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Thévenin’s Theorem, Cramer’s Rule, and Parameterized Systems: 
Some Connections

SHANKAR P. BHATTACHARYYA, VILMA A. OLIVEIRA, and RAFAEL F.Q. MAGOSSI

Engineering systems are complex systems comprising 
interconnections of simpler subsystems. Examples of 
this in electrical engineering are ac and dc circuits, 

motor drives, power systems, and electronic circuits. Simi-
lar examples occur in mechanical engineering, robotics, 
hydraulic networks, truss structures, and chemical reac-
tors. In control engineering, complex feedback systems are 
created from interconnections of elementary blocks. In this 
article, we present a unified approach and framework ap-
plicable to the analysis of all such systems. The main uni-
fying criterion is that the systems are described by linear 
equations. We show that the input–output maps of both 
algebraic and dynamic systems can be obtained by a com-
mon set of formulas developed by systematically applying 
Cramer’s rule for solving linear equations.

Additionally, we consider systems containing param-
eters that may be uncertain or design parameters. For such 
parameterized systems, using Cramer’s rule leads to the de-
termination of a specific functional relationship between the 
parameter outputs. The unknown coefficients of this function 
can be found from a few strategic measurements of the system. 
This leads to a generalization and extension of Thévenin’s the-
orem, rendering it applicable to arbitrary systems described 
by linear equations. This fundamental approach was devel-
oped in [1]. Here, we describe this approach and illustrate it 
with applications to electronic circuits and hydraulic systems.

The generalization proposed in this article makes the 
connection between Cramer’s rule and Thévenin’s theo-
rem, thus extending the latter to a large class of systems de-
scribed by linear equations. It will also be shown that this 
approach avoids short- or open-circuiting the system, as is 
required in applications of the classical Thévenin’s theo-
rem. In the presented approach, equivalent information can 
be obtained from a few measurements made using conve-
nient system settings.

This article needs as background only basic algebraic, cir-
cuit theory, and dynamic physical system models concepts, 

and thus, it should be accessible to students and professional 
engineers who work with system modeling. The main tools 
used in engineering dynamic systems, such as physical sys-
tem modeling, are covered in several control textbooks. In 
some, linear graphs are also explored to obtain state-space 
and transfer function models (see [2] and [3]). In the former, 
the linear graph approach is used to obtain Thévenin and 
Norton equivalents.

As discussed in “Summary,” this article presents a frame-
work for addressing the input–output maps of systems, 
parameterized systems, and an extension of Thévenin’s 
theorem. The parameterized state-space framework pre-
sented here was developed in [1] and used in applications 
such as agricultural sprayers [4], power electronic convert-
ers, and renewable sources [5], as shown in [6]–[8]. In the 

Summary

The celebrated theorem by Thévenin is very useful in 

applications such as power system analysis because 

it states that it is possible to simplify a complex circuit to 

a much simpler equivalent circuit. Traditionally, it is ac-

complished by taking the power system to a short circuit 

that is a critical operating condition. This article, therefore, 

highlights the efficacy of using a proposed theorem that 

generalizes Thévenin’s theorem and avoids submitting 

the system to critical operating conditions that differ from 

its conventional application. Additionally, this generalized 

Thévenin’s theorem can be used in other fields, such as 

precision agriculture, to simplify complex interconnected 

systems. The connection between Thévenin’s theorem and 

Cramer’s rule in a parameterized state-space framework 

is also shown. The parameterized state-space solution is 

given in terms of parameters, which may include design 

parameters and unknown coefficients. Different problems 

in the agricultural, mechanical, and power electronic fields 

are used to illustrate practical applications of the theory 

presented.
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following sections, the unified model and Cramer’s rule 
are used to obtain the system output. The output of state-
space models is obtained using the same framework. Subse-
quently, a parameterized version of the unified framework 
is presented, with the output solution expressed in terms of 
parameters of interest. Next, a measurement theorem is de-
scribed to show that functions of the parameters of interest 
can be determined from a few measurements and obtain a 
generalization of the Thévenin theorem. Finally, concluding 
remarks are made, and future developments are described.

ALGEBRAIC SYSTEMS AND CRAMER’S RULE
Consider a system consisting of inputs , , , ,u u ur1 2 f  out-
puts denoted , , ,y y ym1 2 f  (which are external variables), 
and internal or state variables denoted by , , , ,x x xn1 2 f  as 
illustrated in Figure 1. Using vector notation

: , : , : ,
y

y

u

u

x

x
y u x

m r n

1 1 1

= = =h hh> > >H H H

denote the m output vector, r input vector, and n state or 
internal vector, respectively.

When the system has no time derivative in the internal 
variable, it is an algebraic system. The algebraic equations 
describing the system are linear with constant coefficients. 
This results in a static, linear time-invariant system that is 
based on a state-space framework represented as

	
,
,y

A B

C D

0x u

x u

+ =

+ =
�

(1)

with output vector ,y  input vector u  (as previously defined), 
and ( , , , )A B C Dand  matrices of size , , ,n n n r m n# # #  and 

,m r#  respectively. Based on this state-space model, a gen-
eral unified model is defined.

Definition 1: General Unified Model
Let : . z x yT T T

=6 @  Equation (1) may be rewritten as

	 .
A
C I

B
D

0
z u

-
=
-; ;E E � (2)

The system representation in (2), based on a state-space 
model, relates all of the inputs and internal and output 
variables to be solved in a single step. As a result, (2) is 

defined as a general unified model. However, in many cases, 
there is no interest in the solution for all of the internal 
variables in vector .x  The only physically meaningful vari-
ables are often y  and u  because x  may not be accessible. 
To obtain a solution for the desired output, recall the well-
known Cramer’s rule.

Cramer’s Rule: A Tool to Obtain a Solution  
of the General Unified Model
To teach students studying an introductory course on linear 
systems theory how to obtain transfer functions, [9] showed 
that Cramer’s rule gives rise to a general method with peda-
gogical appeal. However, it does not use the general unified 
model inspired in the input–output-state model, in which 
the solution is connected to the output of linear dynamic 
systems. In this section, how best to obtain the solution for 
the general unified model is shown using Cramer’s rule. 
There are several proofs of Cramer’s rule in the literature, 
such as [10] and in “Simple Proof of Cramer’s Rule.”

