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A B S T R A C T

Climate change-induced sea level rise and intensified storms pose emerging flood threats to global coastal urban
areas. While such threats have been mapped, their uncertainties from different climate scenarios and longer
planning horizons have yet to be addressed from both an exposure assessment and a stakeholder outreach
perspective. Therefore, we chose the highly urbanized San Francisco Bay Area as an example to project its flood
areas every 20 years between 2000 and 2100, under 24 varied climate scenarios with two greenhouse gas (GHG)
concentration levels. We then assessed flood exposure by intersecting the flood areas with demographic and
socioeconomic distributions, developed areas, lifeline infrastructures, and emergency responders in low eleva-
tion (< 10 m) coastal zones. Our median estimates under the low GHG scenarios indicated that 10–38% of the
items assessed above are flood-exposed in 2000–2020, with this exposure increasing to 20–54% during
2080–2100. The median estimates under the high GHG scenarios for the same periods are 0–35% and 40–67%,
respectively. The expected uncertainties, or standard deviations, of the exposures for a given item assessed above
under the low and high GHG scenarios are 1–2% in 2000–2020 and 7–10% in 2080–2100. Despite our modeling
capability for a range of climate scenarios over the long term, some stakeholders, particularly those in the private
sector, prefer near-term results with lower uncertainties. This implies the need for coastal urban areas to cope
with climate-related uncertainties and to focus on the long term when developing strategies and policies for
climate change adaptation.

1. Introduction

The interaction between environmental hazards, urbanization, and
climate change is likely to put more people and assets at risk.
Environmental hazards affect urban areas and the well-being of their
residents through storms, floods, heat waves, and drought (Hunt &
Watkiss, 2010). At the same time, urbanization, particularly disorderly
urbanization, is increasingly exposing urban areas to these hazards
(Dawson et al., 2011; Pelling, 2003; Storch & Downes, 2011). This
urban-hazard interaction alters under climate change which increases
the extent, frequency, and severity of current-day environmental ha-
zards, eventually affecting urban areas that were not previously ex-
posed. To mitigate these undesirable consequences, cities have ad-
dressed environmental hazards and climate change issues in their
master, strategic, and action plans (Jabareen, 2015). Researchers have
also modeled the impact of climate change and environmental hazards
on different population groups (Bickers, 2014; Kaźmierczak & Cavan,
2011; KC, Shepherd, & Gaither, 2015; Martinich, Neumann, Ludwig, &

Jantarasami, 2013; Nutters, 2012), infrastructures (Biging, Radke, &
Lee, 2012; Demirel, Kompil, & Nemry, 2015; Radke et al., 2018, 2017),
and natural environments (Schile et al., 2014; Zhu, Xi, Hoctor, & Volk,
2015). The modeled impacts can also be used to facilitate public par-
ticipation in adaptation planning (Wadey et al., 2015).

Coastal urban areas are likely to have intensified flood threats from
storm surge and sea level rise (SLR) while simultaneously experiencing
increasing development pressure, and thus should be prioritized for
climate change adaptation (Carter et al., 2015; Rosenzweig, Solecki,
Hammer, & Mehrotra, 2010). Due to their access to water, maritime
transportation, fertile soil, raw materials - including salt and sand, and
tourist attractions, coastal zones have been hotspots for development
and population growth (Creel, 2003; De Sherbinin, Schiller, &
Pulsipher, 2007; UNU-IHDP, 2015). A 2007 assessment indicated that
while low elevation (i.e. < 10 m above sea level) coastal zones only
covered 2% of the world's land area, they contained 10% of the world's
population and 13% of the world's urban population (McGranahan,
Balk, & Anderson, 2007). A global meta-analysis of 292 locations found
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that the average urban expansion rate in low elevation coastal zones
between 1970 and 2000 was > 5.7%, higher than the rate of all other
areas combined (Seto, Fragkias, Güneralp, & Reilly, 2011). Coastal
zones are growth hotspots for the future: a conservative projection es-
timates that the global population in low elevation coastal zones will
increase by 50% between 2000 and 2030, and by > 160% between
2000 and 2060 (Neumann, Vafeidis, Zimmermann, & Nicholls, 2015).
Such high concentration of population and assets explain why coastal
urban areas are more vulnerable to flood hazards from SLR and storm
surge than other areas (Hunt & Watkiss, 2010).

Studies have modeled flooding from SLR and storm surge and
analyzed the exposure of coastal areas (Barnard et al., 2009, 2014;
Biging et al., 2012; Dasgupta, Laplante, Meisner, Wheeler, & Yan, 2008;
Knowles, 2009, 2010; Lang, Radke, Chen, & Chan, 2016; Marcy et al.,
2011; Radke et al., 2017; Schile et al., 2014; Strauss, Ziemlinski, Weiss,
& Overpeck, 2012). A typical approach in these studies is to produce
and utilize flood maps under different storm recurrence intervals (e.g.
10-year and 100-year) combined with generic, incremental SLR values
that are not closely associated with specific climate scenarios and
planning horizons. While this generic approach provides the flexibility
to adapt itself to various and continuously updating climate projections,
it may lack the specificity to show what the flooding is like under
specific climate scenarios and planning horizons that stakeholders are
interested in, as well as the uncertainty introduced by different climate
scenarios and how the uncertainty propagates over time.

To show the uncertainty in long-term flood projections under cli-
mate change, and to discuss the implications of such uncertainty in
planning and management for climate change adaptation, we con-
ducted flood simulations that incorporated SLR and storm surge to
identify a coastal urban area's flood exposures under a range of 24
different climate scenarios at two greenhouse gas (GHG) concentration
levels, every 20 years between 2000 and 2100. We measured flood
exposures by intersecting the simulated flood with demographic and
socioeconomic distributions, developed areas, lifeline infrastructures,
and emergency responders. Uncertainties were further calculated as
standard deviations of those flood exposures.

