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Reliable data on the provision of ecosystem services (ES) is essential to the design and implementation of policies
that incorporate ES into grassland conservation and restoration. We developed and applied an innovative ap-
proach for regional parameterization, and calibration of the CENTURY ecosystem model. We quantified spatio-
temporal variation of soil organic carbon stock (SOC) and aboveground plant biomass production (AGB) and
examined their responses to the recent climate change across a diverse range of native grassland systems in Al-
berta, western Canada. The simultaneous integration of SOC and AGB into calibration and analysis accounted for
most of the spatiotemporal variability in the SOC and AGBmeasurements and resulted in reduced simulation un-
certainty across nine grassland regions. These findings suggest the importance of the systematic parameteriza-
tion and calibration for the reliable assessment of carbon-related ES across a wide geographic area with
heterogeneous ecological conditions. Simulation results showed a pronounced variation in the spatial distribu-
tion of SOC and AGB and their associated uncertainty across grassland regions. Under baseline grazing intensity
regime, an overall negative effect of recent climatic changes on the SOC, and a less consistent effect on the AGB
were found. While, an overall positive or slightly negative impact of recent climate change on the SOC and
AGB was found under a proposed 10% lower grazing intensity regime. These heterogeneities in the magnitude
and direction of climate change effects under different grazing regimes suggest needs for a range of climate
change adaptation strategies to maintain carbon-related ES in Alberta's grasslands. Themodeling framework de-
veloped in this study can be used to improve the spatially explicit assessment of carbon-related ES in other geo-
graphically vast grassland areas and examine the effectiveness of alternative management scenarios to ensure
the long-term provision of carbon-related ES in grassland systems.
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1. Introduction
Grasslands are one of the earth's major biomes that cover N40% of
the earth's terrestrial surface (Hewins et al., 2018). They occur under a
broad range of climatic, topographic and edaphic conditions and sup-
port a diverse assemblage of plant and animal communities (Blair
et al., 2014). Grasslands play a major role in local, regional and global
biogeochemical cycles by storing vast amounts of carbon and critical nu-
trients in their soils (Parton et al., 1988; Hungate et al., 2017). They pro-
vide a host of critical ecosystem services (ES), including carbon stock for
climate regulation, forage production for wildlife and livestock grazing,
pollination services for adjacent crop fields, clean water for human con-
sumption amongothers (Gibson, 2009; Blair et al., 2014). However, sev-
eral of these environmental, economic and socio-cultural services are
undervalued as indicated by limited policies to promote ES conservation
and restoration in grassland systems (Havstad et al., 2007; Jellinek et al.,
2019).

Carbon-related ES provided through organic carbon stock in soil and
aboveground plant biomass production are critical services that ensure
the provision of several other ES (Adhikari and Hartemink, 2016;
Hungate et al., 2017). Recently, carbon-related ES have been used as
the basis for innovative approaches to incentivize grassland conserva-
tion and restoration activities such as issuing credits for land manage-
ment practices that encourage carbon stock in grassland soil (Havstad
et al., 2007; Jack et al., 2008; Jellinek et al., 2019). Robust, reliable and
comparable data on the provision of carbon-related ES and the potential
trade-off among those services are necessary to design and implement
policies that incorporate ES valuation in grassland conservation and res-
toration (Daily et al., 2009; Cord et al., 2017). However, for most geo-
graphic regions, spatially explicit and comprehensive data on the
provision of carbon-related ES are lacking (Howe et al., 2014; Schulp
et al., 2014).

Application of the biogeochemical ecosystemmodels are among the
best availablemeans to account for the provision of carbon-related ES at
large spatial scales (e.g., Lugato et al., 2014; Campbell and Paustian,
2015; Dimassi et al., 2018; Sándor et al., 2018). The process-based
models are generally highly complex and comprise numerous biophys-
ical and empirical parameters associated with the simulation of various
ecosystem processes. These input parameters are not measurable and
they require proper parameterization and calibration to ensure that tar-
get ecosystem processes are adequately represented (Cuddington et al.,
2013; Necpálová et al., 2015). The process-based models are typically
calibrated manually through a “trial and error” approach, where the
most sensitive parameters for targeted processes are adjusted one-at-
a-time, iteratively in multiple stages, until simulated and measured
values are matched reasonably well (Brandani et al., 2015; Lugato
et al., 2014). However, due to nonlinear behavior of the underlying in-
teractions among model parameters and corresponding physical pro-
cesses, this approach does not necessarily yield optimal parameter
estimates for simulated ecosystem processes (Rafique et al., 2013;
Faramarzi et al., 2015; Rafique et al., 2015).

