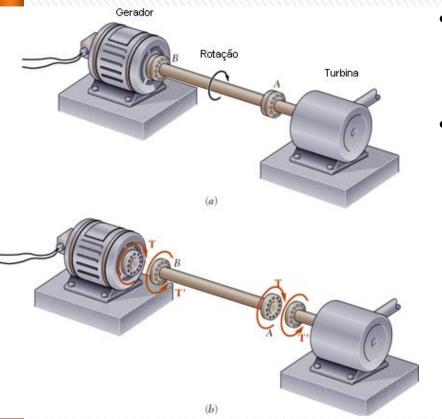
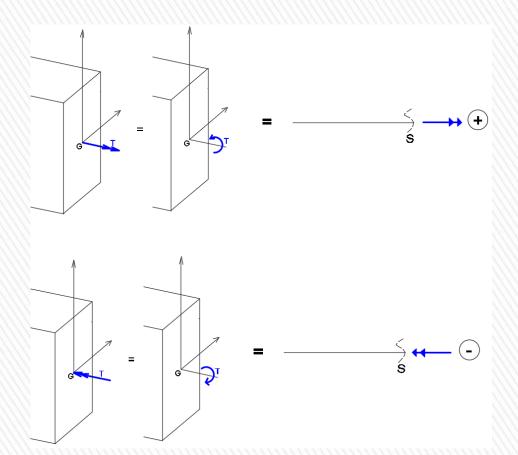


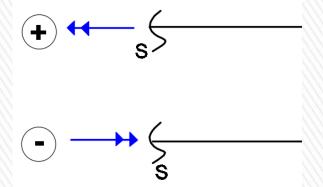
TORÇÃO EM EIXOS CIRCULARES

Valério S. Almeida Abril/2020

TORÇÃO EM EIXOS CIRCULARES

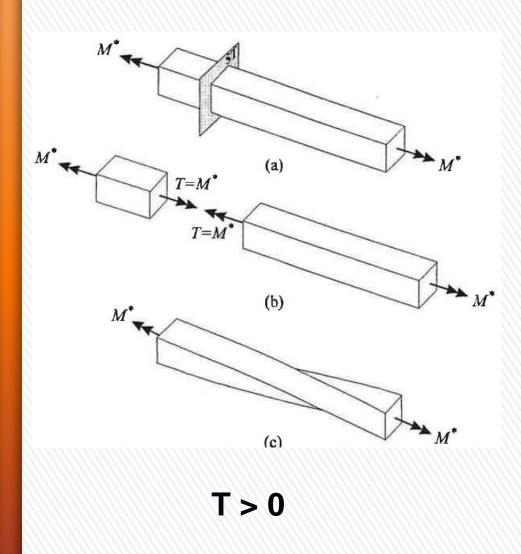


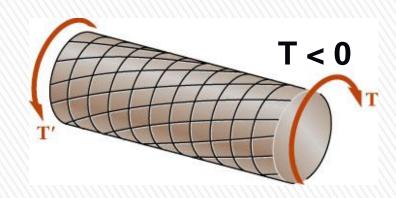

TORÇÃO EM EIXOS CIRCULARES

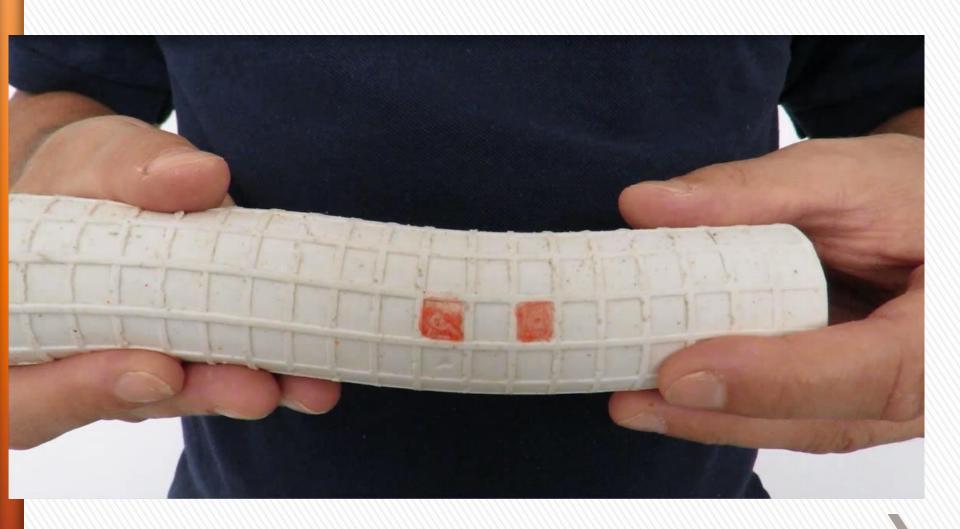

Hipóteses:

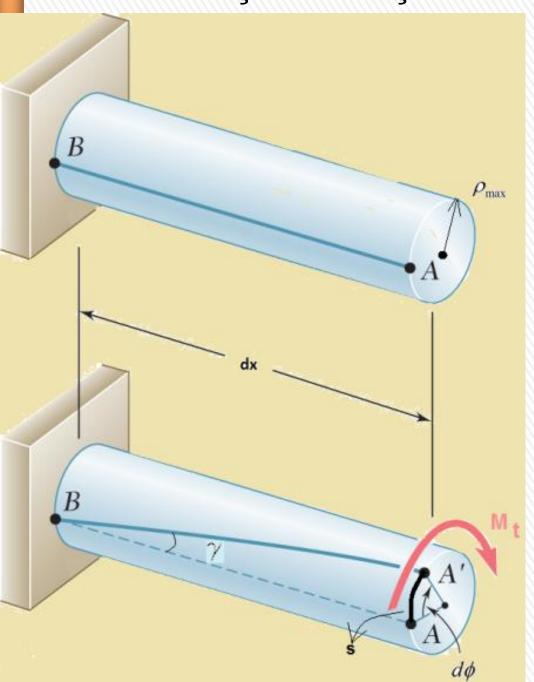
- seções planas permanecem planas ao eixo longitudinal;
- não há deformação longitudinal, não há o fenômeno de empenamento;
- as ações produzem uma rotação das seções transversais no eixo longitudinal (x);
- toda seção sofre uma rotação constante e de pequenos valores;

Diagramas de esforços - Convenção de sinais


Momento de torção²


O vetor momento tem o sentido da normal externa à seção transversal em que atua


O vetor momento tem sentido contrário ao da normal externa à seção tranversal em que atua


Diagramas de esforços - Convenção de sinais

Torção - Relação cisalhamento-ângulo

$$s = \gamma \cdot dx$$

$$s = \rho \cdot d\phi$$

$$\rho \cdot d\phi = \gamma \cdot dx \to \gamma = \frac{\rho \cdot d\phi}{dx}$$

$$\tau = G \cdot \gamma = G \cdot \frac{\rho \cdot d\phi}{dx}$$

 ρ : raio da seção

φ: rotação da seção

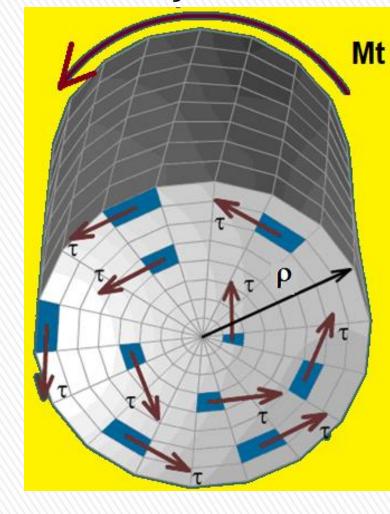
s: comprimento do arco

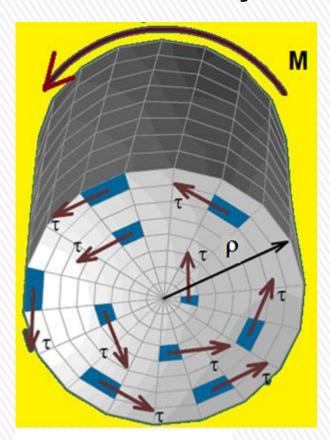
Torção - Cisalhamento-momento torçor

$$dM_t = \tau \cdot \rho \cdot dA$$

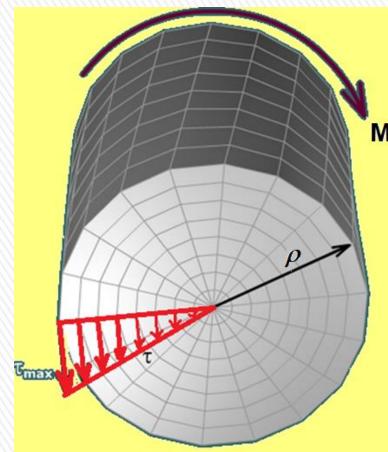
$$\begin{cases}
\tau = G \cdot \gamma = G \cdot \frac{\rho \cdot d\phi}{dx} \\
\rho \cdot d\phi = \gamma \cdot dx \to \gamma = \frac{\rho \cdot d\phi}{dx}
\end{cases} \qquad \frac{d\phi}{dx} = \frac{\gamma}{\rho}$$