We focus on the San Francisco Bay Area (Bay Area), a major U.S.
urban area in the State of California, in this study. The Bay Area is a
prime candidate for this research as it is prone to flooding from SLR and
intensified storms induced by climate change, and it has a large con-
centration of development in threatened low-lying coastal areas
(Fig. 1). The Bay Area contains major U.S. urban agglomerations in-
cluding San Francisco, Oakland, and the Silicon Valley complex cen-
tered in San Jose. This area continues to rapidly expand due to a
growing economy and employment opportunities. Population, jobs,
households and housing units in the Bay Area are projected to increase
by 24–30% between 2010 and 2040, introducing new demands for land
development (The Association of Bay Area Governments (ABAG),
Metropolitan Transportation Commission (MTC), 2013). Due to the
demand for land development and insufficient regulations, the Bay
Area's coastal zones have been transforming rapidly from their natural
state into industrial and residential use located at or below sea level
(Pinto & Kondolf, 2016). As a result, the Bay Area's exposures to po-
tential flooding from storm surge and SLR have increased. A 2012 study
shows that a 1 m SLR combined with a 100-year storm will put 220,000
people at risk and cost 49 billion US dollars to replace the impacted
property, and that a 1.4 m SLR will increase the numbers to 270,000
and 62 billion US dollars (Heberger, Cooley, Moore, & Herrera, 2012).

Taken together, our primary goal is to illustrate the uncertainty in
long-term projection of urban exposure to climate change-induced

flooding. To achieve this goal, we first provide comprehensive mapping
of flood hazard and exposures of urban areas under different climate
scenarios and time horizons. Second, we highlight how the exposure's
uncertainties change with time and vary by groups of the climate sce-
narios defined by their GHG levels. In addition, we discuss the un-
certainties' implications in planning and management based on our
outreach process with stakeholders. Through these efforts, we highlight
the necessity of understanding climate-related uncertainties in coastal
flood projections and exposure analysis. We also reveal some challenges
for stakeholders in utilizing multi-scenario and long-term climate and
environmental hazard projections in planning, management, and deci-
sion-making. While we focus on the Bay Area and coastal flooding, our
findings are informative for other coastal urban areas faced with similar
flood threats, and for adaptation to other climate change-induced en-
vironmental hazards (e.g. drought and heatwave) whose uncertainties
are intrinsic and substantially larger in the longer term.

2. Data and methods

2.1. Flooding model

Various models, both static and dynamic, have been used to simu-
late coastal flood. Earlier models tend to be static, identifying flood
areas below a time-invariant water surface such as the projected mean
sea level. These static models are computationally feasible, therefore
can be applied to large areas with fine spatial resolutions (Biging et al.,
2012; Dasgupta et al., 2008; Marcy et al., 2011; Strauss et al., 2012).
However, these models do not incorporate the temporal and flow dy-
namics of water movement. More recent research has employed pro-
cess-based, hydrodynamic, two-dimensional (2D) models to account for
these dynamics. These 2D models are computationally intensive, and
thus difficult to implement at regional scales and/or with fine spatial
resolutions. Few studies, including the model by Knowles (2009, 2010),
the Coastal Storm Modeling System (CoSMoS) (Barnard et al., 2009,
2014), and the CalFloD-3D model (Radke et al., 2017), adopted 2D
hydrodynamic models for the Bay Area.

We employed a 3Di hydrodynamic model (Stelling, 2012) to simu-
late flood areas and depth at 50 m spatial resolution during extreme sea
level events projected under a range of 24 climate scenarios defined by
two greenhouse gas (GHG) concentration levels, every 20 years be-
tween 2000 and 2100. The 3Di model dynamically simulates the
movement of water, by user-defined time steps, over a digital surface of
topography and bathymetry. This model has been successfully im-
plemented in urban and rural watersheds to simulate flood by inland
rainfall-runoff (Dahm, Hsu, Lien, Chang, & Prinsen, 2014; Hsu, Prinsen,
Bouaziz, Lin, & Dahm, 2016; Leicher, 2016), SLR, and storm surge (Ju
et al., 2017; Radke et al., 2017). The 3Di model's primary inputs are
time-series water levels as boundary forcing to generate waterflows,
and digital surface data containing topography, bathymetry, and/or
aboveground objects such as levees to direct the waterflows. For every
extreme sea level event, the 3Di model produces a time-series of flood
areas with water depths. A unique advantage of the 3Di model for this
study is its ability to feasibly compute over large regions at fine spatial
resolutions, which is enabled by the model's compression algorithm
that simplifies the input digital surface while preserving significant
topographic variations such as those from levees and buildings
(Stelling, 2012). In this study, we modeled at 50 m spatial resolution to
feasibly iterate through the various extreme sea level events.

Y. Ju, et al. Cities 92 (2019) 230–246

231



2.2. Extreme sea level events

We used extreme sea level events to simulate the worst-case flood
hazards with the 3Di model. These extreme sea level events were ex-
tracted from an hourly sea level projection (Cayan, Kalansky, Iacobellis,
& Pierce, 2016) at a San Francisco gauge (Fig. 1) and incorporated long-
term SLR and short-term fluctuations from tide and storm surge. Each
event is a 72-h window starting with the highest sea level under a given
climate scenario during a 20-year period between 2000 and 2100
(Fig. 2(a)). The events together represent a spectrum of 24 climate
scenarios generated from a hierarchy of two Representative Con-
centration Pathways (RCPs) defining low and high atmospheric con-
centrations of GHG (i.e. RCP 4.5 versus 8.5), three probabilistic SLR
values, and four Global Climate Models (GCMs) emphasizing different
historical and future climate patterns in California (Pierce, Cayan, &
Dehann, 2016) (Fig. 2(b)). For each RCP and a 20-year period, we
ranked the corresponding twelve extreme sea level events by their peak
sea levels to derive high, medium, and low estimates of flood hazard.
We used the 20-year intervals to match the simulated flood and ex-
posure analysis with typical planning horizons and investment cycles
that were often multidecadal. It is worth noting that the climate sce-
narios, our flood projections, and exposure analysis are intended to
show a wide range of plausible futures and not to predict an exact one
(Moss et al., 2010).

