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About the toolbox 
 
The MIMO Toolbox is a collection of MATLAB functions and a GUI.  Its purpose is to 
complement the Control Toolbox for MATLAB with functions capable of handling the 
multivariable input-output scheme.  All the results and examples except for example 
1.1.2.1 were obtained with the MIMO Toolbox and were corroborated with the 
bibliography. 
 
April, 2006 
 

Installation 
The installation is straightforward just copy the directory “Mimotools” and add the path 
to the MATLAB search path. 
 
See path, in the MATLAB documentation for more information. 
 

Requirements 
The MIMO Toolbox was created in Matlab 7.1 (R14) SP3, and requires the Symbolic 
and Control Toolboxes. 
 

Contact 
Oskar Vivero 
oskar.vivero@gmail.com 
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1. Theory behind the functions 
 
The aim of this chapter is to introduce the MIMO control theories so that one can 
understand both, the algorithm behind each function and its proper use.  This chapter is 
only intended to provide a brief description of such theories and it’s recommended that 
the user refers to the bibliography listed at the end of this document.  
 

1.1  SISO Systems 
 
1.1.1 Feedback Basic Concepts 
 
Assuming a lineal process that is time-invariant whose behavior is defined by lineal 
differential equations with constant coefficients: 
 

1 2 1 2y a y a y b u b u
•• • •

+ + = +  
 

where ( )y t  is the output signal and  ( )u t  is the input signal, its possible to obtain a 

transfer function by applying the Laplace’s Transform 
 

( )
( ) ( ) ( )

( )
1 2

2
1 2

Y s N s b s b
G s

U s D s s a s a
+

= = =
+ +

 

( )
( )

If 0   then  is defined as a zero.

If   then  is defined as a pole.
Z Z Z

P P P

s s G s s

s s G s s

= � =

= � = ∞
 

 
If ( )G s  is rational, usually ( )D s  determines the dynamic characteristics of the system, 

unless there exist cancellations between ( )N s  and ( )D s . 

Let ( )H s  and ( )G s  be two transfer functions 

 

              
 
The stability of the system in a closed-loop configuration is given by ( ) ( )1 G s H s+  if 

and only if there is no cancellation of instabilities.  For any design, it’s possible to 
verify its stability by finding the singularities of ( )CLG s .  If any of the singularities is 

located in 2+�  or near the imaginary axis, it’s almost impossible to determine the 
modifications needed on either ( )G s  or ( )H s  to avoid the location of the singularities.  

The Nyquist’s stability criterion provides a tool for solving the problem 
 

( ) ( )
( ) ( )1CL

G s
G s

G s H s
=

+
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1.1.2 Nyquist’s Stability Criterion 
 
The system in a closed-loop configuration is stable if and only if the trajectory of the 
Nyquist diagram of ( ) ( )G j H jω ω  from ω−∞ < < ∞  surrounds the point ( )1,0−  in a 

counter-clockwise direction as much times as ( ) ( )G s H s  has unstable poles. 

 
Theorem – suppose that a function ( )f z  is meromorphic in a simply connected domain 

D, and that C is a simple closed positively oriented contour in D  such that ( )f z  does 

not contain any singularities.  Then  
 

( )
( )
'1

2 f f

f z
N dz Z P

i f zπ
= = −��  

 
where N  is the winding number, fZ  is the number of zeros inside the contour and fP  

is the number of poles inside the contour. 
 

 
 

Example 1.1.2.1 
The image of the circle of radius 2 centered at the origin under ( ) 2f z z z= +  is the 

curve ( ) ( ) ( ) ( ) ( )( ), 4cos 2 2cos , 4sin 2 2sing x y t t t t= + + .  Note that the curve ( ),g x y  

winds up twice around the origin.  We check this by computing 
 

( )
( )

0 1

0 1

2 2

'1
   ;   Singulatiries at 0 and 1

2

2 1 2 1
Res Res 2

C

z z

f z
N z z

i f z

z z
N

z z z z

π
= = = −

+ +� � � �= + =� � � �+ +� � � �

�
 

 
Having defined N , it’s important to define a useful contour for the stability analysis.  
It’s possible to know from the root locus analysis and the time response that the 
unstable poles are at the right side of the S-plane.  Since the zeros of the open loop 
system are the poles of the closed loop system, we’ll focus on finding the unstable zeros 
through Nyquist frequency analysis.  The contours that we’ll consider are: 
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Example 1.1.2.2 – [4] pp. 620 