$$M_{t} = \int_{A} \tau \cdot \rho \cdot dA = \int_{A} G \cdot \rho \cdot \frac{\partial \phi(x)}{\partial x} \rho \cdot dA = G \cdot \frac{\partial \phi(x)}{\partial x} \int_{A} \rho^{2} \cdot dA$$


$$M_t = G \cdot \frac{\partial \phi(x)}{\partial x} \cdot J$$


$$\tau = \frac{M}{J} \cdot \rho$$

J: momento polar de inércia


$$J = \int_{A} \rho^2 \cdot dA$$

Torção – Distribuição Cisalhamento

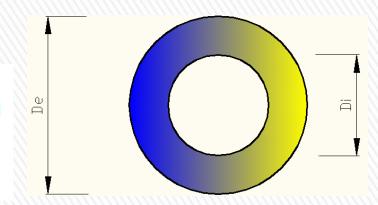
$$\tau = \frac{M}{J} \cdot \rho$$

Distribuição linear da tensão cisalhante

Tensão cisalhante máxima: fibras na borda da seção

$$\tau_{\text{max}} = \frac{M}{J} \cdot \rho_{\text{max}}$$

Torção – Momento Polar de Inércia (J)

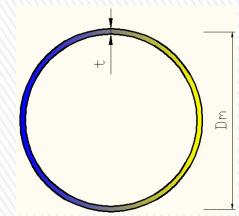

Propriedade geométrica da seção:

Unidade: m⁴,cm⁴, mm⁴

$$J = \int_{A} \rho^{2} \cdot dA$$

Seção vazada:

$$J = \frac{\pi \cdot \left(D_e^4 - D_i^4\right)}{32}$$

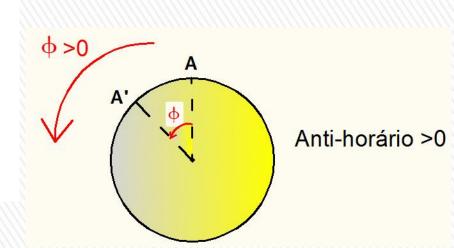

Tubo de parede fina, um cano, por exemplo:

$$t << D_m \to J = \frac{\pi \cdot D_m^3 \cdot t}{4}$$

D_e e D_i: diâmetro externo e interno

D_m: diâmetro médio do tubo

t: espessura do cano



Torção – Equação da Rotação

$$\frac{\partial \phi(x)}{\partial x} = \frac{M_t(x)}{G \cdot J} \xrightarrow{\int \int_{x_0}^{x_1}} \partial \phi(x) = \int_{x_0}^{x_1} \frac{M_t}{G \cdot J} dx$$

$$\longrightarrow \phi(x_1) - \phi(x_0) = \frac{M_t \cdot (x_1 - x_0)}{G \cdot J} = \frac{M_t \cdot L}{G \cdot J}$$

$$\longrightarrow \phi(x_1) = \phi(x_0) + \frac{M_t \cdot L}{G \cdot J}$$

$$\phi(x_j) = \phi(x_0) + \sum_{i=1}^{J} \frac{M_i \cdot L_i}{G_i \cdot J_i}$$

φ em radianos(adimensional)

Onde *j* é o número de trechos da peça estrutural onde M_i, G_i e J_i são constantes em cada trecho de comprimento L_i

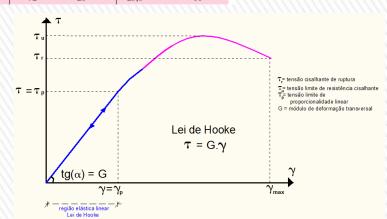
M, ou M; trecho do diagrama de torção, com sinal.

Torção - Projeto de eixos

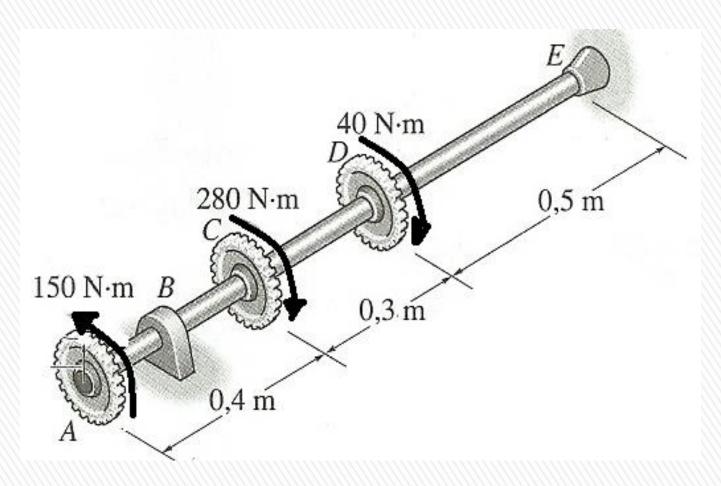
Critério para dimensionar ou verificar o eixo:

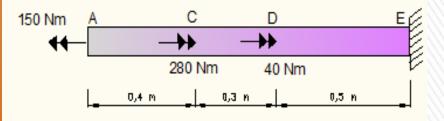
$$\max(\tau_j) \le \tau_{adm.} \longrightarrow \text{Crit\'erio de segurança}$$

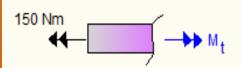
τ: tensão solicitante, depende das cargas, geometria da seção τ_{adm}: tensão admissível, propriedade resistente do material

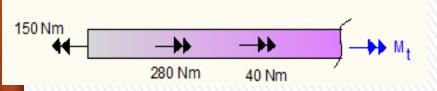

Unidades:

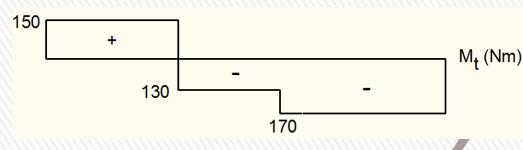
τ em MPa, kPa


φ em radianos (adimensional)

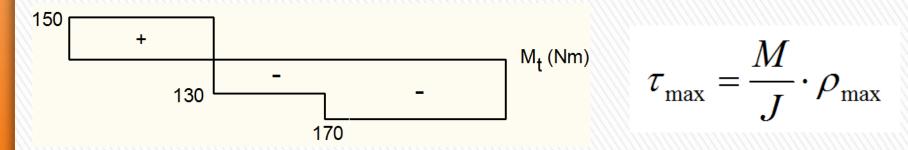

		Limite de resistência			Tensão de escoamento ³					
Material	Densida- de kg/m³	Tração, MPa	Compres- são², MPa	Cisalha- mento, MPa	Tração, MPa	Cisalha- mento, MPa	Módulo de elasticida- de, GPa	Módulo de elasticidade transversal, GPa	Coeficiente de expansão térmica,	Ductilidade, porcentagem de alonga- mento em
Aço										
Estrutural (ASTM-A36)	7860	400			250	145	200	77,2	11,7	21
Baixa liga e alta resistência ASTM-A709 Classe 345 ASTM-A913 Classe 450 ASTM-A992 Classe 345 Temperado e revenido ASTM-A709 Classe 690	7860 7860 7860 7860	450 550 450 760				345 450 345 690	200 200 200 200	77,2 77,2 77,2 77,2	11,7 11,7 11,7 11,7	21 17 21 18
Inoxidável, AISI 302 Laminado a frio Recozido	7920 7920	860 655	520 260			150	190 190	75 75	17,3 17,3	12 50
Aço de Reforço Média resistência	7860	480	275	200	77	11,7				
Alta resistência	7860	620	415	200	77	11,7				
Ferro fundido										
Ferro fundido cinzento 4,5% C, ASTM A-48	7200	170	655	240			69	28	12,1	0,5
Ferro fundido maleável 2% C, 1% Si, ASTM A-47	7300	345	620	330	230		165	65	12,1	10
Alumínio										
Liga 1100-H14 (99% AI)	2710	110		70	95	55	70	26	23,6	9
Liga 2014-T6	2800	455		275	400	230	75	27	23,0	13
Liga 2024-T4	2800	470		280	325		73		23,2	19
Liga 5456-H116	2630	315		185	230	130	72		23,9	16
Liga 6061-T6	2710	260		165	240	140	70	26	23,6	17
Liga 7075-T6	2800	570		330	500	<u> </u>	72	28	23,6	11


τ_{adm}: tensão adminssível, propriedade resistente do material


Engrenagens acopladas ao eixo de aço com a extremidade **E** fixa sujeitas aos torques mostrados. Adote G = 80 GPa e diâmetro de 14mm. Determinar a máxima tensão cisalhante da estrutura e a rotação do eixo em **A**. O eixo gira livremente dentro do mancal em B.