Note that, in (2), the mapping from input u  to output y  
is made through the intermediate internal variables .x  A 
direct relationship between u  and y  can be obtained by 
eliminating ,x  as follows: let yi  denote the ith output and 
uj  the jth input in (1). Note that the superposition principle 
is satisfied, that is, output yi  is the sum of the outputs for 
each input .uj  Then, if ci  denotes the ith row of ,C  bj  the 
jth column of ,B  and dij  the ij  element of ,D  then applying 
Cramer’s rule to (2) shows that
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FIGURE 1  A state variable model relating input ,u  state ,x  and out-
put y  vectors.

The generalization proposed in this article makes the connection 

between Cramer’s rule and Thévenin’s theorem.
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and

	 ,T
A
C I

0
=
-
; E � (5)

which is a solution for a desired output of the general uni-
fied model. Thus far, only pure algebraic systems with no 
time derivatives were considered. Later in this article, dy-
namic systems are shown to be treated as algebraic systems 
using the Laplace transform (with zero initial conditions) 
and also recast as a unified model. Prior to this, the unified 
model and Cramer’s rule were used in a purely algebraic 
example to obtain the desired outputs of a dc circuit.

Example 1: Output Voltages of dc Circuits  
in Terms of the Determinants
We illustrate the use of the general unified model to find 
the dc circuit outputs in Figure 2. The input u V V 1 2= l6 @  
is given by voltage sources, the output y v v 2 4= l6 @  is given 
by the voltages across the resistors R2  and ,R4  the internal 
variables are the branch currents ,i j  and the branch voltag-
es vj  across the resistors , , ,R j 1 10j f=  are represented as

.i i v vx T
1 10 1 10gg=6 @

Kirchhoff’s point rule gives

	     ,i i i 01 5 8- - = � (6)
	     ,i i i 05 2 6- - = � (7)
	 ,i i i i 03 6 9 7+ + - = � (8)
	     ,i i i 07 10 4+ - = � (9)
	    ,i i i 08 9 10- - = � (10)

Kirchhoff’s loop rule yields

	 ,V v v v 01 1 5 2- - - = � (11)
	 ,v v v V 02 6 3 2- + - = � (12)
	 ,V v v v 02 3 7 4- - - = � (13)
	   ,v v v v 08 9 6 5+ - - = � (14)
	     ,v v v 09 10 7- + = � (15)

and Ohm’s law gives the relations

	 , , , .v i R j 1 10j j j f= = � (16)

Without using Cramer’s rule with the presented approach, 
it is necessary to solve for all of the circuit current variables to 
obtain the outputs of interest. However, as presented in this 
section, obtaining the desired outputs can be easier. Note that 
(6)–(15) are algebraic equations depending on the currents 
and voltage drops at the circuit nodes and loops, respectively, 
which contain no parameters. Only (16) contains the parame-
ters , , , .R j 1 10j f=  Rewriting (6)–(16) in the form of (2) gives

	 ,A R
A

I
11 12

=
-

A; E � (17)
FIGURE 2  A resistive circuit.
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Simple Proof of Cramer’s Rule

Consider the linear system

	 ,Az b= � (S1)

where A is ,n n#  ,z  and b are .n 1#  Let zk  denote the kth 

component of z  and Ak  denote the n n#  matrix obtained 

by replacing the kth column of A by .b  Let .; ; denote de-

terminant.

Cramer’s Rule

If A 0!;; , then

	 .z A
A

k
k

; ;
;;

= � (S2)

Proof

Let ei  denote the ith column of the identity matrix and

	 : [ ] .Z e e e z e ek k k n1 2 1 1g g= - + � (S3)

It is easy to see that (S1) is equivalent to

	 .AZ Ak k= � (S4)

Taking the determinants of both sides of (S4) and the fact 

that ,Z zk k;; =

	 ,A z Ak k; ;; ; = � (S5)

or

	 ,z A
A

k
k

; ;
; ;

= � (S6)

which is (S2).
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where
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with I10  being the identity matrix of order 10; : [ ],C c ,i j=  
, ,i 1 2=  , ,j 1 20f=  with ,c 0,i j =  except c 1,1 12 =  and ;c 1,2 14 =  

: [ ], , , , ,B b i j1 20 1 2,i j f= = =  with , ,b b1 1, ,6 1 7 2= =-  ,b 1,8 2 =  
;b 1,14 2 =  and , , , , .d i j0 1 2 1 2ij = = =

Using the general unified model (2),
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From (5), .T A; ; ; ;=  Therefore, solving (18) for y1  and ,y2
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The next section addresses dynamic systems and how to 
represent them as an algebraic system using the general 
unified model. 

DYNAMIC SYSTEMS MODEL
Consider the following state-space model

( ) ( ) ( ),
( ) ( ) ( ),

x t Ax t Bu t

y t Cx t Du t

= +

= +

o

which obeys the superposition principle if and only if the 
initial condition ( )x 0 0=  [11], [12]. Applying the Laplace 
transform yields

	
( ) ( ) ( ),

( ) ( ) ( ),
A s x s Bu s

y s Cx s Du s

=

= +
�

(20)

with ( ) : .A s sI A= -  Defining ( ) ( ) ,z x s y sT T T
=6 @
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with
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C I
0
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-
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which has exactly the same form of the general unified 
model in (2). Its solution for a prescribed output is obtained 
using Cramer’s rule. To obtain the solution, let

	 ( ) :
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ij
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with ,ci  , ,i m1 f=  being the ith row of ,C  , , ,b j r1j f=  the 
jth column of ,B  and dij  the ijth element of .D  Solving for 
yi  gives
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where
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and ( )T s  is defined in (22).
In dynamical systems, the transfer function plays an 

important role in both the analysis and design of con-
trollers. An experienced reader may now consider us-
ing the state space to transfer function conversion, that 
is, finding the complete transfer function matrix using 

( ) .C sI A B1- -  However, calculating the inverse matrix 
using the adjoint method requires the calculation of the 
determinant, the cofactor matrix, and at least three ma-
trix multiplications. If not all outputs are required, then 
this step is not necessary to obtain the result. Instead of 
this laborious work, Cramer’s rule gives an easier alter-
native to obtain the transfer function of interest by sim-
ply calculating three determinants. Next, we show how 
a transfer function of interest is found using the already-
obtained solution for the general unified model in the 
state-space form.
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Obtaining the Input–Output Transfer Functions  
Using the General Unified Model
The output ( )y s  can be written in terms of the transfer ma-
trix entries denoted ( )G sij  as

	 ( )
( )

( )

( )

( )
( ),y s

G s
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11
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1

h

g

g

g

h=> H � (26)

with
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for , , , , , .i m j r1 1f f= =  To illustrate the use of the frame-
work to obtain some transfer functions of interest, consider 
the inverted pendulum example.