Draw the Nyquist contour and diagram of ( ) ( )( )( )
500

1 3 10
G s

s s s
=

+ + +
 

 
 
Once the stability of a system has been defined through the Nyquist’s diagram, the 
robustness of the system can be defined by two quantities, the gain and phase margins. 
Gain margin ( )MG  - the change of gain in open loop needed to obtain a phase shift at 

180° that turns the system unstable. 
Phase margin ( )MΦ  - the phase shift in open loop needed to turn the system unstable 

with a unit gain. 
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1.2  MIMO Systems 
 
The basic description of a multivariable system is through a transfer function matrix 
(TFM), whose elements ,i jg  represent the i-est output with the j-est input.  The 

elements ,i jg  are individual transfer functions.   

 

 
 

1.2.1 Poles and zeros of a MIMO system 
The poles and zeros of multivariable systems can be defined in several (not all 
equivalent) ways, but the definitions that yield the most significant consequences are 
given by [1]: 
 
The zeros of a transfer function matrix ( )H s , are the roots of the (nonzero) numerator 

polynomials ( ){ }i sε  in the Smith-McMillan form of ( )H s . The Smith-McMillan form 

allows us to give a physical interpretation of the zeros.  If Zs  is a zero, then the Smith-

McMillan form of ( )H s  will lose rank at Zs s= . 

The poles of a transfer function matrix ( )H s , are the roots of the denominator 

polynomials in the Smith-McMillan form of ( )H s . 

 
1.2.1.1 Smith – McMillan Transformation 
 
Given a rational matrix ( )H s  

( ) ( )
( )

N s
H s

d s
=  

 
where ( )d s  is the monic least common multiple of the denominators of ( )H s  

 
Then ( ) ( ) ( )d s H s N s=  is a polynomial matrix, so that we can write,  

 
( ) ( ) ( ) ( ) ( ) ( )1 2d s H s N s U s s U s= = Λ  
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where the ( ){ }iU s  are unimodular matrices and ( )sΛ  is in Smith form 

 

( ) ( ) ( ) ( )
( )

( )
( )

( )
( )

( )
( )

1 1
1 2

i

i i

i

s s
U s H s U s diag

d s d s

s s

d s s

λ

λ ε
ψ

− − 	 
Λ � �= = � 

� �� �

=

 

 
where ( ) ( ){ },i is sε ψ  are coprime, 1, ,i r= �  

 
and r is the (normal) rank of ( )H s  

 
Then we can write 

( ) ( ) ( ) ( )1 2H s U s M s U s=  

 
where ( )M s  is the Smith-McMillan transformation of ( )H s  given by 

 

( )
( )
( )

0

0 0

i

i

s
diag

M s s

ε
ψ

� �	 
� �
� �� 
= � �� �� �
� �
� �

 

Smith Form 
For any p m×  polynomial matrix ( )P s  we can find elementary row and column 

operations, or corresponding unimodular matrices ( ) ( ){ },U s V s  such that 

( ) ( ) ( ) ( )U s P s V s s= Λ  

where 

( )

( )

( )

( )

0

0
0 0 0

 the (normal) rank of 

i

r

s

s
s

r P s

λ

λ

� �
� �
� �Λ =
� �
� �
� �

=

� �

�

 

 
and the ( ){ }i sλ  are unique monic polynomials obeying a division property  

( ) ( )1 ,      1, , 1i is s i rλ λ + = −�  

Moreover, if 
( ) ( ) the gcd of all  minors of i s i i P s∆ = ×  

then 

( ) ( )
( ) ( )0

1

,            1i
i

i

s
s s

s
λ

−

∆
= ∆ =

∆
 

 
The matrix ( )sΛ  is called the Smith form of ( )P s  
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Example.1.2.1.1 – [1] pp. 444-446 
Find the poles and zeros of  

 

( )
( ) ( )

( )
( ) ( )

2

2 2 2 2

11

1 2 1 1

s s s
G s

s s s s s s

� �+
� �=
� �+ + − + − +� �

 

Solution 
Given  

 

( ) ( ) ( )1
G s N s

d s
=  

 
where 

 

( ) ( ) ( ){ } ( ) ( )

