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With the advent of computer aided design, it is important to develop common mathematical
frameworks within which Electrical, Mechanical, Chemical, Biological and other systems can be
modelled, analysed and designed. One immediate use of this is that a common software platform
can be used across various disciplines to compute solutions, as exemplified by Matlab.

A common problem that arises in many fields of engineering is that of modelling the
behaviour of a complex interconnected system that is built up of simple elements. This is true
in Electrical Engineering where Direct and Alternating Currents Circuits, Power Systems and
Electronic Circuits are well known examples. Similar problems occur in Mechanical Engineering,
Robotics, Hydraulic Networks, Truss Structures and Chemical Engineering. Complex intercon-
nected feedback systems are created in Control Engineering from interconnections of elementary
blocks. The use of Cramer’s rule for solving systems of linear equations is of historical and
theoretical importance. The Cramer’s rule can be used in a pedagogical approach for calculating
transfer functions from a polynomial description of the state space equations.

The main elements of the general unified model presented here is the definition of input
vector u, the output vector y, the vector of internal state variables x, the parameter vector p, and
the equations based on physical laws connecting them. If these equations are algebraic we call
such a system as an algebraic system. If they involve time derivatives they are called dynamic.
Even dynamic systems can be treated as algebraic ones by taking the Laplace transform. Because
of that we refer to this model as a general unified model.

Many times when solving a linear system to obtain a variable of interest, it is common solve
the whole state space equation or perform a matrix inversion to get just few variables of interest.
In general, this is time consuming and can be avoided. Thus, in this lecture note we present in a
pedagogical way an unified input-output-state model which is useful for describing direct current
(DC) circuits, mechanical systems, block diagrams and other algebraic and dynamic systems.

The unified model can be explored to approach parameterized description of systems and
various examples including circuits and hydraulic systems are given to illustrate the use of the
well known Cramer’s rule.
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We revisit the use of the Cramer’s rule and new applications are conceived by considering
a system description with parameter dependence. We develop this general model and show how
it can be used to obtain an input-output description of a parameterized system using a few
measurements. The well known Thévenin’s equivalent is also derived from this general model.
The examples presented show how to obtain currents or voltages of interest in DC circuits,

transfer functions of complex dynamic systems and more importantly how the parameterized
case can be handled and how outputs of interest can be obtained from a few measurements. In
the parameterized case, the well known Thévenin’s equivalent is treated as a special case.

The rest of the paper is organized as follows. First, the general unified model and the use
of the Cramer’s rule to obtain the system output and how the output of state space models can
be obtained using the same framework are described. Subsequently, the parameterized version
of the unified model is presented with the output solution expressed in terms of parameters of
interest. Next, a measurement theorem is described to show that functions of the parameters
of interest can be determined from a few measurements. Finally, some concluding remarks are
made and future developments are described.

Algebraic Models and Cramer’s Rule
A general and unified approach to developing mathematical models for linear systems

is described below. We regard a system as consisting of inputs u1, u2, · · · , ur, outputs de-
noted y1, y2, · · · , ym, which are external variables, and internal or state variables denoted by
x1, x2, · · · , xn as illustrated in Fig.1 Using vector notation

y :=

 y1
...
ym

 ,u :=

 u1
...
ur

 ,x :=

 x1
...
xn

 ,
denote the m-output vector, r-input vector and n-state or internal vector, respectively.

Internal 
variables

x1, x2, ..., xn

u1

ur

y1

ym

...
...

Figure 1. A state variable model relating input u state x and output y vectors.

Often the only accessible or physically meaningful variables are y and u, and x may
not be accessible. When the algebraic equations describing the system are linear with constant
coefficients we have a static linear time invariant system:

Ax +Bu = 0

Cx +Du = y (1)
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with output vector y and input vector u as already defined and (A,B,C,D) are matrices of
size n× n, n× r,m× n and m× r, respectively. Let z := [x y]T . The system (1) may be thus
rewritten as [

A 0

−C I

]
z =

[
−B
D

]
u. (2)

In (2), the mapping from input u to output y is made through the intermediate internal
variables x. A direct relationship between u and y can be obtained by eliminating x, as shown
below. This can be done systematically by using Cramer’s rule. In [1], an approach for the
presentation of linear systems theory in a first course showed that the Cramer’s rule gives rise
to a general method with pedagogical appeal for obtaining desired system transfer functions.
However, it does not use the unified approach inspired in the input-output-state model, in which
the solution is connected to the concept of output of linear dynamic systems. The approach
presented here has been used in applications such as agricultural sprayers, power electronic
converters, renewable sources and others as shown in some of our papers [2], [3], [4], [5], [6].

Use of Cramer’s rule
Let yi denote the i-th output and uj the j-th input in (1). The superposition principle is

satisfied clearly, that is, output yi is given as the sum of the outputs for each input uj . If ci
denotes the ith row of C, bj the j-th column of B and dij the ij element of D, applying Cramer’s
rule to (2) it follows that

yi =
|Ti1|
|T |

u1 + · · ·+ |Tir|
|T |

ur, i = 1, · · · ,m (3)

where

Tij :=

[
A −bj
−ci dij

]
, i = 1, · · · ,m, j = 1, · · · , r (4)

and

T =

[
A 0

−C I

]
. (5)

In the literature, several proofs of the Cramer’s rule can be found [7]. A simple and direct
proof is given here, at the end of the paper, for the sake of completeness.

Example 1 (DC output voltages in terms of the determinants of the general form). Let us
illustrate the use of the general form to find the DC circuit outputs in Fig. 2. The input u = [V1 V2]

′

is given by voltage sources, the output y = [v2 v4]
′ is given by the voltages across the resistors

R2 and R4 and the internal variables are the branch currents ij and the branch voltages vj
across the resistors Rj, j = 1, · · · , 10:

x =
[
i1 · · · i10 v1 · · · v10

]T
.
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Figure 2. A resistive circuit.