Example 2: Inverted Pendulum-Transfer Functions
Consider the inverted pendulum shown in Figure 3. The 
input is the force applied to the cart, and the outputs are the 
position of the cart and angular position of the pendulum. 
The dynamics of the pendulum on a cart are described with

	 ,cos sinNx bx m m kua a
2, ,i i i i+ + - =p o p o o^ ^h h � (28)

	  ( ) ( ) ,sin cosL mg m x d 0a, ,i i i i- + + =p p o � (29)

where N m M= +  (with m  the pole mass and M  the cart 
mass), L I m 2,= +  (with I  the moment of inertia of the arm), 
b  and d  the cart friction and pendulum-dumping coeffi-
cients, respectively, ,  the arm length, g  the gravity, and 
F ku= o  the force acting on the cart with gain .k

Integrating (28) and (29) and defining , ,x x xa1 2i= =  and 
,x3 8i=  a state-space description of the pendulum and cart 

is obtained. Linearizing around ,0i=  the state-space ma-
trices are obtained as
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The outputs are

	
| ( )|T s| ( )|

, ,y
T s

u y u 1
11

1 2
21

1= =
| ( )| | ( )|T s T s

where

( ) ,T s

s
m LN

Nd

m LN
d m

m LN
b m

s
m LN

Lb
m LN
Ng m

m LN
g m

s1
1

0

0
0
1

0
0

0

0

0
1
0

0

0

0
0
1

2 2

2 2

2 2

2 2

2 2

2 2

2 2
,

,
,

,
,

,

,

,

,

,

=

-
-

-
-

-

-

-
-

-

-

-
-

R

T

S
S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
W
WW

with

( )

,

( )

.

T s

s
m LN

Nd

m LN
d m

m LN
b m

s
m LN

Lb
m LN
Ng m

m LN
g m

s

m LN
k m

m LN
Lk

T s

s
m LN

Nd

m LN
d m

m LN
b m

s
m LN

Lb
m LN
Ng m

m LN
g m

s

m LN
k m

m LN
Lk

1
1

0
0 0

0
0

1
0

0
1 0

0
0

11

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

21

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

,

,
,

,
,

,

,

,

,

,
,
,

,

,

,
,

,
,

,

,

,

,

,
,
,

,

=

-
-

-
-

-

-

-
-

-

-
-

-

-
-

=

-
-

-

-

-

-
-

-

-

-
-

-

-
-

R

T

S
S
S
S
S
S
SS

R

T

S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
WW

V

X

W
W
W
W
W
W
WW

Thus, the transfer functions are obtained as
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The program code is given in “Matlab Code for Generat-
ing the Transfer Functions of the Pendulum in Example 2.” 

FIGURE 3  A feedback digital pendulum in the upright position.
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The block diagram of a complex dynamic system is repre-
sented as a general unified model (2) with the entries of the 
matrices being transfer functions. This case is directly illus-
trated in the following example.

Example 3: Block Diagram With Transfer Functions
Consider the block diagram of a two-input, two-output dy-
namic system, as shown in Figure 4. As is typical in this kind 
of problem, to obtain the transfer functions of interest, it is 
necessary to apply some block diagram algebraic simplifica-
tion or replace several equations with consecutive substitu-
tions, which is time-consuming if the block diagram is as 
large as the one shown in Figure 4. However, it is possible 
to obtain the transfer functions of interest easily using the 
presented approach.

The input and output of the block with transfer func-
tions ( )G sk  are denoted by swk ^ h and ,szk ^ h  respectively. 
The structural equations of the system are

	 ,u u z z w1 2 4 3 1+ - - = � (30)
	 ,z w w w1 2 6 3= = =   �   (31)
	 .z w w2 5 4= =     �     (32)

The outputs are

	 ,y z z1 5 6= + � (33)
	 ,y z2 2=   �   (34)

and the individual input–output equations are

	 , , , .s s sz G w k 1 6k k k f= =^ ^ ^h h h � (35)

Equations (30)–(35) are represented in matrix form as
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The transfer functions relating yi  to uj  can thus be obtained 
using Cramer’s rule, as shown in (3). The program code is 
given in the “Matlab Code for Generating the Transfer Func-
tions of the Block Diagram in Example 3.”

Matlab Code for Generating the Transfer 
Functions of the Pendulum in Example 2
%% Clearing the variables

    close all; clear all; clc

%% Defining the pendulum parameters and variables

    syms N b m l k u g d L M I

    syms x1 x2 x3 x1prime x2prime x3prime

    syms s

%% Defining the system

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% x1 = teta

% x2 = xa

% x3 = integral theta

% thus

% x1prime = thetaprime

% x2prime = xaprime

% x3prime = teta = x1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% diff equation system

    eq1 = –k*u + N*x2prime+b*x2+m*l*x1prime;

    eq2 = L*x1prime –m*g*l*x3+d*x1+m*l*x2prime;

% var. isol.

    x1prime = solve(eq1==0, x1prime);

    eq2 = eval(eq2);

    x2prime = solve(eq2==0, x2prime);

    x1prime = eval(x1prime);

    x3prime = x1;

    x1prime; x2prime; x3prime;

%% Writing in state-space form

    x = [x1 x2 x3]; % define the state vector

    [A, b] = �equationsToMatrix([x1prime == 0, x2prime == 0,  

x3prime == 0], x);

    A = simplify(A, ‘Steps’, 350)

    [b, xxx] = equationsToMatrix(–b, u);

    B = simplify(b, ‘Steps’, 350)

    C = [1 0 0; 0 1 0]; % define Cmatrix

    Ts = [s*eye(3)–A zeros(3,2); –C eye(2)]

    T11 = [s*eye(3)–A –B; –C(1,:) 0]

    T21 = [s*eye(3)–A –B; –C(2,:) 0]

    G11 = collect(det(T11)/det(Ts), s)

    G21 = collect(det(T21)/det(Ts), s)
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This section provided key details on the general unified 
model and its solution using Cramer’s rule for both alge-
braic and dynamic systems. The next section presents the 
parameterized version of the general unified model. With the 

parameterized input-state-output model, 
the reader will become familiar with the 
concept of parameters in linear systems 
and some important results, such as the 
characterization of time-delay state-space 
systems into the form of the general uni-
fied model. This is also an important step 
in obtaining the Thévenin’s equivalents 
explained later in this article.