The extreme sea level events show higher and increasingly varied
peak sea levels as the events move into the future (Fig. 3). Under RCP
4.5 scenarios, the peak sea level reaches 2.61–2.94 m during the
2000–2020 period, and 3.08–4.40 m during the 2080–2100 period.
Under RCP 8.5 scenarios, the numbers shift to 2.49–2.63 m during the

2000–2020 period, and 3.78–5.50 m during the 2080–2100 period. The
peak sea levels under RCP 8.5 tend to be higher than those under RCP
4.5, which is likely due to RCP 8.5's higher GHG concentrations,
stronger climate change, greater SLR, and more intensified storms (see
Appendix A for a visualization of the hourly sea level projections, SLR,
and storm surge). However, during the 2000–2020 period, RCP 4.5
scenarios project higher peak sea levels than RCP 8.5 scenarios, which
is due to stronger storm surge projections by one GCM under RCP 4.5
scenarios (Appendix A). The variability of the peak sea levels exacer-
bates over time, for example, increasing from 0.14 m (i.e. 2.63 m versus
2.49 m) in the 2000–2020 period to 1.72 m (5.50 m versus 3.78 m) in
the 2080–2100 period under RCP 8.5.

2.3. Topography and bathymetry data

We generated a continuous, 50 m resolution surface from the best-
available topography and bathymetry datasets (Table 1) of the Bay Area
as the second input for the 3Di model. Our surface contains bare ground
elevation, bathymetry, and levees. We excluded buildings as they were
too granular for the 50 m resolution surface. Since the datasets are
originally all finer than the targeted 50 m spatial resolution, we first
conducted an average aggregation and then mosaicked the aggregated
datasets to generate the 50 m resolution surface. Flood control struc-
tures, such as levees, have their elevation information preserved to
some extent in the 50 m resolution surface. However, underestimated
elevations are introduced when averaging levee segments with their
lower elevation surroundings. Similarly, small channels protected by
extensive levees can have overestimated elevations after the aggrega-
tion. Such underestimation for the levees and overestimation for the

Fig. 1. The San Francisco Bay Area. (a) shows the Bay Area's landcover types in 2011, and (b) shows its elevation with areas below 10 m highlighted in darker tones,
the gauge with the hourly sea level projections, and the validation gauges used for flood model calibration.
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Fig. 2. The climate scenarios and their extreme sea level events. (a) shows an example of extracting an extreme sea level event for a 20-year period and a given
climate scenario from the hourly sea level projections. This extreme sea level event is a 72-h period started with the highest sea level projected under this climate
scenario and during this 20-year period. (b) shows the hierarchy to generate the climate scenarios and ranking of the extreme sea level events by their peak sea levels.

Fig. 3. Projected peak sea levels during the extreme sea level events at the San Francisco gauge. Each dot represents the peak sea level under a climate scenario
generated from permutations of two RCPs, three probablistic SLRs, and four GCMs during a 20-year period. The maximum, median, and minimum estimates of peak
sea levels for an RCP and a 20-year period are labeled. The colors differentiate the three probabilistic SLRs generating the peak sea levels. (a) shows the peak sea
levels under RCP 4.5 scenarios, and (b) shows the peak sea levels under RCP 8.5 scenarios.
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small channels can either generate non-existent water flow pathways or
eliminate existing ones. Therefore, the 50 m resolution surface can
over- or underestimate flooding. However, we used the average ag-
gregation (versus maximum or minimum aggregation) as it showed an
average condition of the topography. Interested researchers may further
test the effects of other aggregation methods on the simulated floods.

2.4. Model validation and representation of flood hazard

We modeled a historical high sea level event on Jan 11th, 2017 in
the Bay Area (NOAA, 2019) to validate the model's settings before
iteratively simulating through the extreme sea level events identified in
Section 2.2. We compared the simulated water levels against observa-
tions at five validation gauges in Fig. 1. The results (Fig. 4) show that
the model simulates similar water levels to the historical event, with
Pearson correlation coefficient (r, calculated with Eq. (1)) between the
simulations and the observations ≥ 0.81 and root mean square error
(RMSE, calculated with Eq. (2)) ≤ 0.69 m, when no time lag between
the simulations and observations is applied to calculating correlation
and RMSE. The difference between the observations and the simula-
tions increases when moving inland, with it being smaller for the near
coast Alameda gauge (r= 0.92, RMSE = 0.31 m) and greater for inland
gauges such as Port Chicago (r= 0.81, RMSE = 0.57 m) and Coyote
Creek (r= 0.82, RMSE = 0.69 m). Overall, the simulations tend to
underestimate the observations, which can be explained by the absence
of river discharges that affect water levels in the simulations. We also
notice time lags between the simulations and the observations, as a
certain amount of time is required for the simulated waterflows to pass
through the gauges and to alter the initial water surface of 0 m in ele-
vation. When an arbitrary 30-min lag was added to comparing the
observations and the simulations, the differences reduced for all gauges,
and the lowest correlation increased from 0.81 (without lag) to 0.90
(with lag) and the highest RMSE reduced from 0.69 m (without lag) to
0.54 m (with lag). The existence of such time lags justifies the need for
simulating the extreme sea level events over longer time windows (e.g.
72 h), so that the simulated water peaks can pass through the study
area.
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During each extreme sea level event our simulation produced hourly
flood area and depths, which were compressed into a single map of the
maximum flood extent and depth during the event. We also grouped the
maps from different events by their respective RCPs and 20-year per-
iods to show coastal flood hazard under different GHG concentration
levels and over time.

2.5. Exposure analysis

We collected fourteen datasets representing demographic and so-
cioeconomic distributions, developed areas, locations of lifeline infra-
structures, and emergency responders (Table 2) to comprehensively
assess the Bay Area's exposure to the projected flood. Demographic and
socioeconomic data including population, number of households and
housing units were used to estimate the total amount of people, fa-
milies, and housing structures exposed to flooding. Similarly, developed
areas of different development intensities were used to approximate the
exposure of the built-environment (i.e. man-made environment ranging
from dense urban centers and parks) in general (Wood, 2009). WeTa
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included lifeline infrastructures containing roads and co-located uti-
lities (e.g. electric power and natural gas) as they support the recovery
of places directly hit by environmental hazards, and the failure of these
infrastructures can spread the hazards' impacts to a broader region
(EERI, 2016; Oh, Deshmukh, & Hastak, 2013). Emergency responders,
such as fire stations and hospitals, were also included in the exposure
analysis due to their importance in disaster response and their abilities
to assist needed citizens affected by environmental hazards (Biging
et al., 2012; Coles, Yu, Wilby, Green, & Herring, 2017).