Writing Kirchoff’s equations for the circuit, we have the following node equations

i1 − i5 − i8 = 0, i5 − i2 − i6 = 0

i3 + i6 + i9 − i7 = 0, i7 + i10 − i4 = 0

i8 − i9 − i10 = 0 (6)

loop equations

V1 − v1 − v5 − v2 = 0, v2 − v6 + v3 − V2 = 0

V2 − v3 − v7 − v4 = 0, v8 + v9 − v6 − v5 = 0

v9 − v10 + v7 = 0 (7)

and Ohm’s law relations
vj = ijRj, j = 1, · · · , 10. (8)

The block diagram of a complex dynamic system can also be represented as the linear
algebraic system (1) with the entries of the matrices being transfer functions. We illustrate with
an example.

Example 2 (Block diagram with transfer functions). Consider the block diagram of a 2-input,
2-output dynamic system shown in Fig.3. As usual in this kind of problem, to obtain the transfer
functions of interest, it is necessary to apply some block diagram algebra simplification or even
to replace several equations with consecutive substitutions, which is time consuming if the block
diagram is as large as shown in Fig.3. However, it is possible to obtain the transfer functions of
interest easily by using the present approach. The input and output of the block with transfer

March 29, 2018 DRAFT



4

G2(s)G1(s)

G3(s)

G6(s)

G5(s)

G4(s)

u1

u2

y1

y2

w1

w3

w5

w4

w6

w2z1

z3

z4

z2 z5

z6

++ +

+

+
- -

Figure 3. Block diagram of Example 2 showing input-output relationship.

functions Gk(s) are denoted wk(s) and zk(s), respectively. The structural equations of the system
are the six equations:

u1 + u2 − z4 − z3 = w1; z1 = w2 = w6 = w3; z2 = w5 = w4.

The output equations are
y1 = z5 + z6; y2 = z2

and the individual input/output equations are

zk(s) = Gk(s)wk(s), k = 1, · · · , 6.

The above sets of equations displayed in matrix forms are

A

[
z

w

]
+Bu = 0

C

[
z

w

]
+Du = y

with

A =





0 0 1 1 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 −1 0 0 0

1 0 0 0 0 0 0 −1 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 −1

0 1 0 0 0 0 0 0 0 0 −1 0

0 1 0 0 0 0 0 0 0 −1 0 0

−I6

G1

0
. . .

0 G6
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B =

[
1 1

[011×2]

]
, D =

[
0 0

0 0

]

C =

[
0 0 0 0 1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

]
.

The transfer functions relating yi to uj can thus be obtained using Cramer’s rule as shown in
(3).

Table 1. Matlab code for generating the transfer functions of the block diagram in Example 2.

%% Clearing the variables

close all; clear all;clc

%% Defining the system

A11=[0 0 1 1 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0];

A12=[1 0 0 0 0 0

0 0 -1 0 0 0

0 -1 0 0 0 0

0 0 0 0 0 -1

0 0 0 0 -1 0

0 0 0 -1 0 0];

A21=-eye(6);

G=[G1 G2 G3 G4 G5 G6];

A22=diag(G);

A=[A11 A12;A21 A22];

B=[1 1;zeros(11,2)];

D=[0 0;0 0];

C=[0 0 0 0 1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0];

T=[A -B;0 eye(2]

T=[A zeros(12,2);-C eye(2)];

T11=[A -B(:,1);-C(1,:) D(1,1)];

T12=[A -B(:,2);-C(1,:) D(1,2)];

T21=[A -B(:,1);-C(2,:) D(2,1)];

T22=[A -B(:,2);-C(2,:) D(2,2)];
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y1=det(T11)*u1+det(T12)*u2

State Space Models
A special case of block diagrams is state space models described by the first order

differential equation
ẋ = Ax(t) +Bu(t) (9)

which obeys the superposition principle if and only if the initial condition x(0) = 0 [8], [9].
The general description (1) can be extended to state space models as follows:

A(s)x(s) = Bu(s)

y(s) = Cx(s) +Du(s) (10)

with A(s) := sI − A. As before, we can write:

T (s) z =

[
−B
D

]
u, with T (s) :=

[
A(s) 0

−C I

]
.

with z = [x(s) y(s)]T . Let

Tij(s) :=

[
A(s) −bj
−ci dij

]
, i = 1, · · · ,m, j = 1, · · · , r (11)

with ci, i = 1, · · · ,m being the i-th row of C, bj, j = 1, · · · , r the j-th column of B, dij the ij-th
element of of D.

Obtaining the input-output transfer functions
Solving for yi, we obtain

yi =
|Ti1(s)|
|T (s)|

u1 + · · ·+ |Tir(s)|
|T (s)|

ur (12)

where

Tij(s) :=

[
A(s) −bj
−ci dij

]
, i = 1, · · · ,m, j = 1, · · · , r (13)

and

T (s) =

[
A(s) 0

−C I

]
. (14)

The output y(s) can be written in terms of the transfer matrix entries denoted Gij(s) as follows

y(s) =

 G11(s) · · · G1r(s)
... · · · ...

Gm1(s) · · · Gmr(s)

u(s) (15)
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with

Gij(s) =
|Tij(s)|
|T (s)|

=

[
A(s) −bj
−ci dij

]
|A(s)|

(16)

for i = 1, · · · ,m, j = 1, · · · , r.