PARAMETERIZED INPUT–OUTPUT 
MODELS
In many design problems, there is a set of 
parameters denoted by a vector ,p  whose 

influence on the output is important. This can be incorpo-
rated into the general unified model as shown in (36). Con-
sider the linear, parameterized, input–output model

	
( ) ( ) ,

( ) ( ) ,
A B

C D

p x p u

y p x p u

=

= + � (36)

with output vector ,y  input vector ,u  and parameter vec-
tor .p  Define

, , .y y pu u py u pm
T T T

r1 1 1g g g= = = ,6 6 6@ @ @

Using : [ ] ,z x yT T T=  (36) can be written as

	 ( )  
( )

 ( ) ,T
B

Dp z
p
p u=

-= G � (37)

with

	 ( ) :
( )
( ) ,T

A
C I

0
p

p
p=

-
= G � (38)

which is the general unified model in (2), except for the 
parameterized system matrices. Again, a solution for a de-
sired output is obtained using Cramer’s rule with impor-
tant results. Let

	 ( ) :
( )
( )

( )
( ) , , , , , , ,T

A
c

b
d i m j r1 1p

p
p

p
pij

i

j

ij
f f=

-

-
= == G � (39)

with ( ), , ,c i m1pi f=  being the ith row of ( ),C p  ( ), jb pj = 
, , r1 f  the jth column of ,B  ( )d pij  the ijth element of ,D  and

	 ( ) : | ( )|,Tp pij ijb =     �     (40)

	 ( ) : | ( )| | ( )|.T Ap p pa = = � (41)

For (36), the outputs can be determined in terms of inputs 
and parameters. This is established using the results given 
in [1] and [13], and omitting proofs.

Matlab Code for Generating the Transfer 
Functions of the Block Diagram in 
Example 3
%% Clearing the variables

    close all; clear all;clc

%% Defining the system

    A11=[0 0 1 1 0 0

    1 0 0 0 0 0

    1 0 0 0 0 0

    1 0 0 0 0 0

    0 1 0 0 0 0

    0 1 0 0 0 0];

    A12=[1 0 0 0 0 0

    0 0 –1 0 0 0

    0 –1 0 0 0 0

    0 0 0 0 0 –1

    0 0 0 0 –1 0

    0 0 0 –1 0 0];

    A21=–eye(6);

    G=[G1 G2 G3 G4 G5 G6];

    A22 = diag(G);

    A=[A11 A12;A21 A22];

    B=[1 1;zeros(11,2)];

    D=[0 0;0 0];

    C=[0 0 0 0 1 1 0 0 0 0 0 0

    0 1 0 0 0 0 0 0 0 0 0 0];

    T=[A−B;0 eye(2]

    T=[A zeros(12,2);−C eye(2)];

    T11=[A –B(:,1);−C(1,:) D(1,1)];

    T12=[A –B(:,2);–C(1,:) D(1,2)];

    T21=[A –B(:,1);–C(2,:) D(2,1)];

    T22=[A –B(:,2);–C(2,:) D(2,2)];

    y1 = det(T11)*u1+det(T12)*u2

FIGURE 4  A block diagram of Example 3 showing the input–output relationship.
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Assumption 1
The parameter p  appears affinely in , , ,A B Cp p p^ ^ ^h h h  and 
D p^ h as

,
,

,
.

A A p A p A

C C p C p C

B B p B p P

D D p D p D

p

p

p

p

0 1 1

0 1 1

0 1 1

0 1 1

g

g

g

g

= + + +

= + + +

= + + +

= + + +

, ,

, ,

, ,

, ,

^
^
^
^

h
h
h
h

Assumption 2

	 .T 0p !^ h � (42)

Theorem 1 [1], [13]
For (36), the output is

	 , , , , ,y u i m1 2
p
p

i
ij

j

r

j
1

f
a

b
= =
=

^
^
h
h/ � (43)

with pijb ^ h and pa^ h defined in (40) and (41). In matrix 
terms,

	 .1y
p

p

p

p

p
u

m

r

mr

11

1

1

h

g

g

h
a

b

b

b

b

= ^
^

^

^

^h
h

h

h

h
> H � (44)

To describe the solution y  from (44), the form of the func-
tions pa^ h and pijb ^ h are provided.

Lemma 1 [1], [14]
Let A A p A p Ap 0 1 1 g= + + + , ,^ h  with rank , ,iA r 1i i= =  

, , .2 f ,  Then, Ap pa =^ ^h h  is a multivariate polynomial in 
p  of degree at most ri  in , , , , .p i 1 2i f ,=

The multivariate polynomials in p  can be written as

	 ( ) ,A p pp
i

r

i i
i

r
i i

0 0
11

1

1
1g f; ; a= ,g

= =,

,

,
,/ / � (45)

with rank , , , , .A r i 1 2i i f ,= =^ h  In (45), the number of coef-
ficients in A p^ h  is : ( ).r 1

i i1
n = +

,

=
%  Consider (39) written 

in polynomial form

.T T p T p Tpij ij ij ij0 1 1 g= + + + , ,^ h
Applying Lemma 1, we see that

T p pij ijb=^ ^h h

is a multivariate polynomial in p  of degree at most tijk  in 
,pk  where

( ), , , , , , , , , , , , ,t T i m j r k1 2 1 2 1 2rankijk ijk f f f ,= = = =

and it can be described in a manner similar to that in 
(45). Note that the concepts of the rank and multivariate 

polynomial may be new. To further explore these concepts, 
Example 4 shows how to use them.

Example 4: Determinant of Parameterized Matrices 
in Terms of a Multivariate Polynomial
Let

.A p
p
p
p

p
p

1

3

2 0

3
p 1

1

2

1

1

2

=^ h > H

As the parameter p  appears affinely in ,A p^ h  then

.A p p
1
0
3

0
0
0

0
0
0

0
1
0

2
0
1

0
1
0

0
0
0

0
1
0

0
0
3

p 1 2= + +^ h > > >H H H

In this example, rank ( )A 21 =  and rank ( ) .A 22 =  Matrix 
A p^ h is said to be rank 2 with respect to p1  and ,p2  which 
yields r 21 =  and .r 22 =  Thus,

A p pp i i
ii

i i

0

2

0

2

1 21 2

12

1 2a=
==

^ h //

is a polynomial of degree at most 2 in both p1  and .p2  
Calculating the determinant of A p^ h  yields

.A p p p p6 5 3p 1
2

2 1
2

2
2=- + +^ h

Below is a class of time-delay systems that are shown to 
be a special case of the parameterized input–output model, 
where the parameters are the time delays of the system.