( ) ( )
( ) ( )

2 2 2 2

2

2 2

1 2 1 2

1

1 1

d s lcm s s s s

s s s
N s

s s s s

= + + = + +

� �+
� �=
� �− + − +� �

 

 
Finding ( )sΛ  in Smith form: 

( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( )

( ) ( ) ( ) ( )

0

2 2 2
1

23
2

1 1

22
2 2

1

gcd , 1 , 1 , 1

gcd 1 2

1 2

s

s s s s s s s s s

s s s s

s s s

s s s s s

ε λ

ε λ

∆ =

∆ = + − + − + =

∆ = + +

= =

= = + +

 

 
Therefore 

( )
( )
( ) ( ) ( )2 2

2

0
0 1 2

00 0
2

i

i

s
s

diag s s
M s s

s
s

ε
ψ

� �
� �	 
� � � �+ +� �� 
 � �= =� �� �� � � �
� � � �� � +� �

 

 
The poles are defined as 

 

( ) ( ) ( ) ( ) ( ) ( )
[ ]

2 2
1 2 1 2 2 0

1 1 2 2 2

p s s s s s s

p

ψ ψ= ⋅ = + + ⋅ + =

= − − − − −
 

The zeros are defined as 
 

( ) ( ) ( )
[ ]

3
1 2 0

0 0 0

z s s s s

z

ε ε= ⋅ = =

=
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1.2.2 Stability of MIMO Systems 
 
Having defined a tool in order to obtain the poles and zeros of a MIMO system, it’s 
necessary to define if the system is stable.  This can be achieved by the generalized 
Nyquist’s stability criterion, which is an adaptation from the Nyquist’s stability criterion 
for SISO systems. 
 
1.2.2.1 Generalized Nyquist’s Stability Criterion 
 
Let ( )G s  be a rational TFM, assuming that it has no cancellations between poles and 

zeros.  Let K  be a compensator with a negative feedback loop, that is 
 

I            ;             K k k= ∈�  

 
 
Let the ( )det I KG s+� �� � have P  poles and Z  zeros in the right hand plane (RHP), then 

like in SISO systems 
 

( ) ( )arg det I 2KG s Z Pπ∆ + = − −� �� �  

 
where arg∆  is the change of phase given by s along the Nyquist’s contour.  In order to 
obtain stability in a closed loop, it is required that the diagram mapped by 

( )det I KG s+� �� � surrounds the origin P times. 

 
As a difference from the SISO case, the Nyquist diagram of each k of interest must be 
obtained.   
 
If ( )i sλ  is an eigenvalue of ( )G s , then ( )ik sλ  is an eigenvalue of ( )KG s , and 

therefore, ( )1 ik sλ+  is an eigenvalue of ( )I KG s+ . Then 

 
( ) ( )det I 1 i

i

KG s k sλ+ = +� � � �� � � �∏  

 
and 

 
( ) ( )arg det I arg 1 i

i

KG s k sλ∆ + = ∆ +� � � �� � � ��  

 
Therefore, the stability in a closed loop system can be inferred by the number of wind 
ups to the point ( )1,0−  given by the Nyquist diagram of ( )ik sλ .  The Nyquist diagram 

of ( )i sλ  are known as the characteristic graphs of ( )G s . 
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Theorem – If ( )G s  has right hand plane poles (RHPP), P, given by the Smith-McMillan 

transformation, then the closed loop with negative feedback is stable if and only if the 
characteristic graphs of ( )KG s  surround the point ( )1,0−  P times in a counter-

clockwise direction, assuming that there was no cancellations of instabilities. 
 
Example 1.2.2.1 – [2] pp. 61 
Find the values of 0k >  in order to keep ( )G s  from becoming unstable 

 

( ) ( )( )
11

6 21.25 1 2

s s
G s

ss s

−� �
= � �− −+ + � �

 

 
Solution 
 
It’s easy to verify that the open loop poles of ( )G s  are [ ]1 2P = − − , therefore, in 

order to maintain the closed loop system stable, we must ensure that the number of 
surroundings of the characteristic graphs of ( )G s  is equal to zero. 