Example 3 (Inverted pendulum transfer functions). Consider the inverted pendulum shown in
Fig. 4. The input is the force applied to the cart and the outputs are the position of the cart and
the angular position of the pendulum. The dynamics of the pendulum on a cart are described
by:

Nẍa + bẋa +m`θ̈cosθ −m`θ̇2sinθ = ku̇

Lθ̈ −mg`sinθ +mlẍacosθ + dθ̇ = 0 (17)

where N = m+M , L = I +m`2 and F = ku̇ is the force acting on the cart with k a gain.

Figure 4. Feedback digital pendulum in the upright position.

Integrating both equations in (17), and defining x1 = θ, x2 = xa and x3 =
∫
θ we obtain a

space state description of the pendulum and cart. Linearising about θ = 0 we obtain the state
space matrices as

A =


N d

`2 m2−LN
− b `m

`2 m2−LN
− N g `m

l2 m2−LN

− d `m
`2 m2−LN

Lb
`2 m2−LN

g `2 m2

`2 m2−LN

1 0 0



B =


k `m

`2 m2−LN

− Lk
`2 m2−LN

0

 , C =

[
1 0 0

0 1 0

]

An experienced reader may now think of using the conversion state space to transfer the
function, that is, C(sI − A)−1B to find the outputs of the pendulum. However, calculating the
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inverse matrix using the adjoint method needs calculating the determinant, the cofactor matrix,
and at least three matrix multiplications, and if not all outputs are required then it is a really
difficult way to get the result. Instead of this laborious work, the Cramer’s rule in the presented
approach gives an easier alternative to obtain the transfer function of interest by just calculating
three determinants.

The outputs are given by:

y1 =
|T11(s)|
|T (s)|

u1, y2 =
|T21(s)|
|T (s)|

u1

where

T (s) =


s− N d

`2 m2−LN
b `m

`2 m2−LN
N g `m

`2 m2−LN
0 0

d `m
`2 m2−LN

s− L b
`2 m2−LN

− g `2 m2

`2 m2−LN
0 0

−1 0 s 0 0

−1 0 0 1 0

0 −1 0 0 1



T11(s) =


s− N d

`2 m2−LN
b `m

`2 m2−LN
N g `m

`2 m2−LN
k `m

`2 m2−LN
d `m

`2 m2−LN
s− L b

`2 m2−LN
− g `2 m2

`2 m2−LN
− Lk

`2 m2−LN

−1 0 s 0

−1 0 0 0



T21(s) =


s− N d

`2 m2−LN
b `m

`2 m2−LN
N g `m

`2 m2−LN
k `m

`2 m2−LN
d `m

`2 m2−LN
s− L b

`2 m2−LN
− g `2 m2

`2 m2−LN
− Lk

`2 m2−LN

−1 0 s 0

0 −1 0 0

 .
Thus, we obtain the following transfer functions

G11(s) =
(−k l m) s2

(l2m2 − LN) s3 + (−L b−N d) s2 + (N g lm− b d) s+ b g l m

G21(s) =
(Lk) s2 + (d k) s− g k l m

(l2m2 − LN) s3 + (−L b−N d) s2 + (N g lm− b d) s+ b g l m

with

G11(s) :=
|T11(s)|
|T (s)|

, G21 :=
|T21(s)|
|T (s)|

.

Table 2. Matlab code for generating the transfer functions of the pendulum in Example 3.
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%% Clearing the variables

close all; clear all; clc

%% Defining the pendulum parameters and variables

syms N b m l k u g d L M I

syms x1 x2 x3 x1prime x2prime x3prime

syms s

%% Defining the system

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% x1 = teta

% x2 = xa

% x3 = integral theta

%

% thus

%

% x1prime = thetaprime

% x2prime = xaprime

% x3prime = teta = x1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% diff equation system

eq1 = -k*u+N*x2prime+b*x2+m*l*x1prime;

eq2 = L*x1prime-m*g*l*x3+d*x1+m*l*x2prime;

% isol

x1prime = solve(eq1==0,x1prime);

eq2 = eval(eq2);

x2prime = solve(eq2==0,x2prime);

x1prime = eval(x1prime);

x3prime = x1;

x1prime;

x2prime;

x3prime;

%% Writing in state space form

x = [x1 x2 x3]; % define the state vector
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[A, b] = equationsToMatrix([x1prime == 0, x2prime == 0,x3prime == 0 ], x);

A = simplify(A, ’Steps’, 350)

[b, xxx] = equationsToMatrix(-b, u);

B = simplify(b, ’Steps’, 350)

C = [1 0 0; 0 1 0]; % define C matrix

Ts = [s*eye(3)-A zeros(3,2); -C eye(2)]

T11 = [s*eye(3)-A -B; -C(1,:) 0]

T21 = [s*eye(3)-A -B; -C(2,:) 0]

G11 = collect(det(T11)/det(Ts),s)

G21 = collect(det(T21)/det(Ts),s)

Parameterized Input-Output Models
In many design problems there is a set of parameters denoted by a vector p, whose influence

on the output is important to know. This can be incorporated into the present formulation as
shown below. Let us thus consider the linear, parameterized, input-output model [10]:

A(p)x = B(p)u

y = C(p)x +D(p)u (18)

with output vector y, input vector u and parameter vector p:

y =
[
y1 · · · ym

]T
,u =

[
u1 · · · ur

]T
, p =

[
p1 · · · p`

]T
.

With z := [x y]T , (18) can be written as:

T (p) z =

[
−B
D

]
u with T (p) :=

[
A(p) 0

−C(p) I

]
.

