
Decentralized Feedback Design for a Compliant Robot Arm

Houman Dallali, Gustavo Medrano-Cerda, Navvab Kashiri, Nikos Tsagarakis and Darwin Caldwell
Department of Advanced Robotics,Fondazione Istituto Italiano di Tecnologia (IIT), Genova 16163, Italy

{houman.dallali, gustavo.cerda, navvab.kashiri, nikos.tsagarakis, darwin.caldwell}@iit.it

Abstract—Enhancing safety during interaction with environ-
ment and improved force control has led to design of highly
compliant robotic arms. However, due to introduction of passive
compliance in series with actuators the links’ interactions and
coupling effects become much more important. In this paper
a direct decentralized approach for designing PD-PID gains,
given the dynamic multivariable model of the compliant robot
arm, is proposed. The proposed method is based on Linear
Matrix Inequality (LMI) formulation with full state feedback in
discrete time that automatically designs the decentralized gains
for all the four joints of the robot in one shot. Experimental
results for a four Degree of Freedom (DoF) compliant robot
arm are provided to illustrate the effectiveness of this method.

Keywords–control of highly compliant joints; LMI; LQR;
decentralized state feedback;

I. INTRODUCTION

Conventional robot arms that are used in structured envi-
ronments such as factories use rigid joints, controlled with
high gain PID controllers, which lead to high mechanical
impedance. These robot arms are often placed inside cages
to avoid injuries to the human workers who are in vicinity
of these robots. In recent years, new applications have
been realized to use low mechanical impedance and safe
robot arms in unstructured environments such as houses
or public places. These robots use passive elasticity to
decouple the actuator inertia from the load and provide a
low impedance system with improved force control char-
acteristics. However, introduction of series elasticity in the
robot joints requires more advanced control methods to deal
with increased coupling effects between the joints.

Most robot arms with rigid joints implement independent
PD or PID joint controllers for trajectory tracking. This
works well due to highly stiff joints and high gear ratios
which reduces the coupling effect between the joints [1]. In
independent joint controller design, each joint of the robot is
treated as an independent subsystem and the interactions and
coupling effects between the joints are treated as unknown
disturbances that must be rejected by the independent joint
controller [1]. However, the idea of decentralized full state
feedback design is to include these known couplings and
interactions in the state feedback design via an optimization
problem, in order to assist the natural motion of the robot
rather than to fight against the known link’s interactions.

Several control methods based on feedback linearization
[2] and the theory of integral manifold [3] have been

proposed for controlling flexible joint robots. However, these
schemes are complex from an implementation point of view
and require a precise knowledge of the robot’s dynamic
parameters to achieve stability and a good performance in
practice. On the contrary, in [4] a simple PD controller
with gravity compensation was proved to stabilize flexible
joint robots about a reference position. The PD feedback
controller was introduced on the motor’s position and ve-
locity. The position of the link was shown to be sensitive to
uncertainties in gravitational and elastic parameters, since
the link position was controlled indirectly via the motor
position without direct feedback or integral action on the
link position.

In [5], a full state feedback controller was proposed
which utilized both the motor and link states to achieve
a better performance compared to simple PD controller
introduced in [4] and still keep the controller simple for
implementation. The implementation problems of the com-
plex control schemes were pointed out as the motivation
for the full state feedback method. However, the full state
feedback design was based on independent joint control
and the dynamic links’ interactions were not considered.
A comparison between use of decentralized and centralized
controllers is provided in [6]. Therefore, the problem is how
to tune the full state decentralized feedback gains by directly
taking the joint’s elasticity and multibody interactions into
account.

LMI provide a powerful tool for designing the state
feedback with decentralized structure. LMI based decen-
tralized PID design has been widely studied in the con-
trol engineering literature, [7]–[11]. In addition, the Linear
Quadratic Regulator (LQR) formulation of the feedback
design is desired since choosing pole locations for a complex
system such as a humanoid is a challenging task and LQR
formulation is proved to have excellent robustness against
parameter variations [12]. Hence, a discrete time LMI-LQR
decentralized feedback design approach for compliant robot
arms is proposed in this paper to design full state feedback
designs. It is shown in section III that the feedback takes
the form of a PID control on motor side and a PD on the
link side of the robot arm joints.