Assuming 1k = , then 
( )

( )
( )

( )
( )

2

1

2

2

det I 0

2 2 3 24 1

5 3 2

2 2 3 24 1

5 3 2

KG s

s s

s s

s s

s s

λ

λ
λ

Λ = − =� �� �

� �− + − +
� �
� �+ +� � � �Λ = =� � � �� � − − − +
� �
� �+ +� �

 

 
From the eigenvalues of ( )G s , its possible to obtain the Generalized Nyquist Diagram 

when 1k =  
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From the diagram it’s possible to obtain the critical points in which we can calculate the 
values of k , in order to keep the system stable. Knowing that the critical points are in 

0.8−  and 0.4− , therefore 
 

1 1
1.25  , 2.5

0.8 0.4
k k� � � �< = > =� � � �

� � � �
 

 
This can be proven by setting the values of k equal to 1.25 and 2.5 and obtaining the 
Nyquist Diagram. 
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1.2.3 Treating a MIMO system with SISO techniques 
1.2.3.1 Coupling degree and pairing of inputs and outputs 
 
Given the coupling degree of a MIMO system, it’s possible to apply certain SISO 
techniques for designing controllers.  The degree of coupling can be found by several 
techniques, such as the Nyquist’s arrays and the Gershgorin bands, the relative gain 
array (RGA), and the individual channel design (ICD).  In some cases, it is possible to 
cross couple inputs and outputs in order to obtain a less coupled system. 
 
1.2.3.2 Nyquist’s Arrays and Gershgorin bands 
 
The Nyquist’s array of a TFM ( )G s , is an array of graphs, where the i, j-est graph is the 

Nyquist Diagram of ,i jg .   

 
Gershgorin Theorem – let Z  a n n×  complex matrix.  Then, the eigenvalues of Z  fall 
on the union of circles with center at ,i iz  with radius 

 

,
1

m

i j
j

j i

Z
=
≠

�  

 
and on the circles with center at ,j jz  with radius 

 

,
1

m

i j
i

i j

Z
=
≠

�  

 
Gershgorin Bands 
 
Over the Nyquist’s diagram of ( ),i ig s , on each point, we super impose a circle of 

radius 
 

( ) ( ), ,
1 1

        or          
m m

i j j i
i i

i j i j

g j g jω ω
= =
≠ ≠

� �  

 
The bands obtained in this way are known as the Gershgorin Bands. 
 
By the Gershgorin theorem it’s possible to know that the bands trap the unions of the 
Nyquist diagram.  More over, it’s possible to demonstrate that the bands occupy 
different regions, therefore there will be as many Nyquist’s diagrams trapped in a region 
as many Gershgorin bands are there. 
 
Then, by counting the number of wind ups that the Gershgorin bands do around the 
point ( )1,0− , its possible to determine the stability of the MIMO system. 
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If the Gershgorin bands are thin and exclude the origin, it is said that ( )G s  is 

diagonally dominant which can be interpreted as a decoupled system. 
 
Example 1.2.3.1– [3] pp. 657 
Find the Gershgorin bands of  

 

( )
2

2 2

2 0.1
13 2

0.1 6
2 1 5 6

ss sG s

s s s s

� �
� �++ += � �
� �
� �+ + + +� �

 

 

 
 
From the graphs above, it’s possible to observe that the system is stable and highly 
decoupled.  Therefore, it can be managed as two independent SISO systems with small 
disturbances due to the small coupling degree.  
 
1.2.3.3 Relative Gain Array (RGA) 
 
To measure the degree of coupling or interaction in a system, the concept of relative 
gain array can be used.  For an arbitrary n n×  matrix A, it is defined as 

 

( ) ( )1RGA .*
T

A A A−=  

 
The RGA matrix has a number of interesting properties 
 

• The sum of the elements of any row or column is always 1 
• RGA is independent of any scaling 
• The sum of the absolute values of all elements in ( )RGA A  is a good measure of 

A’s true condition number, i.e., the best condition number that can be achieved 
in the family 1 2D AD , where iD  are diagonal matrices. 

• Permutation of the rows or columns of A leads to permutations of the 
corresponding rows or columns of ( )RGA A . 
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Clearly RGA of a diagonal matrix is the unit matrix.  The deviation of RGA from the 
unit matrix can be taken as a measure of the coupling degree between y Ax= . 
 
For a n m×  matrix, the RGA is defined as 
 

( ) ( )†RGA .*
T

A A A=  

 
where †A  denotes the pseudo inverse of A. 
 