Let

Tij(p) :=

[
A(p) −bj(p)

−ci(p) dij(p)

]
, i = 1, · · · ,m, j = 1, · · · , r (19)

with ci(p), i = 1, · · · ,m being the i-th row of C(p), bj(p), j = 1, · · · , r the j-th column of B,
dij(p) the ij-th element of of D, and

βij(p) := |Tij(p)|, α(p) := |T (p)| = |A(p)|. (20)

For the model (18), the outputs can be determined in terms of inputs and parameters.This
is established below using the results given in [10], and omitting proofs.
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Assumption 1. The parameter p appears affinely in A(p), B(p), C(p) and D(p):

A(p) = A0 + p1A1 + · · ·+ p`A`

C(p) = C0 + p1C1 + · · ·+ p`C`.

B(p) = B0 + p1B1 + · · ·+ p`P`

D(p) = D0 + p1D1 + · · ·+ p`D`.

Assumption 2.
|T (p)| 6= 0. (21)

Theorem 1. For system (18), the output is given by

yi =
r∑

j=1

βij(p)

α(p)
uj, i = 1, 2, · · · ,m (22)

with βij(p) and α(p) as already defined in (20). In matrix terms:

y =
1

α(p)

β11(p) · · · β1r(p)
...

...
βm1(p) · · · βmr(p)

u. (23)

To describe the solution y from (18), we give the form of the functions α(p) and βij(p).

Lemma 1 ([11], [12]). Let A(p) = A0 + p1A1 + · · · + p`A` with rank Ai = ri, i = 1, 2, · · · , `.
Then α(p) = |A(p)| is a multivariate polynomial in p, of degree at most ri in pi, i = 1, 2, · · · , `.

Then, it can be shown that the multivariate polynomials in p can be written as:

|A(p)| =
r∑̀

i`=0

· · ·
r1∑

i1=0

αi1···i`p
i1
1 · · · p

i`
` (24)

with rank (Ai) = ri, i = 1, 2, · · · , `. In (24), the number of coefficients in |A(p)| is µ :=∑`
i=1(ri + 1).

Example 4 (Determinant of parameterized matrices in terms of a multivariate polynomial). Let

A(p) =

 1 2p1 0

p1 p2 p1

3 p1 3p2

 .
As the parameter p appears affinely in A(p), following Assumption 1, we can write

A(p) =

1 0 0

0 0 0

3 0 0

+

0 2 0

1 0 1

0 1 0

 p1 +

0 0 0

0 1 0

0 0 3

 p2.
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In this example, rank(A1) = 2, rank(A2) = 2. Matrix A(p) is said to be rank 2 with respect to
p1 and p2, which yields r1 = 2 and r2 = 2. Thus,

|A(p)| =
2∑

i2=0

2∑
i1=0

αi1i2p
i1
1 p

i2
2

is a polynomial of degree at most 2 in both p1 and p2. Calculating the determinant, it yields

|A(p)| = −6p21p2 + 5p21 + 3p22.

Now consider (19) written in polynomial form:

Tij(p) = Tij0 + p1Tij1 + · · ·+ p`Tij`.

Applying Lemma 1, we see that
|Tij(p)| = βij(p)

is a multivariate polynomial in p of degree at most tijk in pk where

tijk = rank(Tijk), i = 1, 2, · · · ,m, j = 1, 2, · · · , r, k = 1, 2, · · · , `

and its determinant can be described in a similar manner as in (24).

Example 5 (Parameterized output). Consider the gyrator circuit shown in Figure 5 taken from
[13]. Using the gyrator resistance, denoted R4, regulate the voltage across the resistor R1,
denoted y. Defining the internal variable vector as x = [I1 I2 I3]

T and using the Kirchhoff’s
current and voltage laws, we obtain:

1 −1 0 0

R1 R2 −R4 0

K −R4 R3 0

R1 0 0 1



x1

x2

x3

y

+


0

−1

0

−1

u1 +


−1

0

0

0

u2 = 0.

In the general state space form, we have for output y and inputs u1 and u2:

y =
|T1(p)|
|A(p)|

u1 +
|T2(p)|)
|A(p)|

u2

where A=

 1 −1 0

R1 R2 −R4

K −R4 R3

, T1 =


1 −1 0 0

R1 R2 −R4 1

K −R4 R3 0

R1 0 0 1

 , T2 =


1 −1 0 1

R1 R2 −R4 0

K −R4 R3 0

R1 0 0 0

 .
If we choose the design parameter as p = R4, the matrices appearing in A(p) and T1(p)

and T2(p) are rank 2 matrices in R4. Thus,

y =
β01 + β11p+ β21p

2

1 + α1p+ α2p2
u1 +

β02 + β12p+ β22p
2

1 + α1p+ α2p2
u2.

This example illustrates the use of the approach described to analyse the output ranges of
a variable of interest in terms of a parameter of the system.
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R1 R2 R3

u2 = iu1 = V

i1 i2

y = Va

i3+

V1

-

+

V2

-

+

K i1

-

R4
A

Figure 5. V and i are an ideal voltage and current source, respectively, R1, R2, R3 are linear
resistors, and R4 is a gyrator resistance. The gyrator is a linear two port device where the
instantaneous currents and the instantaneous voltages are related by V2 = R4i2 and V1 = −R4i3,
Ki1 describes a dependent voltage amplifier in which K is the gain.

State Space Models with Delays
Consider the parameterized models described before for a state space description:

A(s,p)x(s) = B(p)u(s)

y(s) = C(p)x(s) +D(p)u(s) (25)

with A(s,p) := sI − A(p). As before, let us define:

T (s,p) z =

[
B

−D

]
u, with T (s,p) :=

[
A(s,p) 0

−C(p) I

]
.

