plant. Next, we will illustrate their properties in presence of
output current perturbations, when the converter operates in and
out of nominal conditions. We have performed a set of PSIM
simulations with the switched-mode circuit, according to Fig. 3.
In the first simulation, we have obtained the transient response
under a set of load changes, while, in the second simulation, we
have depicted the waveforms under a supply voltage step.

The simulations waveforms with changes in the load have
been grouped and shown in Fig. 5. The upper waveform of
each figure shows the output voltage signal vo, while the lower
waveform depicts the current being delivered to the load iload.
The response of the LQR controller KLQR corresponds to
the dashed line, while the waveform of our proposed robust
LQR controller KLMI−LQR has been drawn with a solid line.
The converter works under nominal duty-cycle (D′

d = 0.5) in
Fig. 5(a) and (c), while it operates with a nonnominal duty-
cycle of D′

d = 0.3 in Fig. 5(b) and (d). This change in the duty-
cycle equals an input voltage variation of −40%, considering
that the output voltage remains constant. In Fig. 5(a) and (b),
the converter load is initially the nominal value R = 25 Ω. At
t = 1 ms, the load changes to R = 16.6 Ω, and at t = 6 ms,
it returns to its initial value. On the other hand, in Fig. 5(c)
and (d), the converter reacts to larger load perturbation. In this
simulation, the initial value of the load is again the nominal
value R = 25 Ω; at t = 1 ms, the load changes to R = 10 Ω,

which is the maximum load allowed in the design; the load
returns to R = 25 Ω at t = 6 ms.

It is shown in Fig. 5 that voltage regulation in nominal
conditions is better with the LQR controller (dashed line),
despite that the output voltage starts to deteriorate with the large
perturbation of Fig. 5(c) which moves the operation point far
from its nominal value. On the contrary, the robust LQR con-
troller is slower but maintains its stability properties despite the
large perturbation. It can also be observed that output voltage
regulation of the LQR controller devolves out of nominal oper-
ation D′

d = 0.3: In Fig. 5(b), the controller KLQR shows poor
damping under small perturbations; furthermore, it becomes
unstable in Fig. 5(d), where we apply the large perturbation.
The robust controller KLMI−LQR works, as expected, with the
same stability and damping properties when the operation point
is far from its nominal value.

In addition, Fig. 6 shows the transient simulation waveforms
under a supply voltage change for the converter working with
controller KLQR (dashed line) and KLMI−LQR (solid line).
The converter works under nominal conditions and reacts to
a supply voltage change of −40% at t = 1 ms. At t = 6 ms,
the supply voltage returns to its initial value. It is important
to remark that the proposed controller KLMI−LQR achieves the
same perturbation rejection level than the nonrobust controller
KLQR. The damping of the output voltage with controller
KLMI−LQR is similar to that of the nominal case, whereas with
controller KLQR, the output voltage damping depends, in a
great extend, on the value of the input voltage.

Finally, it is worth to remark that similar results could be
obtained if an optimization criteria different from the LQR
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weights is used, as for example, an H∞ optimization with pole
placement or controller norm constraints. Obviously, the effec-
tiveness of a particular controller will depend on the criterion
that has been chosen to pose the controller synthesis problem.

In the next section, it is described a prototype implementation
of the proposed controller, its response under the same condi-
tions of the previous simulations is presented.

V. CONTROL IMPLEMENTATION AND

EXPERIMENTAL RESULTS

In order to verify the results derived in the previous sections,
we have built a 100-W boost converter. The structure of the
converter with the proposed controller is shown in Fig. 7, where
the component values are the same that in Table II. We have
used a shunt resistance of Rshunt = 25 mΩ and an INA139
differential amplifier to measure the inductor current. The load
change experiments have been carried out by means of a
voltage-controlled switch. Furthermore, we have implemented
an experimental version of controllers KLQR and KLMI−LQR.
A detail of controller KLMI−LQR circuit is shown in Fig. 8.

In Fig. 9, we show transient waveforms of the converter
with controller KLQR under the load perturbations simulated
in the previous section. It can be observed a perfect agreement
between the dashed lines in Fig. 5 and the waveforms in Fig. 9.
The differences between Figs. 5(d) and 9(d) are due to the fact
that in the experimental case, the duty-cycle saturates at 90%,
whereas in the simulation case, the duty-cycle reaches 100%.

The correctness of our approach is verified in Fig. 10,
which illustrates the performance of the proposed regulator
KLMI−LQR in presence of the previous load perturbations.
Again, the experimental results match accurately the solid lines
of the simulations plots shown in Fig. 5.

Furthermore, we have verified the response of the controllers
KLQR and KLQR−LMI to a supply voltage change. The ex-
perimental result, shown in Fig. 11, accurately verifies the
simulations shown in Fig. 6.

VI. CONCLUSION

This paper has proposed a new robust LQR control method
based in LMIs for switching dc–dc converters. The proposed
models allow one to consider parametric uncertainty whereas
LQR formulation permits to assure an upper bound of a per-
formance index. Therefore, the proposed controller exhibits a
more predictable response than a classical LQR controller when
operating conditions changes. This controller can be derived by
means of computer-aided design tools such as MATLAB.

It is shown that the real robust regulator can be easily
implemented by standard components such as OAs, capacitors,
and resistors. By using an experimental prototype, it is shown
that the behavior in presence of step changes of load and line
conditions perfectly agrees with the analytical and computer
simulations results.

The approach used here can be extended to other more com-
plex converters such as parallel converters, multilevel convert-
ers, ac–dc power factor correction circuits, and dc–ac inverters.

Fig. 9. Experimental transient of the boost converter under a load step tran-
sient with the nonrobust LQR controller, KLQR. (a) Load step of 0.48 A under
nominal condition D′

d = 0.5. (b) Load step of 0.48 A out of nominal condition
D′

d = 0.3. (c) Load step of 1.44 A under nominal condition D′
d = 0.5.

(d) Load step of 1.44 A out of nominal condition D′
d = 0.3.
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Fig. 10. Experimental transient of the boost converter under a load step
transient with the robust LQR controller, KLMI−LQR. (a) Load step of 0.48 A
under nominal condition D′

d = 0.5. (b) Load step of 0.48 A out of nominal
condition D′

d = 0.3. (c) Load step of 1.44 A under nominal condition D′
d =

0.5. (d) Load step of 1.44 A out of nominal condition D′
d = 0.3.

Fig. 11. Experimental transient of the boost converter under a supply voltage
step of ±40%. (a) With LQR controller KLQR. (b) With robust LQR controller
KLMI−LQR.

Future work will deal with the application of the proposed
approach to these kinds of systems.
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