Example 1.2.3.2– [3] pp. 657 
Let ( )G s  be 

 

( )
2

2 2

2 0.1
13 2

0.1 6
2 1 5 6

ss sG s

s s s s

� �
� �++ += � �
� �
� �+ + + +� �

 

 

( )( ) 1.0101 0.0101
RGA

0.0101 1.0101
G S

−� �
= � �−� �

 

 
Since ( )( )RGA IG S → , it’s possible to observe that the system is highly decoupled.  

This corroborates the result given by the Gershgorin bands in example 1.2.3.1. 
 
1.2.3.4 Individual Channel Design (ICD) 
 
As a difference from RGA and the Gershgorin Bands which are useful tools for 
calculating the cross-coupling of a system, the Individual Channel Design is a 
framework in which Bode/Nyquist techniques can be applied directly to the channels 
not only when cross-coupling is weak but in all circumstances, including when cross-
coupling is strong.  The multivariable system is decomposed into an equivalent set of 
SISO systems.  Each SISO system is the open-loop channel transmittance between 
output ( )iY s  and input ( )iR s  with all internal loops closed. [6] 

 
Let ( )G s  be a 2 2×  system with a controller of the type ( ) ( )iK s diag k s= � �� � then the 

relationships of 
( )
( )

i

i

Y s

R s
 can be established as  

( )
( ) ( )

( )
( ) ( )

1
1 1 11 2

1

2
2 2 22 1

2

1

1

Y s
C k g h

R s

Y s
C k g h

R s

γ

γ

= = −

= = −
 

where ( )iC s  is the individual channel, ( )sγ  is the multivariable structure function 

(MSF) and ( )ih s  is the subsystem i, which are respectively defined as: 
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( )

( )

12 21

11 22

1
i ii

i
i ii

g g
s

g g

k g
h s

k g

γ =

=
+

 

 

 
 
The MSF ( )sγ  is of great importance inside the ICD analysis framework, since it is 

capable of [6] 
 

• Determining the dynamical characteristics between each input and each output 
• It has an interpretation in the frequency domain 
• Its magnitude quantifies the amount of coupling between the channels 
• It can determine the transmittance zeros of the system from ( )1 sγ−  

• ( ) 1sγ =  determines the non-minimum phase conditions 

• Its closeness to the point ( )1,0  it’s a key point in determining the robustness of 

the system 
 
Robustness Conditions 
In order to obtain a design that provides a channel that is robust and stable, the 
following conditions should be satisfied 

1. ( )sγ  should not be close to the point ( )1,0  for all ω  

2. ( ) ( )is h sγ  shall be robust 

3. ( ) ( )i iik s g s  shall be robust 

 
The interaction between the discarded inputs and outputs can be observed from 

 

( ) ( )
( ) ( ) ( ) ( )1

1
ij

i j j
jj i

g s
Y s h s R s

g s C s
= ⋅ ⋅

+
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2. Function Reference 
 
The aim of this chapter is to give a brief description of the functions used in the MIMO 
toolbox.  For the users that are new to the Matlab environment it is recommended to 
review the getting started documentation.    
 

2.1 The Symbolic Transfer Function 
 
The Control Toolbox in Matlab posses an object class that describes a transfer function.  
This model representation is numerical and it’s sensitive to floating point errors due to 
arithmetic operations such as inversion.  Also, from the LTI definition, the transfer 
function class cannot handle nonlinearities such as square roots, trigonometric 
functions, etc, since it’s only a rate in polynomial representation.  Given such problems, 
a symbolic conversion for transfer function has been developed, and it’s key to some of 
the functions inside the MIMO toolbox.  This conversion enables the user to handle the 
transfer function and its operations as an algebraic problem, simplifying the 
computational difficulties that may arise for the users without a computer science 
background.   
 

2.2 Function Description 
 
2.2.1 tf2sym 
 
Syntax 
G_sym = tf2sym(G) 
 
Description 
tf2sym performs the conversion from a numeric to a symbolic representation of a 
transfer function.  The function is capable to deal with both SISO and MIMO models.  
To be able to differentiate the type of transfer function, the symbolic transfer function is 
represented with the Laplace operator ‘p’ instead of  ‘s’. 
 