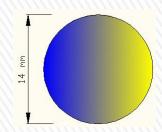


$$\sum M = 0 \longrightarrow M_t - 150 = 0 \longrightarrow M_t = 150Nm$$


$$\sum M = 0 \longrightarrow M_t - 150 + 280 = 0 \longrightarrow M_t = -130Nm$$

$$\sum M = 0 \longrightarrow M_t - 150 + 280 + 40 = 0 \longrightarrow M_t = -170Nm$$

a) Diagrama de torção


b) Análise de tensão:

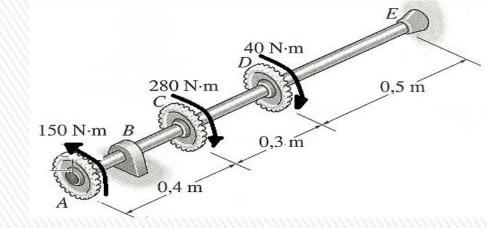
$$J = \frac{\pi \cdot \left(D_e^4 - D_i^4\right)}{32}$$

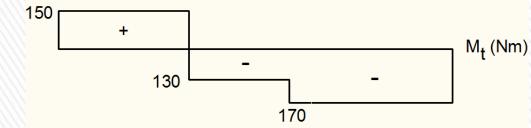
$$\tau_{\text{max}} = \frac{M_{\text{max}}}{J} \cdot \rho_{\text{max}} = \frac{170}{\frac{\pi \cdot (0.014)^4}{32}} \cdot \binom{0.014/2}{2}$$

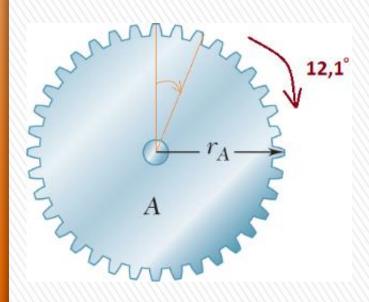
$$\tau_{\text{max}} = 315.525.834,7 \quad Pa \left(N/m^2 \right)$$

$$\tau_{\rm max} = 315.5 \ MPa \ (MN/m^2)$$

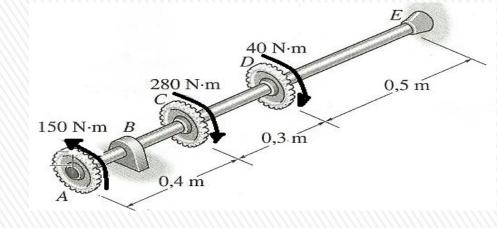
c) Calculo de rotação em A:

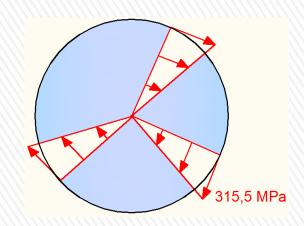

$$\phi(x_j) = \phi(x_0) + \sum_{i=1}^j \frac{M_i \cdot L_i}{G_i \cdot J_i}$$


$$\phi(A) = 0 + \left[\left(\frac{M_t \cdot L}{G \cdot J} \right)_{ED} + \left(\frac{M_t \cdot L}{G \cdot J} \right)_{DC} + \left(\frac{M_t \cdot L}{G \cdot J} \right)_{CA} \right]$$

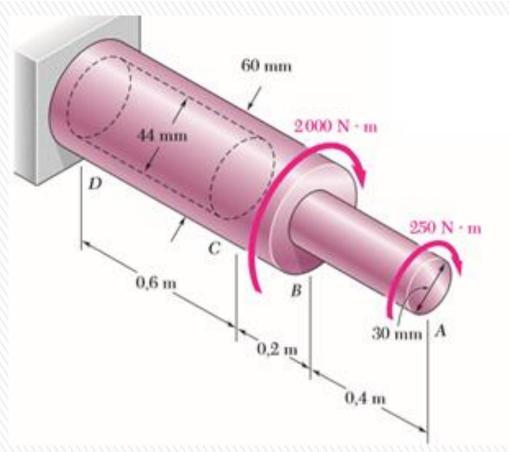

$$\phi(A) = 0 + \frac{1}{G \cdot J} \left[\left(M_t \cdot L \right)_{ED} + \left(M_t \cdot L \right)_{DC} + \left(M_t \cdot L \right)_{CA} \right]$$

$$\phi(A) = 0 + \frac{1}{G \cdot J} \left[\left(-170 \cdot 0.5 \right)_{ED} + \left(-130 \cdot 0.3 \right)_{DC} + \left(150 \cdot 0.4 \right)_{CA} \right]$$


$$\phi(A) = 0 + \frac{-64}{80 \cdot 10^9 \cdot \pi(0.014)^4/32} = -0.21 \ rad \ (-12.1^\circ)$$



$$\phi(A) = -0.21 \ rad \ (-12.1^{\circ})$$



Máxima tensão: trecho DE

$$\tau_{\rm max} = 315,5 \ MPa \ (MN/m^2)$$

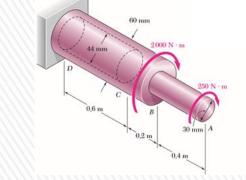
O eixo horizontal AD está engastado a uma base rígida em D e submetido aos torques mostrados na figura. Foi feito um furo de 44 mm de diâmetro na parte CD do eixo. Sabendo que o eixo inteiro é feito de aço para o qual G = 77 GPa, determine o ângulo de torção na extremidade A.