Also, let

Tij(s) :=

[
A(s,p) −bj(p)

−ci(p) dij(p)

]
, i = 1, · · · ,m, j = 1, · · · , r

with ci(p), i = 1, · · · ,m being the i-th row of C(p), bj(p), j = 1, · · · , r the j-th column of
B(p), dij(p) the ij-th element of of D. We define the polynomials:

βi,j(s,p) := |Tij(s,p)|, α(s,p) := |T (s,p)| = |A(s,p)|. (26)

The determinants in (26) can be written as polynomials in p:

α(s,p) = sn + α1(p)sn−1 + · · ·+ αn(p) (27)

βi,j(s,p) = sn + βi,j,1(p)sn−1 + · · ·+ βi,j,n(p) (28)

where the coefficients αv(p) and βi,j,v(p), v = 1, · · · , n are multivariate polynomials in p with
degree at most rk := rank(Ak) and ti,j,k = rank(Tijk) in pk, respectively. As before, using (16)
we have

yi(s,p) =
r∑

j=1

βij(s,p)

α(s,p)
uj, i = 1, 2, · · · ,m (29)
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A special case of (25) is the case of systems with delays which is illustrated next.

Example 6 (Output of systems with delays in the state variables and output). Consider the space
state system described by

ẋ =

1 0 0

0 1 0

0 0 1

x(t) +

0 1 0

1 1 0

0 0 0

x(t− L1)

+

0 0 1

0 0 0

0 0 0

x(t− L2) +

1

0

1

u(t)

y =

[
1 0 0

0 0 0

]
x(t) +

[
0 1 0

0 0 1

]
x(t− L1)

In this case, we define the parameter vector p as the Laplace transform of the delays in
the state. Let us thus take p1 = esL1 and p2 = esL2 , with L1 and L2 time delays. Thus, we have
r1 = 2, r2 = 1, t1,1,1 = 2, t1,1,2 = 1, t2,1,1 = 3, t2,1,2 = 1 and it yields

y(s,p) =

[
−s2+(−p21−p2+p1+2)s+p21−p21p2+p1p2+p2−p1−1

s3+(−p1−3)s2+(−p21+2p1+3)s+p21−p1−1
−p1
s−1

]
u(s)

Now, substituting for p1, p2 we obtain

y(s) =

[
−s2+(−es2L1−esL2+esL1+2)s+e2sL1−es(2L1+L2)+es(L1+L2)+esL2−esL1−1

s3+(−esL1−3)s2+(−e2sL1+2esL1+3)s+e2sL1−esL1−1
−eL1s

s−1

]
u(s).

The solution given using the Cramer’s rule displays the way the different delays appear in the
output y(s).

Table 3. Matlab code for generating the output of the system with delay in Example 6.

%% Clearing the variables

close all; clear all; clc

%% Defining the matrices and the parameters

syms s L1 L2

p1 = exp(s*L1);

p2 = exp(s*L2);
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A0 = [1 0 0; 0 1 0; 0 0 1];

A1 = [0 1 0; 1 1 0; 0 0 0];

A2 = [0 0 1; 0 0 0; 0 0 0];

B = [1;0;1];

C0 = [1 0 0; 0 0 0];

C1 = [0 1 0; 0 0 1];

n = length(A0);

Ap = A0+A1*p1+A2*p2;

Cp = C0+C1*p1;

r1 = rank(A1);

r2 = rank(A2);

%% Calculate transfer functions

Asp = s*eye(n)-Ap;

Ts = Asp;

T11 = [Asp -B; -Cp(1,:) 0];

T21 = [Asp -B; -Cp(2,:) 0];

G11 = collect(det(T11)/det(Ts),s);

G21 = collect(det(T21)/det(Ts),s);

Gs = [G11;G21]

System Behavior Estimation and Thévenin’s Equivalent
As showed before, a complex linear algebraic system described in the state space framework

can have a simple input-output representation. The solution (29) suggests that knowledge of the
functions α(p) and βij(p) are sufficient to determine the behavior of the outputs yi as a function
of p and u [12], [14]. The knowledge of α(p) and βij(p) reduces to the knowledge of the
coefficients of these polynomial functions. In an unknown system (black box, for instance) these
coefficients are unknown a priori. However, if tests on the system can be performed by setting
the design parameter p and input u to various values and measuring the corresponding output
yi, the polynomial function coefficients can be determined.

Theorem 2 (A Measurement Theorem). Let y be as already defined in (23). The function y

can be determined from µ measurements and solution of a system of µ linear equations in the
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unknown coefficient vectors α(p) and βij(p), called the measurement equations.

The above measurement result is illustrated in what follows with the special case of a single
input single output y with p = [p1 p2]

′, r1 = 1, r2 = 2, t111 = 1, t112 = 2. Here,

y =
β(p)

α(p)
u (30)

with

β(p) = β00 + β10p1 + β01p2 + β11p1p2 + β12p1p
2
2

α(p) = α00 + α10p1 + α01p2 + α11p1p2 + α12p1p
2
2. (31)

We may set α12 = 1 and conduct the following experiments. Measure y for seven different
sets of values (p1, p2). Let y(k), k = 1, · · · , 9 denote the 9 different measurement values and
p(k) = [p1(k) p2(k)] the 9 sets of parameters. The 9 coefficients of α(p) and β(p) in (31) can
be determined from the measurement equation M f = v with

f =



α00

α10

α01

α11

β00

β10

β01

β11

β12


, v =



−p1(1)p22(1)y(1)

−p1(2)p22(2)y(2)

−p1(3)p22(3)y(3)

−p1(4)p22(4)y(4)

−p1(5)p22(5)y(5)

−p1(6)p22(6)y(6)

−p1(7)p22(7)y(7)

−p1(8)p22(8)y(8)

−p1(9)p22(9)y(9)


and M =


m11 m12 · · · m19

m21 m22 · · · m29

...
...