This paper is organized as following. In section II the
mechanical model of CompActTM arm is explained. In
section III the discrete time LQR based feedback formu-
lation is given in terms of the corresponding LMIs and
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the decentralized feedback structure is discussed. In section
IV experimental results of the 4 DoF CompActTM arm
are provided to illustrate the effectiveness of this method.
Finally the conclusion and future work are discussed.

II. MODELLING

In this section, modelling of the CompActTM arm is
presented. The CompActTM arm has 4 DoF including 3
DoF for the shoulder and one for the elbow. The shoulder
DoFs consist of extension-flexion, adduction-abduction and
humeral-roll degrees of freedom, respectively from joint one
to joint three and an additional DOF for the implementation
of the elbow flexion-extension motion as the fourth joint of
the arm. All joints have passive compliance in series with
brushless DC motors. These actuators are controlled with a
dedicated DSP board, which are connected to a computer
running real-time Linux operating system. The model in-
cludes the mechanical equations of motion are linearized
about the home posture as shown in Fig.1 and coupled to
actuator dynamics via the passive compliant elements. The
model is represented in state space and integrator dynamics
are introduced in the augmented plant for reference tracking.

Figure 1. The CompActTM Arm, [13].

A. Mechanical Model

The model is derived in symbolic form using Robotran
[14] that is a general dynamic Matlab based multi-body
modelling software, using the method explained in [15]. The
CompActTM arm model is:

M(q)q̈+ C(q, q̇)q̇+G(q) = τ(q, q̇,qm, q̇m), (1)

where q is the angular joint positions in relative coordinates,
M(q) is the mass-inertia matrix which is a function of the
joint angles and C(q, q̇) is the vector of coriolis forces and
G(q) represents gravitational forces and is a function of
joint angles. τ is a vector of torques applied to the links. qm

and q̇m are vectors of motor position and motor velocity,
respectively. In the case of CompActTM arm, due to passive
compliance in the joints, the torque τ is a function of spring
deflection that depends on the motor and link position and

velocity. Hence the torque provided by the actuator dynamic
equation is discussed in the next section.

B. Actuator Dynamics

The main purpose of including actuator dynamics is two
fold. The first is to include the brushless electric motor
inertia that when reflected to the output of gearbox has the
same order of magnitude as the link inertia. The second
is that the electric motors are connected in series with
a compliant element to store and release energy during
walking. Therefore the links are indirectly driven by torque
provided by the spring deflections. The mechanical diagram
of a single compliant joint is shown in Fig. 2. The input to
the joint Tm (the motor torque) is proportional to the motor’s
current. The current can be also expressed as a gain times
the voltage minus a damping term due to the back EMF.
The linear equation that describes the overall relationship
between the applied voltage and the joint motion is:

J q̈m +Dmq̇m = Vm u− τ(q, q̇,qm, q̇m), (2)

where J is the reflected motor inertia matrix with diagonal
elements being Jm, Dm is the total (including the back EMF
damping) reflected motor damping matrix with diagonal
elements being dm as shown in Fig. 2, Vm is the voltage to
torque gain matrix, u is the vector of motors’ voltages. The
mechanical torque τ is shown to be a function of the motor
and link position and velocity, i.e.

τ(q, q̇,qm, q̇m) = Ks(qm − q) +Ds(q̇m − q̇), (3)

where Ks and Ds are the joint stiffness and damping
diagonal matrices. Each element on the diagonal of Ks is
the passive stiffness ks and each element on the diagonal
of Ds is the damping in parallel to the passive stiffness ds,
as shown in Fig. 2. Further modelling details are provided
in [16]. In order to formulate the control design problem as
a set of LMIs these equations are formulated in state space
form in the next section.

Figure 2. Mechanical diagram of a compliant joint driving a load inertia.
N represents the gearbox reduction ratio.