19

Ferdinand P. Beer / E. Russel Johnston, Jr. / John T. DeWolf / David F. Mazurek. MECÂNICA DOS MATERIAIS. 2008, The McGraw-Hill Companies, Inc., New York, NY, 10020

$$\Sigma M_x = 0$$
: $(250 \text{ N} \cdot \text{m}) - T_{AB} = 0$ $T_{AB} = 250 \text{ N} \cdot \text{m}$

$$T_{AB} = 250 \,\mathrm{N} \cdot \mathrm{r}$$

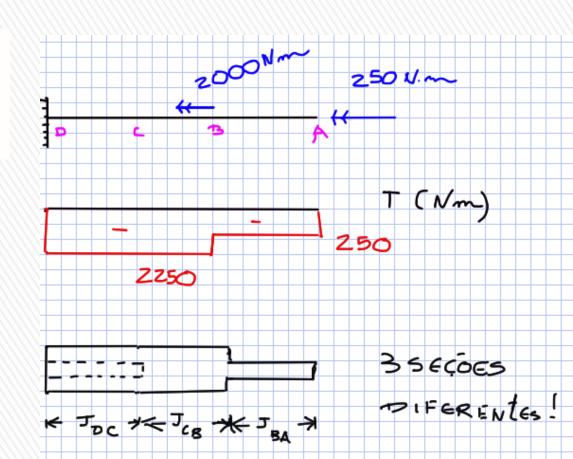

Cortando agora o eixo em uma seção entre B e C, temos

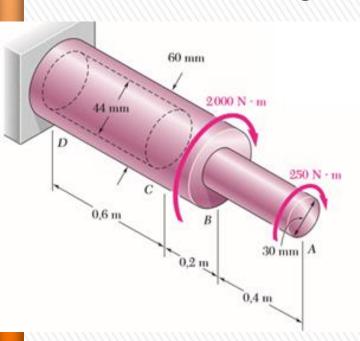
$$\Sigma M_x = 0$$
: $(250 \text{ N} \cdot \text{m}) + (2000 \text{ N} \cdot \text{m}) - T_{BC} = 0$ $T_{BC} = 2250 \text{ N} \cdot \text{m}$

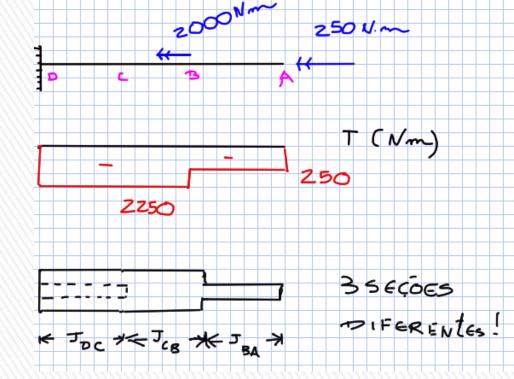
$$T_{BC} = 2250 \,\mathrm{N} \cdot \mathrm{r}$$

Como não é aplicado nenhum torque em C,

$$T_{CD} = T_{BC} = 2250 \,\mathrm{N} \cdot \mathrm{m}$$

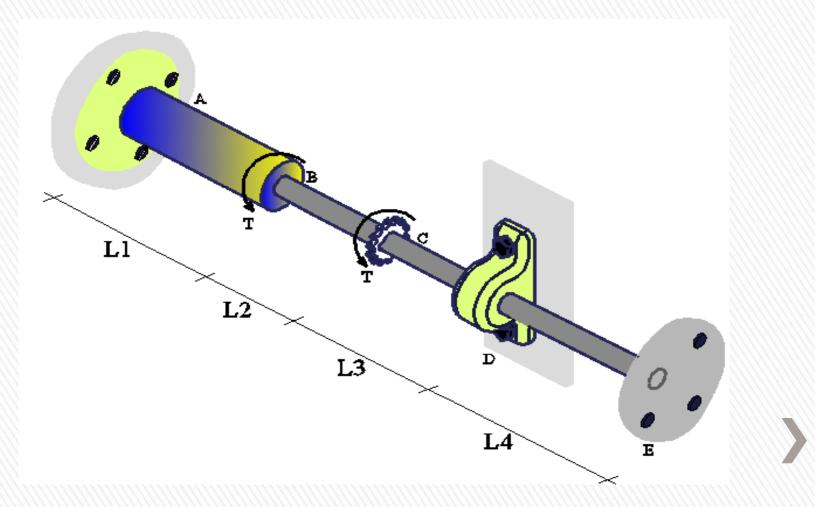



Momentos polares de inércia


$$J_{AB} = \frac{\pi}{2} c^4 = \frac{\pi}{2} (0.015 \text{ m})^4 = 0.0795 \times 10^{-6} \text{ m}^4$$

$$J_{BC} = \frac{\pi}{2} c^4 = \frac{\pi}{2} (0.030 \text{ m})^4 = 1.272 \times 10^{-6} \text{ m}^4$$

$$J_{CD} = \frac{\pi}{2} (c_2^4 - c_1^4) = \frac{\pi}{2} [(0.030 \text{ m})^4 - (0.022 \text{ m})^4] = 0.904 \times 10^{-6} \text{ m}^4$$