...
...

m91 · · · · · · m99



where

mk1 = y(k), mk2 = p1(k)y(k), mk3 = p2(k)y(k)

mk4 = p1(k)p2(k)y(k),mk5 = −u

mk6 = −p1(k)u, mk7 = −p2(k)u

mk8 = −p1(k)p2(k)u, mk9 = −p1(k)p22(k)u, for k = {1, 2, · · · , 9}.

Consider now a single input single output algebraic system with only one parameter denoted
p. The input-output relationship can be written as

y =
β0 + β1p

α + p
u. (32)

The description (32) holds when the coefficient matrix A1 of the parameter p as described before
has unity rank. The formula (32) shows that if the constants (β0, β1, α) are known the input
output map is determined.
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Thevenin’s Equivalent: Special Case of Circuits
In circuit theory, it is possible to obtain an equivalent circuit representation composed by

a voltage source in series with a resistor using the Thévenin’s equivalent. Consider an unknown
DC circuit as shown in Fig. 6. The Thévenin’s equivalent of circuit theory is summarized in the
following theorem.

Unknown
DC

Circuit
R

I

Figure 6. Thévenin’s equivalent for a DC circuit illustrating its terminal connected to a load R.

Theorem 3 (Thévenin’s theorem).

Vth = Voc (33)

Rth =
Voc
Isc

(34)

where Isc is the short-circuit current and Voc is the open-circuit voltage [15], [16].

From Theorem 3, it is necessary to open and then short circuit the terminals of the circuit
of interest. However, it is known that many systems do not support short circuit conditions. Also,
even in cases where this is possible, opening or short circuiting the terminals of a circuit may
not be a trivial and a much less economically viable operation.

The single input-output description (32) represents a special case of Thévenin’s theorem
of circuit theory [15], [16] to arbitrary linear systems. To see this, consider again Example
5. To obtain the Thévenin’s equivalent the inputs u1 and u2 are set as constants. Let us take
the Thévenin’s equivalent at the terminal defined by R and I in Figure 6 as the Thévenin’s
equivalent at the terminal defined by R1 and y = i1 in Fig. 5. Then, we can write

y =
|T1(p)|u1 + |T2(p)|u2

|A(p)|
(35)

where A =

 1 −1 0

p R2 −R4

K −R4 R3

 , T1 =


1 −1 0 0

p R2 −R4 1

K −R4 R3 0

1 0 0 0

 , T2 =


1 −1 0 1

p R2 −R4 0

K −R4 R3 0

1 0 0 0


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As |T1(p)| and |T2(p)| are constants and the rank of matrix A with respect to parameter
p is unity, we can write the solution

i1 =
β̃0

α̃ +R1

. (36)

In fact, the short circuit current denoted as Isc is given by

Isc =
β̃0
α̃

(37)

obtained by setting R1 = 0. Similarly, the open circuit voltage denoted as Voc is given by
multiplying (36) by R1 and taking the limit R1 →∞ which yields:

Voc = β̃0. (38)

The Thévenin’s equivalent is thus calculated as

Rth =
Voc
Isc

= α̃ (39)

Vth = β̃0. (40)

We emphasize that calculating α̃, β̃0 does not require short-circuit or open-circuit experiments,
only two arbitrary settings with corresponding measurements. Analytical models may be
developed for mechanical, electrical, fluid, and thermal systems in a rather analogous manner.
In view of the analogy, the Thevenin’s equivalent can be generalized and the approach can also
be applied to other dynamic systems.

In the following example, using electrical-hydraulic analogy, we consider the analysis of
an hydraulic sprayer used in agriculture. The fluid pressure denoted ∆P , the flow in a sprayer
boom Q with the nozzle of interest and the fluidic resistance denoted R, are analogous to voltage,
current, and electrical resistance, respectively [6].

Example 7 (Electrical-hydraulic analogy and the Thévenin’s equivalent). Consider now a sprayer
system illustrated in Fig. 7 as in [6]. Let V =

√
∆P , I = Q. The Thévenin’s equivalent can be

used to estimate the fluidic resistance of the boom.
With the presented Thévenin’s equivalent method, it is no longer necessary to take the system

to operate in two extreme situations, such as short-circuit and open-circuit. With two different
safe operating points, it is possible to obtain the Thévenin’s equivalent. Thus, let measurements
of flow in the boom nozzle of interest be Q(1) and Q(2) and let the measurements of pressure
in the corresponding boom be ∆P (1) and ∆P (1) thus:(

Q(1) −1

Q(2) −1

)(
α̃

β̃0

)
=

(
−
√

∆P (1)

−
√

∆P (2)

)
(41)

where α̃ e β̃0 are coefficients to be found.
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Tank

M

M

Manual 

valve
Filter Centrifugal 

pump

Control 

valve

Section 

valves

Flow 

sensor

Pressure 

sensor

P1

Q
Motor

Frequency 

inverter

Signal 

conditioning

P2

Pressure 

sensor
CH 0.5

CH 3

CH 6

 Nozzles used in 

the tests

Unknown hydraulic circuit

Equivalent circuit

I +

V

-

Vth

Rth

Controller

Figure 7. The sprayer boom used in the agricultural industry can be considered as an unknown
hydraulic circuit, thus, the analogy between electrical and hydraulic circuits can be used to derive
the pointwise hydraulic Thévenin’s equivalent and thus obtain the fluidic resistance equivalent
which is important because it directly affect the quality of, per example, pesticides application.

Therefore, the flow in the boom can be written in terms of coefficients of (41) as

Q = −
√

∆P

α̃
+
β̃0
α̃

(42)

which yields

Rth = α̃

∆Pth = β̃0

where Rth and ∆Pth are the internal loss and pressure equivalents, respectively. To extract
the Thévenin’s equivalent, only two different nozzles were required. To validate the Thévenin’s
equivalent obtained, a third different nozzle with an intermediate fluidic resistance value between
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these two nozzles used for extraction of the equivalent was employed. The resulting data are
shown in Table 4. Using (41), the following equivalent was obtained:

∆Pth = 1.85 [bar]

Rth = 0.02 [bar min L−1].