C. Linear Discrete-Time State Space Models

The coupled linearized mechanical model and the actuator
dynamics are discretized and represented in state space as:

x̃(k + 1) = F x̃(k) +Hu(k), (4)
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where the state x̃ = [q, q̇,qm, q̇m]T , u is the applied
control signal, F is discretized state matrix and H is the
discretized input matrix. Moreover, the final goal of the
inner loop feedback is to track the desired trajectories in
face of noise and disturbances. Hence an auxiliary integrator
is introduced as:

z(k + 1)− z(k) = r(k)− Ex̃, (5)

where z is the discrete time integrator state and r is the
motor’s reference position. Hence the augmented system is:

x(k + 1) = Ax(k) +Bu(k) +Brr(k), (6)

where x = [x̃, z]T , A =

[
F 0
−E I

]
, B =

[
H
0

]
, E =

[0 I] and Br =
[
0 I

]T
, where E measures the motor

positions, with 0 and I being the zero matrix and identity
matrix of suitable dimension.

It should be noted that the joint variables are ordered
as joint positions, joint velocities, motor positions, motor
velocities and integrators. However, for convenience in the
definition of LMI variables, a permutation matrix is used
to reorder the states as [qi, q̇i, qmi, q̇mi, zi]

T for each joint,
where i represents the joint index.

III. CONTROL DESIGN

In this section, the discrete time formulation of the LQR
based PID design is explained via LMIs. The linear discrete
time system (6) is utilized with zero reference input to design
the PID joint servo controller. Once the feedback gain is
designed, the desired reference positions r are tracked via
Br the second input matrix.

A. LMI Formulation

The LMI formulation is considered in two parts. The first
part represents the stability of the stochastic linear system in
terms of the state covariance matrix and the corresponding
Lyapunov equation. Then the quadratic LQR performance
index is presented to formulate the optimal feedback gain
as the solution to the LMI convex optimization problem.

Let the discrete time system with noise be described by:

x(k + 1) = Ax(k) +Bu(k) + η, (7)

where η is noise. Assuming that the state x is available
for measurement and the pair (A,B) is controllable, the
feedback can be expressed as u(k) = −Kx(k) and the
closed loop system is:

x(k + 1) = (A−BK)x(k) + η, (8)

where (A−BK) is asymptotically stable. The main pur-
pose of this section is to impose a block diagonal structure
on the feedback gain matrix as:

K =


K1 0 0 · · · 0
0 K2 0 · · · 0

0 0
. . . · · · 0

...
... · · · Kn−1 0

0 0 · · · 0 Kn

 , (9)

where the Ki blocks are row vectors of dimension 1 by 5
and n is the number of joints. Each block in (9) contains
the five PD-PID gains such that

Ki = [Kp, Kd, Kpm, Kdm, Kz] , (10)

where Kp and Kd are the feedback from the link position
and velocity, Kpm and Kdm are feedback from motor
position and velocity, and Kz is feedback from the discrete
integrator states. The steady-state state covariance matrix
P = E[xxT ] is the solution to Lyapunov equation

P − (A−BK)P (A−BK)T − Q̂ = 0, (11)

where the noise covariance matrix is E[ηηT ] = Q̂ . If
every entry in the noise vector has the same variance β and
the entries are all statistically independent or uncorrelated
then the noise covariance is E[ηηT ] = βI . Hence,

P − βI − (A−BK)P (A−BK)T > 0. (12)

Since this inequality is nonlinear in K and P , a change
of variable is necessary. Equation (12) can be written as

P − βI − (AP −BY )P−1(AP −BY )T > 0, (13)

where Y = KP . Equation (13) can be expressed as the
Schur complement of P :

[
(P − βI) (AP −BY )/δ

(AP −BY )T /δ P

]
> 0, (14)

where δ is the radius for the circular LMI region which
constrains the closed loop eigenvalues. In practice 0.8 ≤
δ ≤ 1. The above LMI equation represents all feedback
gains K that stabilize the linear system. In order to find the
optimum gain the LQR quadratic cost function in terms of
the penalized state and control input is derived as in [17].

y(k) =

[
Q

1
2 0

0 R
1
2

] [
x̃(k)
u(k)

]
=

[
Q

1
2

−R 1
2K

]
x(k), (15)

where Q = QT ≥ 0 and R = RT > 0. Then the LQR cost
function can be defined as

J = E[tr[yTy]] = E[tr[yyT ]], (16)

where tr[ ] denotes trace of a matrix. The simplified cost
function in terms of the LQR penalty matrices is
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J = tr[QP ] + tr[R
1
2KPKTR

1
2 ]. (17)