We used relative exposure, which was calculated as the percentage of
a dataset's low-lying portion (i.e. < 10 m in elevation) that was flooded,
in the following analysis. Calculating exposure is a preliminary step

towards understanding flooding's impact, as this measurement does not
show outcomes such as monetary loss from flooded homes and infra-
structures, reduced service area and capacity of emergency responders,
or any cascading effects due to disruptions in lifeline infrastructures.
However, this exposure metric can be easily iterated through the mul-
tiple extreme sea level events to provide an overview of the uncertainties
driven by the climate scenarios and time. In addition, we focused on
relative exposure to facilitate comparison across different datasets. We
also limited the analysis to the low-lying portion of these datasets as
coastal flooding from SLR and storm surge is a localized phenomenon
that rarely expands to higher elevations. A detailed description of what
relative exposure means to each dataset is contained in Table 2. In

Fig. 4. Observed and simulated water levels during a historical extreme sea level event in the Bay Area starting in Jan 11th, 2017. Observations and simulations were
compared using Pearson correlation coefficient (r) and root mean square error (RMSE), with and without an arbitrary 30-min time lag.

Table 2
Datasets used in the exposure analysis.

Datasets Source Relative exposure
metric

Demography and socioeconomics Population The U.S. Census Grids (http://sedac.ciesin.columbia.edu/data/collection/usgrid) % people
Number of households % households
Number of housing units % housing units

Developed areas Open space National Land Cover Database (https://www.mrlc.gov/nlcd11_data.php) % area
Low intensity development
Medium intensity
development
High intensity
development

Lifeline infrastructures Roads ArcGIS Business Analyst 2016 (ESRI, 2016) % length
Electric transmission line GIS Open Data, California Energy Commission (https://cecgis-caenergy.opendata.

arcgis.com)
% length

Electric substations % substations
Natural gas pipelines % length
Natural gas stations % stations

Emergency responders Fire stations (Biging et al., 2012) % stations
Hospitals Licensed Healthcare Facility Listing, California Health and Human Services Open Data

Portal (https://data.chhs.ca.gov/dataset/licensed-healthcare-facility-listing)
% hospitals

%: percentage of a dataset's low-lying portion (i.e. < 10 m in elevation) that is flooded.
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addition, we report absolute exposures of the datasets in Appendix B.

2.6. Analyzing uncertainties in the exposures

We calculated uncertainties in the exposures as standard deviation
(Stdj, t, k) of a dataset's (k) relative exposures during all extreme sea
level events for a given 20-year period (t) and an RCP (j) (Eq. (3)). We
performed a simple linear regression to understand how these un-
certainties changed with the RCPs and time (Eq. (4)). The fitted value
from this regression represents expected uncertainty in relative ex-
posures of a dataset for a RCP and a 20-year period. We calculated the
uncertainties and performed the regression above for the overall ex-
posure with the maximum flood depth > 0 m, as well as for five dif-
ferent levels of exposure stratified by the maximum flood depth: low
(0–0.5 m), medium (0.5–1.0 m), high (1.0–1.5 m), very high
(1.5–2.0 m), and extreme (> 2.0 m).

= =Std
E E

N
( )

j t k
i
N

i j t k j t k
, ,

1 , , , , ,
2

(3)

= + +Std RCP Timej t k j t j t k, , 0 1 , , (4)

where Ei, j, t, k is a dataset k's relative exposure during an extreme sea
level event i of RCP j and a 20-year period t. Ej t k, , is the average relative
exposure across the extreme sea level events. N is the total number of
extreme sea level events of RCP j and 20-year period t, which equals to
12 based on permutations of the four GCMs and three probabilistic SLR
values. Stdj, t, k is standard deviation of the dataset's relative exposures
under RCP j and during 20-year period t. RCPj is a dummy variable for

either RCP 4.5 or RCP 8.5, and Timet is a dummy variable for one of the
five 20-year periods.

3. Results

3.1. Flood hazard

Our simulations of the extreme sea level events indicate that flood
area and depth increase with the projected SLR and intensified storms.
The median estimates of RCP 8.5 scenarios and their respective extreme
sea level events show that flood area increases from 733 km2 during the
2000–2020 period, to 784 km2 during the 2020–2040 period, and to
1066 km2 during the 2080–2100 period (Fig. 5(a), solid red line).
Compared with the median estimates of RCP 8.5, the ones of RCP 4.5
scenarios results in larger flood areas during the 2000–2020 period, and
smaller flood areas during the remaining periods (Fig. 5(a), solid green
line). Such patterns are expected as RCP 4.5 scenarios have higher peak
sea levels for the events during the 2000–2020 period but lower peak
sea levels for the events during the other periods, as shown in Section
2.2. Our results also indicate that the increased portions of the flood
areas have greater depth (Fig. 5(b–c)). For example, the median esti-
mates of RCP 8.5 scenarios show 13% (97 km2) of the total flood area
with extreme depth (i.e. > 2.0 m) during the 2000–2020 period, 21%
(165 km2) during the 2020–2040 period, and 77% (822 km2) during the
2080–2100 period (Fig. 5(c)).

The flood areas mainly include wetlands in the north and south, and
developed areas in the central section of the Bay Area. While flooding
over the wetlands moves further inland, in the developed areas it is

Fig. 5. Flood area during the extreme sea level events identified every 20 years between 2000 and 2100 under the 24 climate scenarios. (a) Flood area of each event,
shown as dashed lines colored by their RCPs and probabilistic SLR values. The median estimate of each RCP is shown as a solid line. (b) and (c) show area with
different maximum flood depths (i.e. low: 0–0.5 m, moderate: 0.5–1.0 m, high: 1.0–1.5 m, very high: 1.5–2.0 m, extreme: > 2.0 m) based on the median estimates of
each RCP.
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constrained by steep slopes and hills (Fig. 6(a)). Due to these topo-
graphic constraints, the developed areas are likely to have limited ex-
pansions in flood area but greater increases in flood depth, which
partially explains why areas with greater flood depth grew dis-
proportionally in Fig. 5(b–c). We also visually identify several locations
that will likely have disproportional increases in areas with deeper
flooding in Fig. 6(b).