To validate the procedure, this equivalent was used to estimate the flow of arbitrary pressure
values as shown in Fig. 8. The error of estimated flow using the Thévenin’s equivalents was
around 1.8%.

Table 4. Data obtained for different full cone nozzles

Nozzles Pressure [bar] Flow [L/min]
CH05 3.405 0.535
CH3 3.349 1.420
CH6 3.295 2.230

3.28 3.3 3.32 3.34 3.36 3.38 3.4 3.42

Pressure [bar]

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

F
lo

w
 [L

/m
in

]

Estimated points by using the Thévenin´s equivalent
Experimental points

Figure 8. Validating the Thévenin’s equivalent for full cone nozzles connected at the sprayer
boom. The straight line is the estimate of the flow obtained via (42) and the dots are the
experimental points. The pump pressure was set to 3.5 bar. It was necessary to guarantee that
changing the fluidic resistance, a significant variation of pressure at the boom of interest was
verified. A pressure variation of approximately 0.1 bar in relation to the pump pressure was
considered significant taking into account the inherent noise of the spray sensors.

The next example explores the popular DC-DC boost converter mainly used to step-up the
voltage of photovoltaic module (usually in the range of 30V-40V to 60-cell crystalline modules)
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to provide the voltage required to the direct to alternating current (AC) converter stage to connect
to the AC distribution power grid. As the photovoltaic module is a non-linear power source, the
DC-DC boost converter is also used to find the maximum power point of this source [17]. This
application is represented in Fig. 9.

DC

DC

DC

AC

Photovoltaic

Source ~

AC Grid
Low Voltage Bus High Voltage Bus

DC-DC Boost 

Converter

DC-AC Three 

Phase Inverter

Figure 9. Typical application of a boost converter illustrating the connection of the direct current
(DC) and alternating current (AC) devices and the AC distribution power grid.

Example 8 (Parameterized functions for the boost DC-DC converter based on measurements).
Consider the boost DC-DC converter circuit without loss shown in Fig. 10. The interest here
is to analyse the circuit characteristic such as the boost converter gain and the input current
denoted Ii, to help in selecting the converter parameters. The gain is related to the duty cycle,
denoted D, of the pulse train which is called pulse width modulation (PWM). The input current
denoted Ii is related to D and also to the load denoted R.

L

C

 

V R

Vi

D

Vo

Ii

Io

Figure 10. Model of an ideal boost DC-DC converter circuit showing the components. A boost
DC-DC converter is a circuit which can deliver to the load a DC voltage equal or greater than
the input voltage source.

For the purpose of comparison, we first obtain the converter circuit equations by the
averaging method, a very common method used to analyse power electronics circuit. Defining
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the following state, input and output as:

x =
[
Ii Vo

]T
u = Vi

y = Vo.

and following [18], the circuit from Fig. 10 can be modeled as a switched state space system
which is defined by the following matrices:

A1 =

[
0 0

0 − 1
RC

]

A2 =

[
0 − 1

L
1
C
− 1

RC

]

B1 = B2 =

[
1
L

0

]
C1 = C2 =

[
0 1

]
D1 = D2 = 0.

Using the averaging method it can be shown that [19]:

ẋ = [A1d+ A2(1− d)]x+ [B1d+B2(1− d)]u

y = [C1d+ C2(1− d)]x+ [D1d+D2(1− d)]u.

Now, applying small signal perturbation denoted as x̃, d̃, ũ, it follows:

x = X + x̃

d = D + d̃

u = U + ũ

where the first term describes the mean value (DC) and the second the perturbation (AC) of the
signal. Thus, we can write

˙̃x = AX +BU + Ax̃+ F d̃+Bũ

y = C̄(X + x̃) (43)
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in which A, B, C̄ and F are given by:

A = A1D + A2(1−D)

B = B1D +B2(1−D)

C̄ = C1D + C2(1−D)

F = (A1 − A2)X + (B1 −B2)U.

We thus obtain the steady state equations:

AX +BU = 0

y = CX

Finally, as in the boost circuit case U := Vi and y := Vo, using the Cramer’s rule, we obtain
the output as

Vo =
|T1|
|A|

Vi

and the voltage gain is given by:

Vo
Vi

=
|T1|
|A|

=
1

1−D
with

A =

[
0 0

0 −1
RC

]
D +

[
0 −1

L
1
C

−1
RC

]
(1−D)

=

[
0 D−1

L

−D−1
C

D−1
RC
− D

RC

]
and

T1 =

 0 D−1
L

1
L

−D−1
C

D−1
RC
− D

RC
0

0 1 0

 .

Table 5. Matlab code to obtain the static voltage gain for the DC-DC converter in Example 8.

close all, clear all, clc

%% define the variables

syms R C L D
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%% define the matrices

A1 = [0 0; 0 -1/(R*C)];

A2 = [0 -1/L; 1/C -1/(R*C)];

B1 = [1/L;0];

B2 = B1;

%% calculate the gain

A = A1*D + A2*(1-D);

B = B1*D + B2*(1-D);

T1 = [A B; [0 1] 0];

Gain = simplifyFraction(det(T1)/det(A));

Now, without using the boost circuit model, we analyse the gain
Vo
Vi

in terms of the duty

cycle defined as a parameter p = D, from measurements. The problem is thus reduced to the
problem of finding the coefficients of the function:

Vo(D) =
β0 + β1D

α0 +D
Vi.