However, the second term of the cost above is nonlinear
in K and P and must be redefined for LMI representation.
Let

X = R
1
2KPKTR

1
2 , (18)

where X is a symmetric LMI variable. Equation (18) can
be written as a Schur complement:

[
X R

1
2Y

Y TR
1
2 P

]
> 0, (19)

The LMI optimization problem can be written as

min
(P,Y,X)

tr[QP ] + tr[X], (20)

subject to (14) and (19). The centralized feedback is
obtained by

K = Y P−1. (21)

In general, the feedback gain in (21) has a centralized
structure. That is the feedback for each joint depends on
states of other joints. The centralized feedback requires
all the arm dynamic information to be available in one
location (for instance a central computer) to perform the
calculations. In fact, without imposing constraints on K
the solution of (20) subject to (14) and (19) is the same
as the discrete time LQR solution. However, for practical
implementation on joint DSP controllers, it is often
desired to have decentralized structure. This is because
each actuator is controlled by a separate DSP controller
performing the feedback control, locally.

The decentralized structure on the feedback gain K as in
(9) can be realized by imposing a block diagonal structure
on the LMI variables P and Y . It can be easily shown
that if these variables have a block diagonal structure the
resulting feedback gain in (21) will have the decentralized
structure. Hence in this paper, P and Y are defined to
have similar structure as in (9). The only difference is that
diagonal blocks of P are square matrices of dimension 5 and
diagonal blocks of Y have the same dimension as blocks of
K. The next section demonstrates experimental results of
this method on the CompActTM robot arm.

IV. EXPERIMENTAL VALIDATION

This section is organized in three parts. Firstly, the ex-
perimental setup is explained in section IV-A. Secondly,
the details about controller implementation are provided in
section IV-B. Finally, the step and sine wave experimental
results are reported in section IV-C.

A. Experimental Setup

In this section, the 4 DoF CompActTM arm is used to
validate the control design. Full multivariable mechanical
model of the arm including actuator dynamics and passive
compliance is used. The model is linearized about the home
posture as shown in Fig. 1 which corresponds to zero
angles, velocities and accelerations. The linearized model is
discretized with 1ms sampling time to derive the state space
equations given in (6) and the LMI-LQR algorithm is used
to design the decentralized feedback gains. The dynamic
parameters of the robot such as the mass, centre of mass
and inertias are obtained from the CAD software and DC
motor data sheet.

In terms of sensors, there are two 12 bit position encoders
to measure the motor and link angles. The motor encoder
is placed before the gearbox with gear ratio of 100:1,
and therefore gives 100 times better signal for the motor
position when reflected to the output of the gearbox. In
order to obtain the velocity signal a third order Butterworth
differentiator filter with cut off frequency of 20 hertz is used.
This cut off frequency was chosen in several experimental
tests to reduce the spikes on the velocity signal specially
during slow motions. Hence all state variables are available
for the state feedback control. The size of the state vector is
20 × 1 which includes 4 link positions, 4 link velocities,
4 motor positions, 4 motor velocities and 4 integrators
introduced on the link positions, respectively. The same
ordering is maintained in the LQR state and input penalty
matrices Q and R used in section IV-B to provide an intuitive
way of tuning the controllers. The passive compliance in the
shoulder extension-flexion and adduction-abduction is 188
Nm/rad and the compliance in shoulder roll and elbow
flexion-extension is 103 Nm/rad, respectively.

B. Controller Implementation

The LQR state and input penalties in the original coordi-
nates are Q = diag{10 × Q1, 0.1 × Q2, 10 × Q3, 0.1 ×
Q4, 0.5×Q5}, where Q1 = [1, 1, 1, 0.1], Q2, Q3, Q4, Q5
are [1, 1, 1, 1], and R = diag{2, 4, 4, 2} and the input noise
variance is β = 0.01, where p is the dimension of the
state space that is 20 and n is 4. The size of the circular
LMI region to constrain the closed loop poles is chosen
as δ = 0.999990 to relax the constraint on the size of
eigenvalues. Increasing bandwidth was realized by reducing
the input penalties and increasing the state penalties. δ
provides an additional constraint and tuning parameter to
obtain faster responses by directly imposing some values
on the closed loop eigenvalues. The penalties and state
space model are transformed using the permutation matrix
as described in the previous section. In general, reducing
the penalty R increases the speed of the response but also
leads to larger control signals. Also, increasing the penalty
on the integrators Q5 increases the speed of the response by
producing larger integral gains.
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The LMI optimization has 90 decision variables which
depends on the size of LMI variables (Y, P, X) used in
(20) and (21). The resulting gains are reported in Table I.
The proportional gains Kp for link position and Kpm for
motor position are in (V/rad), damping gains Kd for link
velocity and Kpm for motor velocity are in (V.sec/rad) and
integrator gains (accumulating the error between reference
and motor position) are in (V/rad.sec). The resulting gains
are shown in Table I. The controller formula for each joint
is implemented as:

ui = Ki × [qi, q̇i, qmi, q̇mi, zi]
T , (22)

with Ki defined in (10) for each joint.

TABLE I
DESIGNED FEEDBACK GAINS

Joint ID Kp Kd Kpm Kdm Kz

1 -8.24 5.72 103.57 0.58 -0.5
2 -196.08 11.45 277.07 1.43 -0.34
3 -275.9 3.94 358.15 1.79 -0.34
4 -73.76 0.51 147.38 0.8 -0.49

C. Experimental Results

In order to characterize the performance of the designed
tracking system, experimental step responses of each joint
controlled by the decentralized gains are presented. The step
tests for three shoulder joints and elbow are shown in Figs.
3, 4, 5 and 6, respectively. Size of the step is chosen to be
10 degrees (0.174 radian) to excite the dynamics but also
avoid damaging the arm. The achieved bandwidth of the
system is about 1 hertz and a major limitation in increasing
the bandwidth further was the noisy velocity signals and use
of filtering (used for velocity estimation) which introduces
delay in the control system. In particular the effect of noisy
link velocity signal can be observed on the generated control
input signals for joints one and two as shown in Figs. 3 and
4. The actuators of the CompActTM arm have a maximum
input voltage of ±24 volts which compared to the step
control input shows the control is far from saturation. The
effect of noisy velocity signal can be seen during the first 0.5
seconds in Fig. 3 when the joint is not moving but voltage
spikes are produced due to the spikes in the link velocity
estimates.

Furthermore, an overshoot of about 10% can be seen in
the step response which is due a feedforward gain with value
of 25% of the Kpm times the reference position is used
in the experiments which should be adjusted to avoid this
overshoot. In addition to step response experiments, sine
tracking was also tested on the joints as shown in Fig.
7 for joint one. The reference signal for joints one, three
and four is chosen as r(t) = 10sin(6.28t) which has 1
hertz frequency with amplitude of 10 degrees. The reference
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Figure 3. The step response of joint one, shoulder extension-flexion.
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Figure 4. The step response of joint two, shoulder adduction-abduction.

signal for joint two due to mechanical limits is chosen as
r(t) = 10(1 − cos(6.28t)). It should be noted that, the
joint tracking can be still improved by formulating an output
feedback problem to derive optimal decentralized feedback
gains for sensors with cleaner signals. Hence, as a future
work studying the output feedback control to only use the
sensors which give better signals will be considered.

V. CONCLUSION

The decentralized full state feedback design via LQR-
LMI approach was presented in discrete time. It was shown
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Figure 5. The step response of joint three, shoulder roll.
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Figure 6. The step response of joint four, elbow.
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Figure 7. The sine response of joint one, shoulder extension-flexion.
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Figure 8. The cosine response of joint two, shoulder adduction-abduction.

that this method can be applied to compliant robots to
design the servo controller with a decentralized structure.
The compliant CompActTM robot arm with 4 DoF was
chosen to illustrate the ideas experimentally. The LQR-LMI
optimization problem showed promising results to design
the PD-PID feedback gains with the desired bandwidth.
Future work will focus on theoretical and experimental
study of output feedback problem with feed-forward gravity
compensation to improve the dynamic tracking of the robot
arm in terms of bandwidth and utilization of sensors with
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Figure 9. The sine response of joint three, shoulder roll.
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Figure 10. The sine response of joint four (elbow).

more cleaner (less noisy) signals in the control system. This

method can be utilized in compliant robot arms to benefit
from various sensor readings such as position and torque in
the joint feedback.
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