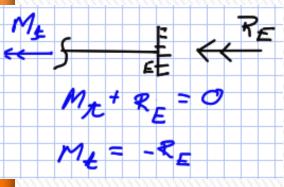

$$\phi_{A} = \sum_{i} \frac{T_{i}L_{i}}{J_{i}G} = \frac{1}{G} \left(\frac{T_{AB}L_{AB}}{J_{AB}} + \frac{T_{BC}L_{BC}}{J_{BC}} + \frac{T_{CD}L_{CD}}{J_{CD}} \right)$$

$$\phi_{A} = \frac{-1}{77 \text{ GPa}} \left[\frac{(250 \text{ N} \cdot \text{m})(0.4 \text{ m})}{0.0795 \times 10^{-6} \text{ m}^{4}} + \frac{(2250)(0.2)}{1.272 \times 10^{-6}} + \frac{(2250)(0.6)}{0.904 \times 10^{-6}} \right]$$

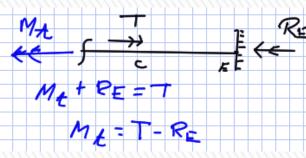
$$= -(0.01634 + 0.00459 + 0.01939) = -0.0403 \text{ rad}$$

$$\phi_{A} = -(0.0403 \text{ rad}) \frac{360^{\circ}}{2\pi \text{ rad}}$$
(sentido horário)

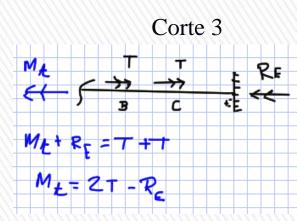
Um eixo fixo em **A** e **E** com um mancal de giro livre em D está submetido aos torques T em **B** e na engrenagem **C**. Obtenha o máximo valor de **T** de modo a atender o critério de tensão admissível e limite máximo do ângulo de torção de 5°. Diâmetro do eixo AB = 44 mm, eixo BE = 22 mm, L1 = L4 = 1500 mm, L2 = L3 = 1000 mm, $\tau_{adm} = 80$ MPa e G = 60 GPa.

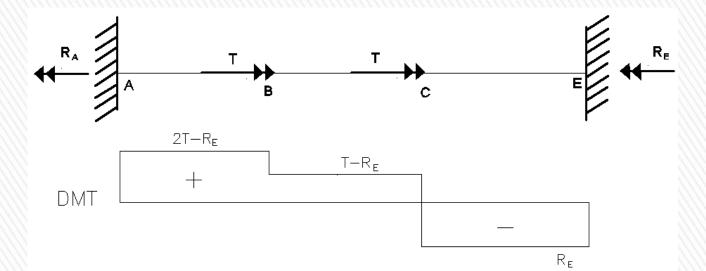

^{*}Resistência do Materiais: Um guia prático. Valerio Almeida; Marcelo Greco, Daniel Maciel. Elsevier, 2018

Problema hiperestático, obter diagrama em termos da reação em ${\bf E}$

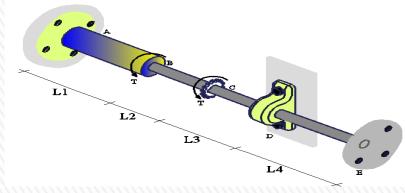

Duas incógnitas (R_A e R_E) Uma equação: $\sum M_t = 0$

$$R_A + R_E = 2 T$$

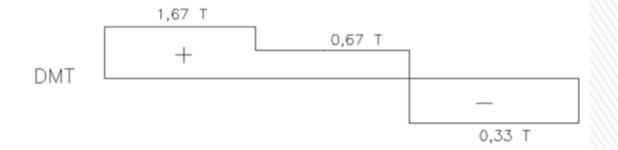

Inicialmente escrever o diagrama em termos da reação em E, assim:



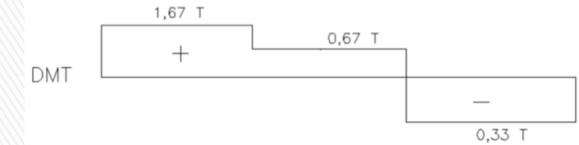
Corte 1



Necessário outra equação: Equação de coerência de deslocamento (rotação):