3.2. Urban exposure to flooding

Our results indicate that the fourteen datasets assessed are in-
creasingly exposed to the simulated flooding and that RCP 8.5 scenarios
generally cause greater exposures than do the RCP 4.5 scenarios
(Fig. 7). While we report relative exposures (i.e. percentage of a data-
set's low-lying portion that is flooded, see Table 2 for a detailed de-
scription for each dataset) in this study, we include absolute exposures
in Appendix B.

Under the median estimates of RCP 8.5 scenarios, the fourteen da-
tasets' relative exposures increase from 0-35% (i.e. dataset dependent,
similar below) during the 2000–2020 period to 40–67% during the
2080–2100 period. Under the median estimates of RCP 4.5 scenarios,
the exposures are 10–38% during of the 2000–2020 period, and
20–54% during the 2080–2100 period. Compared with RCP 4.5, RCP
8.5 does not consistently lead to more exposures of the datasets. Over
the five 20-year periods combined, the median estimates of RCP 8.5
scenarios result in significantly higher (p-value = 0.038) exposures of
the fourteen datasets. However, before 2040, RCP 4.5's median esti-
mates lead to insignificantly higher exposures (p-
value2000–2020 = 0.394, p-value2020–2040 = 0.916). After 2040, RCP 8.5
scenarios' median estimates start to cause more exposures, and such
pattern becomes increasingly significant (p-value2040–2060 = 0.368, p-
value2060–2080 = 0.036, p-value2080–2100 = 0.000). This pattern is due
to the differences in projected peak sea levels between the two RCPs, as
illustrated earlier in Section 2.2.

Fig. 6. Flood in developed areas based on the median estimates of RCP 4.5 and 8.5 scenarios. (a) shows overall flood area during the 2080–2100 period. (b) compares
flood depths from the median estimates of the two RCPs and two 20-year periods. (b) also outlines areas with limited expansion in flood area but disproportional
increases in flood depth.
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Developed open space and low intensity development are the most
exposed sub-categories on average over the 20-year periods, whereas
hospitals, demographic and socioeconomic distributions are less ex-
posed. Averaged over the median estimates during the five 20-year
periods, 43% (RCP 4.5) to 47% (RCP 8.5) of developed open space and
41% (RCP 4.5) to 44% (RCP 8.5) of low intensity development within
the low-lying coastal zones are exposed to flooding. The less exposed
sub-categories, such as hospitals and housing units, have exposures of
12% (RCP 4.5) to 18% (RCP 8.5) and 19% (RCP 4.5) to 22% (RCP 8.5),
respectively. Development is the most exposed category we assess,
followed by lifeline infrastructures, demographic and socioeconomic
distributions, and emergency responders.

3.3. Uncertainties driven by the climate scenarios and time

The uncertainties (i.e. standard deviations) of the datasets' relative
exposures increase over time, and RCP 8.5 generally leads to more
uncertainties compared with RCP 4.5 (Fig. 8). Under RCP 4.5 scenarios,
the 2000–2020 period has an expected uncertainty (i.e. based on the
regression of Eq. (4)) of 2% in relative exposure of a given dataset, and
the uncertainty is relatively unchanged until the 2060–2080 period
when the value doubles to 4%. The final 2080–2100 period has the
highest expected uncertainty of 7% (Fig. 8(a)). A similar trend is found
for RCP 8.5's average uncertainties, despite an earlier rise in the
2020–2040 period (Fig. 8 (b)). During the 2000–2020 and 2020–2040

Fig. 7. Relative flood exposure of demographic and socioeconomic distributions, developed areas, lifeline infrastructures, and first responders during the extreme sea
level events under RCP 4.5 and 8.5 scenarios, every 20 years between 2000 and 2010. Relative exposure is calculated as percentage of a dataset's low-lying portion
(i.e. < 10 m in elevation) that is flooded. The solid color bars show the relative exposures during median estimates of the extreme sea level events. The black lines
show standard deviations of the relative exposures during all extreme sea level events for a given RCP and a 20-year period.
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periods, RCP 8.5 has smaller expected uncertainties than those of RCP
4.5, but this relationship inverts during the remaining periods.

The expected uncertainties in the dataset's relative exposures to
different flood depths show varied temporal trends (i.e. based on the
regression of Eq. (4)) (Fig. 9). Low to very high exposures (i.e. the max.
flood depth < 2 m) show similar temporal trends with moderate in-
creases in their uncertainties over time. However, extreme exposure
(i.e. the max. flood depth > 2 m) has more distinct temporal trends
with much larger uncertainties, particularly during the later periods
such as those after 2080 for RCP 4.5 scenarios (Fig. 9(a)) and after 2060
for RCP 8.5 scenarios (Fig. 9(b)).

4. Discussions

4.1. Flood exposure under an uncertain future

Understanding flood exposure caused by SLR and storm surge is a
prerequisite to obtain further information regarding risk, vulnerability,
impact, resilience, and adaptation options in coastal urban areas under
climate change. Projecting flood exposure involves a substantial
amount of uncertainties that are propagated through a chain of

different political, socioeconomic and technological assumptions, GHG
emissions and concentrations (i.e. the RCPs in this study), and climate
models (i.e. the GCMs and probabilistic SLR values in this study) (Wilby
& Dessai, 2010). Our results empirically show what the climate-related
uncertainties would be like in a highly urbanized area, regarding the
exposures of socioeconomic and demographic distributions, developed
areas, lifeline infrastructures, and emergency responders to modeled
flooding during extreme sea level events projected under two groups of
climate scenarios (i.e. RCP 4.5 and 8.5), every 20 years between 2000
and 2100. We postulate that uncertainties should not be neglected,
particularly for planning horizons beyond 2040 where our results in-
dicate more salient uncertainties in relative exposures (Figs. 8 and 9).