State-Space Models With Delays
First, consider a system with N, !  time delays represented 
in state-space form

( ) ( ) ( ) ( ) ( ) ,x t A x t B u t A x t L B u t Lb
b

b b b0 0
1

= + + - + -
,

=

o ^ eh o/
� (46)

( ) ( ) ( ) ( ) ( ) .y t C x t D u t C x t L D u t Lb
b

b b b0 0
1

= + + - + -
,

=

^ eh o/
� (47)

Taking the Laplace transform of (46) and (47) with zero ini-
tial condition T 02  and using { ( )} ( ),x t T e x sL sT- = -

	 ( ) ( ) ( ),sx s A A e x s B B e u sb
b

sL
b

b

sL
0

1
0

1

b b= + + +
, ,

=

-

=

-e eo o/ / � (48)

	 ( ) ( ) ( ) .y s C C e x s D D e u sb
b

sL
b

b

sL
0

1
0

1

b b= + + +
, ,

=

-

=

-e eo o/ / � (49)

Define

,p p e ep T sL sL T
1

1g g= =,
,6 6@ @
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and

	

( ) ,
( ) ,
( ) ,
( ) ,

A A p A p A

B B p B p P

C C p C p C

D D p D p D

p

p

p

p

0 1 1

0 1 1

0 1 1

0 1 1

g

g

g

g

= + + +

= + + +

= + + +

= + + +

, ,

, ,

, ,

, ,

which has exactly the same representation as in Ass
umption 1. Finally, consider the parameterized models  
described previously for a state-space description,

	
( , ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),
A s x s B u s

y s C x s D u s

p p

p p

=

= + � (50)

with ( , ) : ( ) .A s sI Ap p= -  As previously mentioned, the 
general unified model is obtained by defining

	 ( , )  
( )

( ) ,T s
B

Dp z
p

p u=
-= G � (51)

with

	 ( , ) :
( , )

( ) .T s
A s

C I
0

p
p
p=

-
= G

To obtain the desired solution, use Cramer’s rule with

( ) :
( , )

( )
( )

( ) , , , , , , ,T s
A s

c
b

d i m j r1 1
p
p

p
pij

i

j

ij
f f=

-

-
= == G

where ( ), , ,c i m1pi f=  is the ith row of ( ), ( ), , , rC b j 1p pj f=  
is the jth column of ( ),B p  and ( )d pij  is the ijth element of .D  
Define the polynomials

	 ( , ) : | ( , )|,s T sp p,i j ijb =      �      (52)

	 ( , ) : | ( , )| | ( , )|.s T s A sp p pa = = � (53)

The determinants in (52) and (53) can be written as polyno-
mials in p  as

	 ( , ) ( ) ( ),s s sp p pn n
n1

1 ga a a= + + +-  �  (54)

	 ( , ) ( ) ( ),s s sp p p, , , , ,i j
n

i j
n

i j n1
1 gb b b= + + +- � (55)

where the coefficients ( )pva  and ( ), , ,v n1p, ,i j v fb =  are mul-
tivariate polynomials in p with degree at most : ( )r Arankk k=  
and ( )t Trank, ,i j k ijk=  in ,pk  respectively. As shown previous-
ly, Theorem 1 yields

	 ( , ) ( , )
( , )

, , , , .y s s
s

u i m1 2p p
p

i
ij

j

r

j
1

f
a

b
= =
=

/ � (56)

The transfer functions can be obtained following the same 
procedure as in (24), but considering the parameterized state-
space form. To conclude this section, two examples illustrate 
the parameterized form of the general unified model.

Example 5: Parameterized Output
Consider the gyrator circuit shown in Figure 5 from [15]. 
Using the gyrator resistance, denoted as ,R4  regulate the volt-
age across the resistor ,R1  denoted as .y  Defining the inter-
nal variable vector as [ ]I I I  x T

1 2 3=  and using the Kirchhoff’s 
current and voltage laws

.
R
K
R

R
R

R
R

x
x
x
y

u u

1 1

0

0

0

0
0
0
1

0
1

0
1

1
0
0
0

0
1

1

2

4

4

3

1

2

3
1 2

-

-

-
+
-

-

+

-

=

R

T

S
S
S
SS

R

T

S
S
S
SS

R

T

S
S
S
SS

R

T

S
S
S
SS

V

X

W
W
W
WW

V

X

W
W
W
WW

V

X

W
W
W
WW

V

X

W
W
W
WW

In the general unified model, for output y  and inputs u1  

and ,u2
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Choosing the design parameter as ,p R4=  the matrices ap-
pearing in A p^ h and T p1 ^ h and T p2 ^ h are rank 2 matrices 
in .R4  Thus,

	 .y
p p
p p

u
p p
p p

u
1 11 2

2
01 11 21

2

1
1 2

2
02 12 22

2

2
a a

b b b

a a

b b b
=

+ +

+ +
+

+ +

+ +

This example illustrated how to analyze the output rang-
es of a variable of interest in terms of a parameter of the sys-
tem using the unified model in its parameterized version. 
The second example illustrates how to obtain the param-
eterized output of a time-delay system.

FIGURE 5  V  and i  are an ideal voltage and current source, respective-
ly; ,R1  ,R2  and R3  are linear resistors; and R4  is a gyrator resistance. 
The gyrator is a linear two-port device, where the instantaneous cur-
rents and voltages are related by V R i2 4 2=  and ,V R i41 3=-  and Ki1  
describes a dependent voltage amplifier in which K  is the gain.
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Example 6: Output of Systems With Delays in the 
State Variables and Output
Consider the space-state system

( ) ( ) ( ) ( ),

( ) ( ) .

x x t x t L x t L u t

y x t x t L
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Define the parameter vector p  as the Laplace transform 
of the delays in the state. Let p esL

1
1=  and ,p esL

2
2=  with 

time delays L1  and .L2  The parameter p  depends on .s  
However, the state-space framework can still be used. Thus, 
the following representation is obtained:
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In this case, , , , , ,r r t t t2 1 2 1 3, , , , , ,1 2 1 1 1 1 1 2 2 1 1= = = = =  and 
,t 1, ,2 1 2 =  which yields
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Substituting for p1  and p2  provides the equation shown in 
the box at the bottom of the page.