Seções A e E são fixas, indica que a rotação da seção em torno de seu eixo é NULA:


$$\phi_A = 0$$
 e $\phi_E = 0$

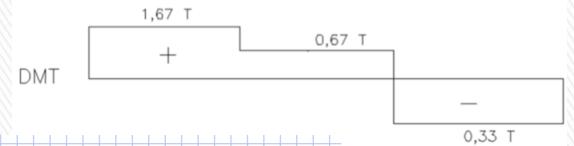
$$\phi_E = \phi_A + \left(\frac{T.L}{G.I_p}\right)_{AB \to DE} = 0 + \frac{(2T - R_E).1.5}{G\frac{\pi.0.044^4}{32}} + \frac{(T - R_E).1.0}{G\frac{\pi.0.022^4}{32}} + \frac{(-R_E).2.5}{G\frac{\pi.0.022^4}{32}} = 0$$

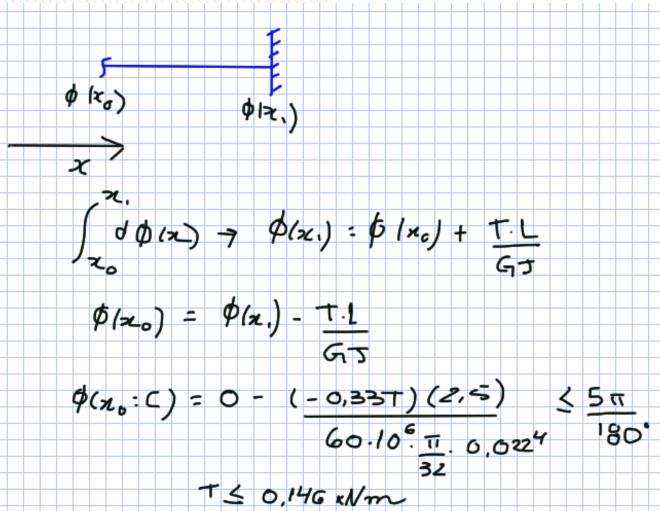
$$R_E = 0.33.T$$

A verificação de tensão crítica deve ser feita nos trechos AB e BC:

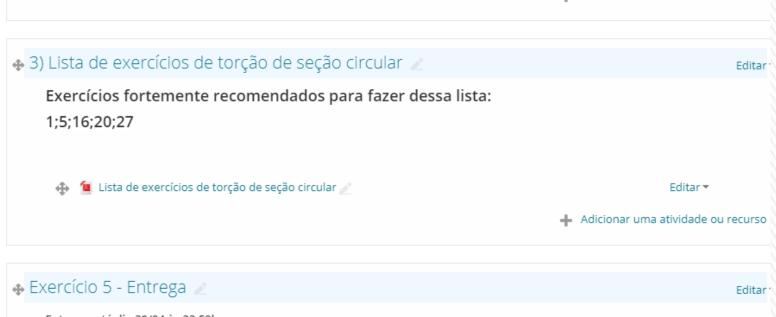
A verificação de tensão crítica deve ser feita nos trechos AB e BC:

$$\tau_{AB} = \frac{\frac{1,67.T.0,022}{\pi.0,044^4}}{\frac{\pi.0,044^4}{32}} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0,80 \quad kN.m \ \tau_{BC} = \frac{\frac{0,67.T.0,011}{\pi.0,022^4}}{\frac{\pi.0,022^4}{32}} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,022^4} \leq \overline{\tau} = 80.10^3 \rightarrow T \leq 0.80 \quad kN.m \ \tau_{BC} = \frac{0.67.T.0,011}{\pi.0,02$$


 $T \leq 0.25 \ kN.m$


$$\tau_{BC} = \frac{0.67.T.0,011}{\frac{\pi.0,022^4}{33}} \le \overline{\tau} = 80.10^3 \to T \le 0.25 \ kN.m$$

Verificação de rotação máxima.


$$\emptyset_C = \emptyset_A + \left(\frac{T.L}{G.I_p}\right)_{AB \to BC} = 0 + \frac{1,67.T.1,5}{60.10^6 \frac{\pi.0,044^4}{32}} + \frac{0,67.T.1,0}{60.10^6 \frac{\pi.0,022^4}{32}} \le \frac{5\pi}{180}$$

$$T \leq 0.146 \ kN.m$$

Exercício a ser entregue até dia 30/04

Entregar até dia 30/04 às 23:59h.

A lista é a de torção atualizada que está no quadro de nome:

"2) Lista de exercícios de torção de seção circular"

Veja a lista do seu exercício no pdf anexo abaixo.