Since flooding is sensitive to its underlying terrain conditions,
coastal areas with flat terrain are more likely to experience un-
certainties in projected flood exposures when compared with areas on
steeper slopes. In flat areas, slight variations in projected sea levels can
make the resulting flood areas advance or retreat over longer distances.
For example, cities in the northeastern valleys of the Bay Area have
more agreements in their flood areas between the low, median, and
high estimates of the extreme sea level events (Fig. 10(a)). Alameda, a
city built on flat landfill, is not only projected to have larger flood areas

Fig. 8. Temporal trends of the uncertainties in the relative flood exposures of the fourteen datasets. (a) shows the uncertainties under RCP 4.5 scenarios. (b) shows
the uncertainties under RCP 8.5 scenarios. The color dashed line shows the uncertainties in relative exposures of a dataset under a given RCP over time, whereas the
solid black line shows the expected uncertainties. For a dataset, uncertainty is the standard deviation (Std.) of its relative exposures under a RCP and during a 20-year
period. Expected uncertainty is predicted with the regression of Eq. (4).

Fig. 9. Temporal trends of the expected uncertainties in the fourteen datasets' relative exposures to different flood depths. (a) the temporal trends under RCP 4.5, (b)
the temporal trends under RCP 8.5.
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but also greater differences between the low, median and high esti-
mates (Fig. 10(b)). Additional coastal developments are expected to
emerge throughout the Bay Area due to the region's growing economy,
projected increases in population and jobs, and amenities near the
waterfront. A 2015 map found that 27 major proposed and ongoing real
estate projects were located in flood-prone coastal zones (Wachtel,
Ennamorato, & Burson, 2015) where the projected flood exposures
were not only salient but also more uncertain, adding challenges to
planning, management, and decision-making.

While we only highlight climate-related uncertainties in this study,
non-climatic factors can also affect the uncertainties in projected flood
hazards and exposures. These factors include land subsidence and up-
lift, different population distribution projections, land cover and land
use changes, and improvements or failures of flood control structures. A
recent model at 2 m spatial resolution (Shirzaei & Bürgmann, 2018)
indicates that land subsidence and uplift will make flood areas increase
from 51-168 km2 to 98–218 km2 by 2100 in the southern Bay Area
under a likely range (i.e. 67% probability) of SLR scenarios. These land
subsidence and uplift projections slightly (i.e. statistically insignificant)
alter our results at 50 m resolution, causing flood areas within the
southern Bay Area (the extent of this area is in Appendix C) to increase
by 0.23 km2 and the datasets' relative exposures to increase by 0.62%
on average during the extreme sea level events. In addition, the un-
certainties in flood areas decrease by 0.07 km2, and the uncertainties in
a dataset's exposures decrease by 0.31% on average under the two RCPs
and during the five 20-year periods. However, all these changes are
small and statistically insignificant, for two reasons. First, Shirzaei et al.
only consider SLR and exclude extreme storm surge, whereas we in-
clude both phenomena. Therefore, compared with Shirzaei et al., our
projected flood areas are more extensive and likely cover coastal re-
gions with salient land subsidence, even without including this effect.
Adding land subsidence to our models should not change projected
flood area in these regions or the broader study area. Second, our 50 m
spatial resolution and average aggregation may attenuate the effects of
land subsidence and uplift. Given the sensitivity of flood models to
spatial resolution (Haile & Rientjes, 2005; Jakovljević & Govedarica,
2019; Ju et al., 2017), we assume that models at a finer spatial re-
solution such as 2 m may lead to significant changes in flood exposures

and their uncertainties such as the ones observed by Shirzaei et al.
These uncertainties may further increase when considering different
land use and population projections, such as a recent Californian land
use projection that contains four land use scenarios based on different
population growth trajectories (Sleeter, Wilson, Sharygin, & Sherba,
2017). Levees are more relevant in low-lying and flat terrains, such as
the adjacent Sacramento-San Joaquin River Delta whose islands are
mostly 3–8 m below the current-day sea level (Ingebritsen, Ikehara,
Galloway, & Jones, 2000) and protected by an extensive levee system
(Mount & Twiss, 2005). These islands will likely be entirely flooded if
the levees are overtopped or breached, and thus levee condition is a
critical and uncertain factor for adaptation planning in this region.
These non-climatic factors above, in addition to the climate drivers,
serve to broaden the uncertainties in projected flood exposures.

4.2. Implications of the uncertainties for planning and management

To understand the implications of our results for planning and
management in the Bay Area, we engaged with private and public
stakeholders in the transportation and energy sectors. This outreach
process is part of a broader project (Radke et al., 2018) that studies
flood-related vulnerabilities of some lifeline infrastructures in our
analysis. Two implications for planning and management are worth
highlighting from this outreach process. First, the increased un-
certainties over time pose obstacles for stakeholders to appreciate our
long-term, multi-scenario flood projections and exposure analysis.
Second, the obstacles above require adaptation strategies to cope with
uncertainties and to promote long-term planning.

Concerns about uncertainties in long-term climate change projec-
tions and adaptations are not unique to the stakeholders we engaged
with, they are also relevant for stakeholders in other sectors. Many of
the stakeholders we interviewed are more interested in our near-term
projections such as for 2000–2020 and 2020–2040, with insights from a
few private-sector stakeholders suggesting that projections exceeding
10 years would be irrelevant in near-term decision making. This short-
term focus is likely an uncertainty-avoidance organizational behavior
(Slawinski, Pinkse, Busch, & Banerjee, 2017) that can be suboptimal in
the long-term for infrastructures with longer investment, life, and

Fig. 10. Comparing high, median, and low estimates of flood areas in places with steep (a) and flat (b) terrain. This example is illustrated using extreme sea level
events under the RCP 8.5 scenarios during the 2040–2060 period.
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planning cycles (Hallegatte, 2009). Concerns about uncertainty have
also been reported in other sectors such as public land management
(Peters, Schwartz, & Lubell, 2018), urban planning (Carter et al., 2015),
business firms (Slawinski et al., 2017), and public outreach (Morton,
Rabinovich, Marshall, & Bretschneider, 2011). Since the negative con-
sequences of future climate are not certain, stakeholders worry about
losing predictability and control, and are inclined to keep self-inter-
ested behaviors, which may reduce the likelihood of taking actions for
adaptation (Morton et al., 2011; Slawinski et al., 2017). This could
explain the preference of stakeholders for short-term projections and
exposure analysis that have smaller uncertainties as discovered in our
results.