The solution using Cramer’s rule shows how the differ-
ent delays appear in the output ( ) .y s  The program code is 
given in “Matlab Code for Generating the Output of the 
System With Delay in Example 6.”

The next section describes how to obtain the parameter-
ized solution of the general unified model using measure-
ments. A generalization of Thévenin’s theorem developed 

in [1] is also presented to illustrate use of the results with 
practical applications.

SYSTEM PARAMETER ESTIMATION  
AND THÉVENIN’S EQUIVALENT
As shown previously, a complex linear algebraic system de-
scribed in the state-space framework can have a simple in-
put–output representation. Theorem 1’s solution suggests that 
knowledge of the functions ( )pa  and ( )pijb  are sufficient to 
determine the behavior of the outputs yi  as a function of p  
and u [1], [16]. The knowledge of ( )pa  and ( )pijb  reduces to the 
knowledge of the coefficients of these polynomial functions. In 
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Matlab Code for Generating the Output 
of the System With Delay in Example 6
%% Clearing the variables

close all; clear all; clc

%% Defining the matrices and the parameters

syms s L1 L2 

p1 = exp(s*L1);

p2 = exp(s*L2);

A0 = [1 0 0; 0 1 0; 0 0 1];

A1 = [0 1 0; 1 1 0; 0 0 0];

A2 = [0 0 1; 0 0 0; 0 0 0];

B = [1;0;1];

C0 = [1 0 0; 0 0 0];

C1 = [0 1 0; 0 0 1];

n = length(A0);

Ap = A0+A1*p1+A2*p2;

Cp = C0+C1*p1;

r1 = rank(A1);

r2 = rank(A2);

%% Calculate transfer functions

Asp = s*eye(n)–Ap;

Ts = Asp;

T11 = [Asp –B; –Cp(1,:) 0];

T21 = [Asp –B; –Cp(2,:) 0];

G11 = collect(det(T11)/det(Ts),s);

G21 = collect(det(T21)/det(Ts),s);

Gs = [G11;G21]
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an unknown system (black box, for instance) these coefficients 
are unknown a priori. However, if tests on the system can be 
performed by setting the design parameter p and input u to 
various values and measuring the corresponding output ,yi  
then the polynomial function coefficients can be determined.

Theorem 2: A Measurement Theorem [1]
Let y  be defined as in (44). The function y  can be deter-
mined from n  measurements and solution of a system of n  
linear equations in the unknown coefficient vectors pa^ h 
and ,pijb ^ h  called the measurement equations.

Theorem 2 is a generalization of Thévenin’s theorem of 
circuit theory, and the measurement result is illustrated 
in the special case of a single-input, single-output y  with 

[ ] , , , , .p p r r t t1 2 1 2 p 1 2 1 2 111 112= = = = =l  Here,

	 ,y u
p
p

a

b
= ^
^
h
h

� (57)

with

	 ,p p p p p pp 00 10 1 01 2 11 1 2 12 1 2
2b b b b b b= + + + +^ h � (58)

	 .p p p p p pp 00 10 1 01 2 11 1 2 12 1 2
2a a a a a a= + + + +^ h � (59)

Set 112a =  and conduct the following experiments: Mea-
sure y  for nine different sets of values ( , ) .p p1 2  Let ( ),y k  

, ,k 1 9f=  denote the nine different measurement values and 
k p k p k p 1 2=^ ^ ^h h h6 @ the nine sets of parameters. The nine co-

efficients of pa^ h and pb^ h in (58) and (59) can then be deter-
mined from the measurement equation Mf v=  with

,
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( ), ( ) ( ), ( ) ( ),
( ) ( ) ( ), ,

( ) , ( ) ,
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Consider a single-input, single-output algebraic system 
with only one parameter denoted .p  The input–output rela-
tionship can be written as

	 .y p
p

u
0 1

a

b b
=

+

+
� (60)

Equation (60) holds when the coefficient matrix A1  of the 
parameter p  as described in Assumption 1 has unity rank. 

Equation (60) shows that, if the constants ( , , )0 1b b a  are 
known, then the input–output map is determined.

Thévenin’s Equivalent: Special Case of Circuits
In circuit theory, it is possible to obtain an equivalent cir-
cuit representation composed by a voltage source in series 
with an impedance using the Thévenin’s equivalent. The 
Thévenin’s equivalent is studied in several circuit theory 
textbooks such as in [16] and [17], Thévenin’s theorem is ex-
tended to electromechanical systems. Consider an unknown 
dc circuit, as shown in Figure 6. The Thévenin’s equivalent 
of circuit theory is summarized in the following theorem.

Theorem 3: Thévenin’s Theorem

	 ,V Vth oc=  � (61)

	 ,R I
V

th
sc

oc= � (62)

where Isc  is the short circuit current and Voc  is the open 
circuit voltage [18], [19].

From Theorem 3, it is necessary to open- and short-circuit 
the terminals of the circuit of interest. However, many systems 
do not support short circuit conditions. Even in cases where this 
is possible, opening or short-circuiting the terminals of a circuit 
may not be a trivial or less economically feasible operation.

The single input–output description (60) represents a spe-
cial case of Thévenin’s theorem of circuit theory to arbitrary 
linear systems. To see this, consider again Example 5. To ob-
tain the Thévenin’s equivalent, the inputs u1  and u2  are set 
as constants. Take the Thévenin’s equivalent at the terminal 
defined by R and I  in Figure 6 as the Thévenin’s equivalent at 
the terminal defined by R1  and y i1=  in Figure 5. In this case, 
the circuit in Figure 5 has a single parameter .p Rp 1= =  Then

	 | ( )|
| ( )| | ( )|

,y A p
T p u T p u1 1 2 2

=
+

� (63)

where
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FIGURE 6  Thévenin’s equivalent for a dc circuit, illustrating its ter-
minal connected to a load .R
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As | ( )|T p1  and | ( )|T p2  are constants and the rank of matrix 
A  with respect to parameter p  is unity,

	 .i R1
1

0

a

b
=
+u

u
� (64)

The short circuit current Isc  is

	 ,I 0
sc

a

b
= u

u
� (65)

which is obtained by setting .R 01 =  Similarly, the open cir-
cuit voltage denoted as Voc  is given by multiplying (64) by 
R1  and taking the limit of ,R1 "3  which yields

	 .V 0oc b= u � (66)

The Thévenin’s equivalent is thus calculated as

	 ,R I
V

th
sc

oc a= = u � (67)

	 ,V 0th b= u     �  (68)

where , 0a bu u  are obtained by solving

( )
( )

( ) ( )
( ) ( ) .

i
i

R i
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1
1

1 1
2 2

1

1 0

1 1

1 1
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-

-
=
-

-

u
u; ; ;E E E

Note that calculating , 0a bu u  does not require short circuit 
or open circuit experiments, only two arbitrary settings 
with corresponding measurements. Analytical models 
may be developed for mechanical, electrical, fluid, and 
thermal systems in a rather analogous manner. In view of 
this analogy, the Thévenin’s equivalent can be generalized, 
and the approach can also be applied to other dynamic 
systems.