The coefficients α0, α1 and β0 for Vi constant, can be found using three different measurements
of the parameter p1 = D denoted D(1), D(2) and D(3) and, corresponding outputs Vo denoted
Vo(1), Vo(2) and Vo(3). We can thus solve the following linear system of equations:Vi D(1)Vi −Vo(1)

Vi D(2)Vi −Vo(2)

Vi D(3)Vi −Vo(3)


β0β1
α0

 =

D(1)Vo(1)

D(2)Vo(2)

D(3)Vo(2)

 .
Suppose the duty cycle range of interest is [0.5 0.7] for Vi = 10V , R = 100Ω, L = 1mH

and C = 1000µF . Using PSIM software, we found the values shown in the Table 6. Solving the
algebraic system above, as expected, we found β0 = −1,β1 = 0 and α0 = −1, which yields:

Vo(D) =
−10

−1 +D
.

and the boost converter gain:

Vo(D)

Vi
=

1

1−D
which is identical to the theoretical gain analysed before. As for the Thévenin’s equivalent the
boost converter without loss reduces to a ideal voltage source as the output voltage of DC–DC
boost converter does not depend on the current at the terminal.
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Table 6. PSIM simulation data varying one parameter.

D Vo [V]
0.500 20.0
0.600 25.0
0.700 33.3

Table 7. PSIM simulation data varying two parameters

D R [Ω] Ii [A]
0.500 100 0.408
0.500 150 0.275
0.550 130 0.387
0.600 125 0.515
0.650 120 0.704
0.700 100 1.14
0.700 150 0.771

Finally, we analyse how the output Ii relates to the parameters p1 = D and p2 = R. For
this case, we can write:

Ii(D,R) =
β0 + β1D + β2R + β3DR

α0 + α1D + α2R +DR
.

Using seven different set of values of D, R and corresponding measurements of Vo, we can find
the constants β0,β1, β2, β3, α0, α1 and α2 by solving the following linear system of equations:

1 D(1) R(1) D(1)R(1) −Ii(1) −Ii(1)D(1) −Ii(1)R(1)

1 D(2) R(2) D(2)R(2) −Ii(2) −Ii(2)D(2) −Ii(2)R(2)

1 d(3) R(3) D(3)R(3) −Ii(3) −Ii(3)D(3) −Ii(3)R(3)

1 D(4) R(4) D(4)R(4) −Ii(4) −Ii(4)D(4) −Ii(4)R(4)

1 D(5) R(5) D(5)R(5) −Ii(5) −Ii(5)D(5) −Ii(5)R(5)

1 D(6) R(6) D(6)R(6) −Ii(6) −Ii(6)D(6) −Ii(6)R(6)

1 D(7) R(7) D(7)R(7) −Ii(7) −Ii(7)D(7) −Ii(7)R(7)





β0

β1

β2

β3

α0

α1

α2


=



D(1)Ii(1)R(1)

D(2)Ii(2)R(2)

D(3)Ii(3)R(3)

D(4)Ii(4)R(4)

D(5)Ii(5)R(5)

D(6)Ii(6)R(6)

D(7)Ii(7)R(7)


.

Suppose the duty cycle of interest lies in the interval [0.5 0.7] and the load range
is [100Ω 150Ω] for Vth = Vi = 10V , L = 1mH and C = 1000µF . Using PSIM
software, we found the values shown in Table 7. Solving the linear system equations, we found
β0 = 14.905,β1 = −32.868, β2 = −0.117, β3 = −0.148, α0 = 50.104, α1 = −69.554 and
α2 = −0.797. Now, using (8), it is possible to draw a surface relating d and R with Ii as shown
in Fig. 11. From this surface, we know the current limits corresponding to each load in the
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range considered for the the same duty cycle. This can be used to support the selection of the
boost components.
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Figure 11. Relating the duty cycle parameter D and the load R of the circuit in Fig. 10 with
current Ii. The red marked points are the measurements used. Note that extremal values of
current Ii occur at the vertices.

Real data are in general noisy with accuracy dependent on the tolerance of components
and on the measurement device used. In [5] the analysis of the ill-posed problem arising in
the measurement-based approach, with real experiments, was presented. The ill-posed problem
should be handled with regularisation tools [20].

Conclusion
In this tutorial we have shown that Cramer’s rule applied to state space modeling of systems

with parameters can lead to insightful results and computational tools. It also helps to unify
apparently diverse types of models and thus can be a powerful educational tool. The use of
Cramer’s rule is simple and straightforward as it is based on the calculation of determinants.
The students can understand the input-output-state description of systems using an attractive
unified fashion. More importantly, the approach presented allows a practical use of input-output
models via Cramer’s rule as it can be used with measurements. Furthermore, a new way to
calculate the Thévenin’s equivalent without measuring the open circuit voltage and the short
circuit current is given in detail and this opens up new insights for the design of data-based
adaptive possibly control laws.
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A Simple Proof of Cramer’s Rule
Consider the linear system equation

Az = b (S1)

where A is n×n, z and b are n×1. Let zk denote the k− th component of z and let Ak denote
the n×n matrix obtained by replacing the k− th column of A by b. Let |.| denote determinant.

Cramer’s rule: If |A| 6= 0 then

zk =
|Ak|
|A|

. (S2)

Proof. Let ei denote the i− th column of the identity matrix and

Zk := [e1 e2 · · · ek−1 z ek+1 · · · en]. (S3)

Then it is easy to see that (S1) is equivalent to

AZk = Ak. (S4)

Taking the determinants of both sides of (S4) and using the fact that |Zk| = zk, we have

|A|zk = |Ak| (S5)

or
zk =

|Ak|
|A|

(S6)

which is (S2).
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