 

Example 1 
>> G=tf([1 2 3],[1 5 6 7]) 
>> G_sym=tf2sym(G); 
>> pretty(G_sym) 
                                       2 
                                 3 + p  + 2 p 
                              ------------------- 
                               3      2 
                              p  + 5 p  + 6 p + 7 
 

Example 2 
>>   g11=tf([1 2],[1 2 1]); 
     g12=tf([1 -1],[1 5 6]); 
     g21=tf([1 -1],[1 3 2]); 
     g22=tf([1 2],[1 1]); 
     G=[g11 g12; g21 g22]; 
     g=tf2sym(G); 
     pretty(g) 
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                     [    2 + p              -1 + p     ] 
                     [   --------        ---------------] 
                     [          2        (p + 3) (2 + p)] 
                     [   (p + 1)                        ] 
                     [                                  ] 
                     [    -1 + p              2 + p     ] 
                     [---------------         -----     ] 
                     [(2 + p) (p + 1)         p + 1     ] 
 
2.2.2 sym2tf 
 
Syntax 
G = sym2tf(G_sym) 

 
Description 
sym2tf performs the conversion from a symbolic to a numeric representation of a 
transfer function.  As tf2sym, this function is capable of dealing with both SISO and 
MIMO models.  This conversion cannot handle nonlinearities since the numeric transfer 
function class ‘tf’ is not capable of dealing with the nonlinearities. 
 
Example 1 
>> syms p 
>> G_sym = (p^2 + 2*p + 3)/(p^3 + 5*p^2 + 6*p + 7); 
>> G=sym2tf(G_sym) 
  
Transfer function: 
    s^2 + 2 s + 3 
--------------------- 
s^3 + 5 s^2 + 6 s + 7 
 

Example 2 
>>   g11=(p + 2)/(p^2 + 2*p + 1); 
     g12=(p - 1)/(p^2 + 5*p + 6); 
     g21=(p - 1)/(p^2 + 3*p + 2); 
     g22=(p + 2)/(p + 1); 
     g=[g11 g12; g21 g22]; 
     G=sym2tf(g) 
  
Transfer function from input 1 to output... 
          s + 2 
 #1:  ------------- 
      s^2 + 2 s + 1 
  
          s - 1 
 #2:  ------------- 
      s^2 + 3 s + 2 
  
Transfer function from input 2 to output... 
          s - 1 
 #1:  ------------- 
      s^2 + 5 s + 6 
  
      s + 2 
 #2:  ----- 
      s + 1 
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2.2.3 ss2sym 
 
Syntax 
G = ss2sym(A,B,C,D) 
 
Description 
ss2sym performs the conversion from a state space representation to a symbolic transfer 
function. 
 
Example 
>>   A = [0 1 0 0 0; 0 0 1 0 0; -2 -5 -4 0 0; 0 0 0 0 1; 0 0 0 -3 -4]; 
     B = [0 0; 0 0; 1 0; 0 0; 0 1]; 
     C = [1 2 1 9 3; 14 9 1 1 1]; 
     D = [0 1; 0 0]; 
     g=ss2sym(A,B,C,D); 
     pretty(g) 
  
                              [   1        p + 4] 
                              [ -----      -----] 
                              [ 2 + p      p + 1] 
                              [                 ] 
                              [ p + 7        1  ] 
                              [--------    -----] 
                              [       2    p + 3] 
                              [(p + 1)          ] 
 
2.2.4 smform 
 
Syntax 
[M,poles,zeros] = smform(G) 

 
Description 
[M,poles,zeros] = smform computes the Smith-McMillan transformation, the poles 
and zeros of a MIMO TFM.  The algorithm obeys directly the theory specified on the 
section 1.2.2.1 of this document by establishing an active link with the Maple kernel. 
 