In the following example, using the electrical-hydraulic 
analogy, consider the analysis of a hydraulic sprayer used 
in agriculture. The fluid pressure is ,PD  the flow in a spray-
er boom is ,Q  and the nozzle of interest and fluidic resis-
tance is ,R  which are analogous to voltage, current, and 
electrical resistance, respectively [4].

Example 7: Electrical-Hydraulic Analogy  
and the Thévenin’s Equivalent
Consider a sprayer system illustrated in Figure 7, as in [4]. 
Let ,V PD=  and .I Q=  The Thévenin’s equivalent can be 
used to estimate the fluidic resistance of the boom.
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FIGURE 7  The sprayer boom used in the agricultural industry can be considered as an unknown hydraulic circuit. The analogy between 
electrical and hydraulic circuits can be used to derive the pointwise hydraulic Thévenin’s equivalents, thus obtaining the fluidic resistance 
equivalent, which is important because it directly affects the quality of, for example, pesticides application. 
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Using the Thévenin’s equivalent method presented, it is 
no longer necessary for the system to operate in two ex-
treme situations, such as hydraulic short circuit and open 
circuit. Using two different safe operating points, it is pos-
sible to obtain the Thévenin’s equivalent. Thus, let mea-
surements of flow in the boom nozzle of interest be ( )Q 1  
and ( )Q 2  and the measurements of pressure in the corre-
sponding boom be ( )P 1D  and ( ) .P 1D  Thus,

	
( )
( )

( )
( )

,
Q
Q

P
P

1
2

1
1

1
20

a

b

D
D

-

-
=
-

-

u
u; ; =E E G � (69)

where ,au  e, and 0bu  are coefficients to be determined. There-
fore, the flow in the boom can be written in terms of the 
coefficients of (69) as

	 ,Q P 0

a a

bD=- +u u

u
� (70)

which yields

,
,

R

P 0

th

th

a

bD

=

=

u

u

where Rth  and PthD  are the internal loss and pressure 
equivalents, respectively. To extract the Thévenin’s equiv-
alent, only two different nozzles were required. To vali-
date the obtained Thévenin’s equivalent, a third nozzle 
with an intermediate fluidic resistance value between 
these two nozzles used for extraction of the equivalent 
was employed. The resulting data are shown in Table 1. 
Using (69),

. [ ],

. [ ] .
P

R L

1 85
0 02

bar
bar min 1

th

th

D =

= -

This equivalent estimated the flow of arbitrary pressure 
values, as shown in Figure 8. The error of the estimated flow 
using the Thévenin’s equivalents was approximately 1.8%.

Example 8 explores the popular dc-dc boost converter 
used to step-up the voltage of a photovoltaic module to pro-
vide the voltage required by the dc-ac converter stage to con-
nect to the ac distribution power grid [20]. This application is 
represented in Figure 9.

Example 8: Parameterized Functions for a dc-dc 
Boost Converter Based on Measurements
Consider the dc-dc boost converter circuit without loss in 
Figure 10. The goal is to analyze the circuit characteristics 
such as the boost converter gain and the input current 
(denoted )Ii  to help select the converter parameters. The 
gain is related to the duty cycle, denoted ,D  of the pulse 
train, which is called pulsewidth modulation. The input 

current (denoted )Ii  is related to ,D  and 
the load is denoted .R

For the purpose of comparison, we 
first obtain the converter circuit equa-
tions using the averaging method, a very 
common method used to analyze pow-
er electronics circuits. Let ,x I Vi o

T= 6 @  
,u Vi=  and y Vo=  be the state, input, and 

output, respectively. Following [21], the 
circuit from Figure 10 can be modeled as a 
switched state-space system in which the 
matrices are defined as

Nozzles Pressure (bar) Flow (L/min)

CH05 3.405 0.535 

CH3 3.349 1.420 

CH6 3.295 2.230 

Table 1  Data obtained for different full cone nozzles.
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FIGURE 8  Validating the Thévenin’s equivalent for full cone nozzles 
connected at the sprayer boom. The straight line is the estimate of 
the flow obtained via (70), and the dots are the experimental points. 
The pump pressure was set to 3.5 bar. It was necessary to ensure 
that changing the fluidic resistance (a significant variation of pres-
sure at the boom of interest) was verified. A pressure variation of ap-
proximately 0.1 bar in relation to the pump pressure was considered 
significant due to the inherent noise of the spray sensors.
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FIGURE 9  The typical application of a boost converter illustrating the connection of the 
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Using the averaging method as in [22], 

[ ( )] [ ( )] ,
[ ( )] [ ( )] .

x A d A d x B d B d u

y C d C d x D d D d u

1 1
1 1

1 2 1 2

1 2 1 2

= + - + + -

= + - + + -

o

Applying small-signal perturbation denoted as , ,x du u  and ,uu

,
,
,

x X x

d D d

u U u

= +

= +

= +

u

u

u

where the first term describes the mean value and the sec-
ond term is the perturbation of the signal. Thus,

	 ,x AX BU Ax Fd Bu= + + + +uo u u u � (71)
	 ( ),y C X x= +r u        �        (72)

in which ,A  ,B  ,Cr  and F  are
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r

From (71) and (72), the steady-state condition is

,
.

AX BU

y CX

0+ =

= r

Finally, as in the boost circuit case, :u Vi=  and : .y Vo=  Us-
ing Cramer’s rule, the output is

| |
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and the voltage gain is
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The program code is shown in “Matlab Code to Ob-
tain the Static Voltage Gain for the dc-dc Converter in 
Example 8.”