Based on our findings and from the existing literature, planning and
management strategies should incorporate the uncertain nature of fu-
ture climate and promote long-term thinking (Oddo et al., 2017;
Walker, Haasnoot, & Kwakkel, 2013; Woodward, Kapelan, & Gouldby,
2014). Hallegatte (2009) recommends no-regret (i.e. beneficial even
without climate change) and reversible (i.e. low cost for being wrong
about future climate) adaptation strategies to cope with uncertainties.
Additionally, uncertainty-coping strategies are not only technical but
also “soft” by incorporating financial, organizational and institutional
measures. Such strategies should enhance redundancy of a given system
and enable decision-making in a timely manner to keep pace with new
situations. Our outreach process with the stakeholders reveals pre-
ferences for technical and irreversible adaptation strategies such as
armoring infrastructures and building levees. We also find some interest
in no-regret and “soft” strategies including building mutual aid and self-
sufficient logistic groups for emergency preparedness, which can be
promoted as these strategies are assumed to be lower-cost and more
flexible than the technical and irreversible ones when adjusting to new
climate projections. Another salient example of ‘soft’ strategy that could
be considered is the Sand Engine, a mega scale sand replenishment
driven by waves and currents, implemented in the Netherlands to
control for SLR-driven coastal recession while reducing project cost and
disruptions to nature (Stive et al., 2013).

The long-term thinking is enhanced with the inclusion of certainties
in climate change adaptation, such as adopting stable regulations over
time that provide more predictability about future policy environment
and reduce the risk of implementing certain adaptation actions
(Slawinski et al., 2017). Furthermore, policies may explicitly require
development projects to consider the long term. For example, a Bay
Area's regulation has asked coastal projects to cope with flood projec-
tions for 2050 or 2100 depending on project life and existence of public
safety risks (The San Francisco Bay Conservation and Development
Commission, 2011). In realizing such long-term consideration, re-
searchers, planners, and decision-makers may also utilize the concept of
‘adaption tipping point’ (Kwadijk et al., 2010), which is carried out in
the Netherlands to identify the time points when current strategies are
no longer valid due to climate change and when new strategies are
need.

4.3. Limitations and future research directions

While we focus on exposure in this study, it does not equal to flood
impacts on urban areas. Future researchers may acquire additional in-
formation to transform exposure into impact related metrics such as
disruptions in traffic flows, damages to homes, and loss of life through
damage-depth curves (Huizinga, de Moel, Szewczyk, European
Commission, and Joint Research Centre, 2016; Pistrika, Tsakiris, &

Nalbantis, 2014). In addition to studying direct impacts in exposed
areas, researchers may further consider a network framework where
flood impacts can propagate through intra- or inter-connected infra-
structures, spreading impacts over a much broader region (Biging et al.,
2012; Ge, Dou, & Zhang, 2017). Researchers suggest that this network
perspective provides a more holistic picture on flood impacts and their
related uncertainties (Balijepalli & Oppong, 2014; Eleutério, Hattemer,
& Rozan, 2013; Haimes, 2009; Herrera, Flannery, & Krimmer, 2017;
International Transport Forum (ITF), 2017; Lleras-Echeverri & Sanchez-
Silva, 2001; Martinson, 2017; O'Rourke, 2007; Rodríguez-Núñez &
García-Palomares, 2014).

Researchers can also benefit from collaborating with stakeholders
during the flood modeling process. While we mainly presented our
results to the stakeholders responsible for some lifeline infrastructures,
future studies may expand to other relevant industries and sectors,
collecting their opinions on flood modeling. The differences in the
stakeholder's reactions (e.g. the preferences for short versus long term
projections) may indicate their varied priorities and concerns about
flooding and climate change adaptation. Such knowledge can inform
more relevant and applicable regulations and policies. Furthermore,
stakeholder engagement can help to identify appropriate modeling
strategies in terms of spatial resolution, time horizons, areas of interest,
and metrics for projecting flood hazard, which will hopefully lead to
more stakeholder-specific results (Wadey et al., 2015).

Finally, a long-term, fine resolution, and consistent flood mapping
inventory will benefit flood modeling, exposure and impact assess-
ments, and consequently stakeholders. Such an inventory is becoming
increasingly possible with the advances in remote sensing (Pekel,
Cottam, Gorelick, & Belward, 2016), sensor networks (Chang & Guo,
2006), and volunteered geographic information (Poser & Dransch,
2010). As more floods are monitored and mapped, flood models can be
calibrated with this growing historical inventory, instead of water level
recordings from sparse gauges used by this study. With such an in-
ventory in place, researchers can use flood maps to develop statistical
models, which can be better applied to large regions and used to
compare with process-based models; like the 3Di used in this study
(Siahkamari, Haghizadeh, Zeinivand, Tahmasebipour, & Rahmati,
2017; Tien Bui et al., 2016; Wang et al., 2015). Additionally, historical
maps are intuitive tools that increase public awareness about flood
hazards and are baselines to better understand variabilities in flood
exposure and impact under future climates.

5. Conclusion

SLR and storm surge under climate change pose additional flood
threats to coastal urban areas. Successful adaptation requires pro-active
planning that incorporates long-term flood projections and their in-
trinsic uncertainties. While these intrinsic uncertainties are previously
understudied, in this study we utilize a scalable hydrodynamic model to
simulate coastal flooding under multiple time horizons and climate
scenarios to show the range of flood exposures in a highly urbanized
coastal area. We assess flood exposure by intersecting simulated flood
areas with fourteen datasets describing demographic and socio-
economic distributions, developed areas, lifeline infrastructures, and
emergency responders. Our results are useful as a comprehensive base
map for adaptation planning and to facilitate discussions with different
stakeholders on adaptation options for future flood hazards while
promoting transparency in the climate-related uncertainties associated.
The approach we develop here can be used in coastal urban areas