Example 
>>   g11=tf([1 1],[1 3 2]); 
     g12=tf([1 4],[1 1]); 
     g21=tf([1 7],[1 2 1]); 
     g22=tf([1 2],[1 5 6]); 
     G=[g11 g12 ; g21 g22]; 
     [M,poles,zeros]=smform(G); 
  
>> pretty(M) 
  
        [           1                                                ] 
        [------------------------                   0                ] 
        [               2                                            ] 
        [(p + 3) (p + 1)  (2 + p)                                    ] 
        [                                                            ] 
        [                             4       3       2              ] 
        [                            p  + 15 p  + 86 p  + 203 p + 167] 
        [           0                --------------------------------] 
        [                                         p + 1              ] 
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>> poles 
 
poles = 
 
  -3.0000           
  -2.0000           
  -1.0000           
  -1.0000 + 0.0000i 
  -1.0000 - 0.0000i 
 
>> zeros 
 
zeros = 
 
  -5.3101 + 2.5439i 
  -5.3101 - 2.5439i 
  -2.1899 + 0.1460i 
  -2.1899 - 0.1460i 

 
2.2.5 rga 
 
Syntax 
A=rga(G) 

 
Description 
rga computes the Relative Gain Array of a MIMO TFM.  The algorithm obeys directly 
the theory specified on the section 1.2.3.3 
 
Example 
>>   g11=tf([1 2],[1 2 1]); 
     g12=tf([1 -1],[1 5 6]); 
     g21=tf([1 -1],[1 3 2]); 
     g22=tf([1 2],[1 1]); 
     G=[g11 g12; g21 g22]; 
     A=rga(G) 
 
A = 
 
    1.0213   -0.0213 
   -0.0213    1.0213 

 
2.2.6 nyqmimo 
 
Syntax 
nyqmimo(G) 

 
Description 
nyqmimo computes the Nyquist’s Diagram based on the type of transfer function at the 
input.  nyqmimo distinguishes between transfer functions with singularities at the origin, 
proper, strictly proper and strictly improper transfer functions, based on that structure, it 
maps the Nyquist’s Diagram according to the Nyquist’s Contour. nyqmimo is capable 
of computing the Nyquist’s Diagram for SISO and the Generalized Nyquist’s Diagram 
for MIMO systems. 
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Example 1 
>> G=tf([1 25],[1 5 3 -9 0]); 
   nyqmimo(G) 

 

 
 
Example 2 
>>   den=1.25*conv([1 1],[1 2]); 
     g11=tf([1 -1],den); 
     g12=tf([1 0],den); 
     g21=tf([-6],den); 
     g22=tf([1 -2],den); 
     G=[g11 g12;g21 g22]; 
     nyqmimo(G) 
 
 

 
 
2.2.7 m_circles 
 
Syntax 
m_circles 

 
Description 
m_circles superimposes the M circles of magnitude -2dB to 20dB.  This function is 
useful to measure the gain margin on a Nyquist’s Diagram. 
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Example 
>> G=tf(1,[1 2 1]); 
>> nyqmimo(G) 
Verifying for sigularities on the origin... 
Setting frequency range... 
Mapping... 
Plotting... 
>> m_circles 

 

 
 
2.2.8 icdtool 
 
Syntax 
icdtool(G) 

 
Description 
icdtool is a GUI designed to help the user in the task of designing controllers for a 
2 2×  MIMO system with under the Individual Channel  
 

Design Scheme. 
By default, icdtool calculates ( )sγ , when just loaded, icdtool will not load the 

default controller.  The controller will only be loaded and all the proper calculations 
performed after the user has clicked on the UPDATE CONTROLLERS button.  If the 
user doesn’t know entirely the behavior of the system, it is recommended that they load 
a unitary gain proportional controller, in that way, the user will be able to analyze both, 

( )sγ  and the diagonal elements of the system, ( ) ( )1,1 2,2,  g s g s . It is possible to load a 

proportional controller by clearing the poles and zeros entries.  
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2.2.9 gershband 
 
Syntax 
gershband(G) – Gershgorin bands of G 
gershband(G,’v’) – Gershgorin bands and Nyquist Array of G 

 
Description 
gershband computes the Gershgorin Bands of a n n×  MIMO system along with the 
Nyquist’s Array. 
 
Example 
>>   g11=tf([1 2],[1 2 1]);      g12=tf([1 -1],[1 5 6]); 
     g21=tf([1 -1],[1 3 2]);     g22=tf([1 2],[1 1]); 
     G=[g11 g12; g21 g22]; 
     gershband(G,’v’); 
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2.2.10 arrowh 
 
Syntax 
Arrowh(x,y,color,size,location) 

 
Description 
arrowh draws a solid arrowhead in the current plot 
 
Author:        Florian Knorn 
Email:         florian.knorn@student.uni-magdeburg.de , florian@knorn.org 
Homepage:  http://www.florian-knorn.com/ 
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