Without using the boost circuit model, the gain V Vo i  is 
analyzed in terms of the duty cycle defined as a parameter 
p D=  from measurements. The problem is thus reduced to 
finding the coefficients of the function

( ) .V D D
D

Vo i
0

0 1

a

b b
=

+

+

The coefficients ,0a  ,1a  and 0b  for Vi  are constant and 
can be found using three different measurements of the 
parameter ,p D1 =  denoted ( ), ( )D D1 2 , and ( ) .D 3  The cor-
responding outputs Vo  are denoted ( ), ( ),V V1 2o o  and ( ) .V 3o  
Solving the following linear system of equations,

( )
( )
( )

( )
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Suppose the duty cycle range of interest is [ . . ]0 5 0 7  for 
, , ,V R L10 100 1V mHi X= = =  and .C 1000 Fn=  Using the 

PSIM software, the determined values are shown in Table 2. 

Matlab Code to Obtain the Static Voltage 
Gain for the dc-dc Converter in Example 8
close all, clear all, clc

%% define the variables

syms R C L D

%% define the matrices

A1 = [0 0; 0 –1/(R*C)];

A2 = [0 –1/L; 1/C –1/(R*C)];

B1 = [1/L;0];

B2 = B1;

%% calculate the gain

A = A1*D + A2*(1–D);

B = B1*D + B2*(1–D);

T1 = [A –B; [0 –1] 0];

Gain = simplifyFraction(det(T1)/det(A));

 

Vi

Ii
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+
–

L

D

Vo

IoC R

FIGURE 10  The model of an ideal boost dc-dc converter circuit 
showing its components. A boost dc-dc converter is a circuit that 
can deliver to the load a dc voltage equal to or greater than the 
input voltage source.
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Solving the algebraic system in , , ,and0 1 0b b a  it is shown 
that , ,1 00 1b b=- =  and ,10a =-  which yields

( ) ,V D D1
10

o =
- +
-

and the boost converter gain

( )
,V

V D
D1

1
i

o
=
-

which is identical to the theoretical gain that was previ-
ously analyzed. For the Thévenin’s equivalent, the boost 
converter without loss reduces to an ideal voltage source, 

as the output voltage of the dc-dc boost converter does not 
depend on the current at the terminal.

Finally, the output Ii  is analyzed as it relates to the pa-
rameters p D1 =  and .p R2 =  For this case, we can write

( , ) .I D R D R DR
D R DR

i
0 1 2

0 1 2 3

a a a

b b b b
=

+ + +

+ + +

Using seven different sets of values of ,D  ,R  and corresponding 
measurements of ,Ii  the constants ,0b  ,1b  ,2b  ,3b  ,0a  ,1a  and 

2a  are determined by solving the linear system of equations
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Suppose the duty cycle of interest lies in the in-
terval [ . . ],0 5 0 7  and the load range is [ ]100 150 X X  for 

, ,V L10 1V mHi = =  and .C 1000 Fn=  Using PSIM software, 
the values shown in Table 3 were determined.

Solving the linear equations, . , . ,14 905 32 8680 1b b= =-  
. ,0 1172b =-  . ,0 1483b =-  . ,50 1040a =  . ,69 5541a =-  and 
. .0 7972a =-  Using ( , ),I D Ri  it is possible to draw a sur-

face relating D  and R  with ( , ),I D Ri  as shown in Figure 11. 
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FIGURE 11  Relating the duty cycle parameter D  and load R  of the circuit in Figure 10 with current .Ii  The red-marked points are the 
measurements used. Note that extremal values of current Ii  occur at the vertices.

D Vo (V)

0.500 20 

0.600 25 

0.700 33.3 

Table 2  PSIM simulation data based on varying one 
parameter. 

D R(X) Ii (A)

0.500 100 0.408 

0.500 150 0.275

0.550 130 0.387 

0.600 125 0.515 

0.650 120 0.704 

0.700 100 1.14 

0.700 150 0.771 

Table 3  PSIM simulation data based on varying two 
parameters.
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From this surface, the current limits corresponding to each 
load in the range considered for the same duty cycle are 
known. This can be used to support the selection of the 
boost components. For any fixed load R  belonging to the 
interval [ , ] ,100 150 X  it is possible to know the dc current 
value at the inductor for any duty cycle in the considered 
range, which is essential information for selection [22].

Remark 1
Real data are noisy, with accuracy dependent on the tol-
erance of components and the measurement device used. 
In [8], the analysis of the ill-posed problem arising in the 
measurement-based approach, with real experiments, was 
presented. The ill-posed problem should be handled using 
regularization tools [23]. 

CONCLUSION
This article presented the general unified model: an al-
ternative representation based on the state-space frame-
work. Using the general unified model, it is possible to 
represent pure algebraic systems or dynamic systems 
and, using the well-known Cramer’s rule, obtain a solu-
tion for a prescribed output of the system. Using these 
concepts, the parameterized state-space framework was 
introduced. It was shown how the parameters will ap-
pear in the solution of the system, considering the rank 
of matrices related to each parameter. The solution of the 
parameterized state-space model suggests the possibility 
of using measurement techniques to determine the un-
known coefficients of the solution via a specific number 
of system experiments. Finally, from this solution, a gen-
eralization of Thévenin’s theorem was shown, including 
its use in actual applications. Cramer’s rule (applied to 
a general unified model based on the well-known state-
space framework of systems with parameters) can lead to 
insightful results and computational tools. It also helps to 
unify apparently diverse types of models and, thus, can 
be a powerful educational tool. Furthermore, a new way 
to calculate the Thévenin’s equivalent provides new in-
sights for the design of data-based adaptive control laws.
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 Cultural Lag  

This occurred in a ninth-grade social studies class in the fall of 1944. Our teacher, Bradley 
Patterson, was discussing a concept that was familiar then in sociology: William F. Ogburn’s 

notion of “cultural lag.”
The idea was that the development of technology regularly moved much further and faster 

than other aspects of culture: our intuitions of government, values, habits, ethics, and under-
standing of society and ourselves. Indeed, the very notion of progress referred mainly to the 
technology. What lagged behind, what developed more slowly or not at all, was everything that 
bore on our ability to direct technology and to control it wisely, ethically, prudently.

—Daniel Ellsberg, The Doomsday Machine. Bloomsbury Publishing Plc, 2017, p. 25.