Y. Ju, et al. Cities 92 (2019) 230–246

241



throughout the world.
Our results show increased flood exposures and broader un-

certainties over time in the San Francisco Bay Area. The median esti-
mates of lower GHG concentration scenarios (i.e. RCP 4.5) indicate
10–38% of the datasets' low-lying portions (i.e. < 10 m in elevation)
are exposed to flood in 2000–2020 and 20–54% exposed in 2080–2100.
These numbers change to 0–35% and 40–67% respectively under the
median estimates of higher GHG concentration scenarios (i.e. RCP 8.5).
The expected uncertainties (i.e. standard deviations) in a given dataset's
exposures is 1–2% (RCP 8.5 and 4.5) in the 2000–2020 period and
7–10% (RCP 4.5 and 8.5) in the 2080–2100 period. We find that these
increased uncertainties are challenging for stakeholders when using
long-term projections, particularly for private-sector stakeholders who
tend to focus on short-term investment and planning cycles. Therefore,
adaptation options should favor no-regret, reversible, and redundant

strategies, and policies should be stable over time. With such efforts,
stakeholders are more likely to engage with flood and climate change
adaptation.
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Appendix A. Visualization of annual maximum value of the hourly sea level projections, SLR, and storm surge from Cayan et al. (2016)

Appendix B

B.1. Absolute exposures under RCP 4.5 and 8.5 scenarios, every 20 years between 2000 and 2100

Estimates RCP 4.5 RCP 8.5

Min. Median Max. Min. Median Max.

Period 2000–2020
Population (1000 people) 163 195 233 156 162 164
Number of households (1000 households) 60 73 85 58 60 60
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Number of housing units (1000 housing units) 63 77 90 62 63 64
High intensity development (km2) 17 21 24 15 17 18
Medium intensity development (km2) 50 56 61 45 49 50
Low intensity development (km2) 41 45 48 38 41 41
Open space (km2) 24 26 28 23 24 24
Roads (km) 1215 1393 1540 1095 1197 1225
Natural gas pipeline (km) 66 75 85 59 65 66
Natural gas stations (station) 6 6 8 5 6 6
Electric transmission line (km) 312 332 355 294 308 311
Electric substations (substation) 17 18 22 14 16 17
Fire stations (station) 13 17 17 10 13 13
Hospitals (hospital) 0 1 1 0 0 0

Period 2020–2040
Population (1000 people) 143 195 200 163 189 208
Number of households (1000 households) 52 73 75 59 70 77
Number of housing units (1000 housing units) 55 77 80 63 74 82
High intensity development (km2) 15 21 24 18 21 22
Medium intensity development (km2) 46 56 61 51 56 57
Low intensity development (km2) 39 45 47 42 45 45
Open space (km2) 23 26 27 25 26 26
Roads (km) 1121 1404 1530 1245 1381 1426
Natural gas pipeline (km) 60 76 82 68 75 76
Natural gas stations (station) 6 6 8 6 6 6
Electric transmission line (km) 296 333 350 315 332 335
Electric substations (substation) 14 18 22 17 17 18
Fire stations (station) 11 17 17 13 17 17
Hospitals (hospital) 0 1 1 0 1 1

Period 2040–2060
Population (1000 people) 178 193 229 173 214 256
Number of households (1000 households) 66 73 83 63 75 90
Number of housing units (1000 housing units) 70 77 88 67 80 95
High intensity development (km2) 20 23 28 18 29 41
Medium intensity development (km2) 53 59 67 52 69 86
Low intensity development (km2) 44 46 50 43 52 57
Open space (km2) 25 27 29 25 30 33
Roads (km) 1314 1475 1703 1268 1762 2267
Natural gas pipeline (km) 71 79 94 68 101 136
Natural gas stations (station) 6 6 10 6 10 13
Electric transmission line (km) 323 343 372 317 383 429
Electric substations (substation) 17 21 23 17 26 38
Fire stations (station) 15 17 19 14 20 23
Hospitals (hospital) 0 1 1 0 1 2

Period 2060–2080
Population (1000 people) 219 262 244 236 288 381
Number of households (1000 households) 79 92 89 83 107 138
Number of housing units (1000 housing units) 84 98 95 87 113 147
High intensity development (km2) 24 34 45 28 56 70
Medium intensity development (km2) 60 76 90 68 104 124
Low intensity development (km2) 48 54 59 51 63 69
Open space (km2) 28 32 34 30 37 40
Roads (km) 1509 1970 2393 1730 2793 3338
Natural gas pipeline (km) 83 115 144 97 168 199
Natural gas stations (station) 8 12 12 10 15 23
Electric transmission line (km) 353 402 441 376 475 519
Electric substations (substation) 22 32 41 24 49 58
Fire stations (station) 17 21 24 19 28 36
Hospitals (hospital) 1 1 2 1 2 3

Period 2080–2100
Population (1000 people) 203 279 414 277 483 546
Number of households (1000 households) 72 101 151 103 172 199
Number of housing units (1000 housing units) 76 108 163 109 183 214
High intensity development (km2) 28 59 77 54 87 100
Medium intensity development (km2) 68 108 134 102 151 175
Low intensity development (km2) 51 64 72 62 77 84
Open space (km2) 30 37 42 36 44 48
Roads (km) 1736 2906 3634 2747 4129 4784
Natural gas pipeline (km) 98 174 218 165 243 286
Natural gas stations (station) 10 17 26 15 27 32
Electric transmission line (km) 380 485 544 470 584 624
Electric substations (substation) 25 51 63 49 70 77
Fire stations (station) 19 30 38 28 45 51
Hospitals (hospital) 1 2 3 2 5 5
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B.2. Total amount of each dataset used in the exposure analysis

Dataset Total amount Dataset Total amount

Population (1000 people) 1153 Roads (km) 8160
Number of households (1000 households) 430 Natural gas pipeline (km) 531
Number of housing units (1000 housing units) 464 Natural gas stations (station) 55
High intensity development (km2) 155 Electric transmission line (km) 967
Medium intensity development (km2) 296 Electric substations (substation) 105
Low intensity development (km2) 125 Fire stations (station) 95
Open space (km2) 69 Hospitals (hospital) 10

Appendix C. Area of the analysis with land subsidence and uplift data
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