Inverse modeling approaches that employ algorithmic parameter
estimation techniques have been widely used in recent years to param-
eterize and calibrate process-based models (Niquil et al., 2011;
Meersmans et al., 2013; Kwon et al., 2017). These algorithms employ
mathematical and statistical procedures along with empirically mea-
sured data to enable more reliable estimates of model parameters and
outputs by providing valuable insight about model functions and their
underlying ecosystem processes (Necpálová et al., 2015; Rafique et al.,
2015). However, the main concern with inverse modeling is the issue
of non-uniqueness, where numerous input parameter sets can repro-
duce the desirable output (i.e., there will bemany ‘best’ solutions rather
than only one; Faramarzi et al., 2015).With the recent advancements in
inversemodeling techniques, the issue of non-uniqueness can be repre-
sented by parameter uncertainty prediction (Faramarzi et al., 2017). In
addition, inverse modeling facilitates the assessment of uncertainty
sourcing from input data,model algorithmand lack of process represen-
tation in themodel structure (Kwon et al., 2017). This is crucial because
geo-referenced, consistently measured, and harmonized field data for
large-scale modeling are generally limited (Schulp et al., 2014;
Cuddington et al., 2013) and direct measurement of model parameters
describing various ecosystem processes is time intensive, expensive
and often has limited applicability (Abbaspour et al., 2007).

As the end-product of various interrelated biophysical processes, the
spatiotemporal patterns of grassland ES provision significantly vary
among carbon-related ES (Parton et al., 1987; Parton et al., 1993;
Schimel et al., 1994; Brown et al., 2010; Howe et al., 2014; de Gruijter
et al., 2016;Wiesmeier et al., 2019). Also, there is significant uncertainty
about the biophysical production of carbon-related ES under varying
ecological conditions in grasslands (Ogle et al., 2007; Van den Bygaart
et al., 2008; Xiong et al., 2015). Moreover, spatiotemporal variability in
climate in combination with land use practices (e.g., grazing) increase
uncertainty predictions for future adaption and grassland management
actions. This spatiotemporal variability makes carbon-related ES chal-
lenging to reliably estimate using biogeochemical ecosystem models,
particularly over a large geographic area with substantial uncertainty
associated to input data among others (Cerri et al., 2007; Ogle et al.,
2010; Oelbermann and Voroney, 2011; Hou et al., 2013; Lugato et al.,
2014).

The inverse modeling approach and the advancements in quantify-
ing simulation uncertainties proved to be useful in various process-
based eco-hydrogeological models (Abbaspour et al., 2007; Niquil
et al., 2011; Faramarzi et al., 2015). Nevertheless, the approach has
been rarely applied to parameterize and calibrate complex ecosystem
models with the aim of assessing the provision of carbon-related ES in
grasslands (Rafique et al., 2013; Necpálová et al., 2015; Rafique et al.,
2015; Kwon et al., 2017). To our knowledge, noprevious study has dem-
onstrated the full use of inversemodeling approach to rigorously assess
carbon-related ES and their associated uncertainties across a range of
ecological conditions in grassland systems. The partial accounting of
the carbon-related ES in traditional approaches and lack of quality and
quantity data limit the level of confidence in using the simulation results
to inform management decisions in grasslands (Daily et al., 2009;
Schulp et al., 2014).

We performed a comprehensive parameterization and calibration of
the CENTURY ecosystemmodel (Parton et al., 1988) across awide range
of grassland regions in Alberta, a western province of Canada. We hy-
pothesized that a regionalized parameterization scheme and the use
of two types of spatially and temporally different field measurements
on carbon-related ES could help a satisfactory simulation of soil organic
carbon stock (SOC) and aboveground plant biomass production (AGB)
across Alberta's native grasslands. More specifically, our objectives
were to: (i) test a single-variable versus a multi-variable calibration ap-
proach in assessing the spatially explicit simulation of the SOC and AGB
and their potential trade-offs; (ii) assess the level of precision and un-
certainty in simulation of the SOC and AGB across a range of ecological
conditions; (iii) examine the impacts of recent climate change on the
SOC and AGB and (iv) assess whether grazing management can serve
as a potential adaptation strategy tomaintain the SOC and ABG in highly
valued native grasslands of Alberta.

2. Material and methods

2.1. Description of the study area

Alberta, with an area about 661,190 km2, is one of the westernmost
and largest provinces of Canada (49–60°N and 110–120°W; Fig. 1). It
extends for approximately 1223 km from north to south with about
660 km wide (at its greatest east-west extent) and varies in altitude
from 152 to 3747 m (Stamp and Warnell, 2008). This, together with
large-scale climate influences originating from the Pacific Ocean, has a
pronounced influence on climate and ecological diversity (Lapp et al.,
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2013). In general, the northern and western parts of the province expe-
rience greater rainfall, while the south and east-central portions are
prone to drought-like conditions sometimes continuing for several
years. The average annual precipitation ranges from 300 mm in the
southeast to about 450 mm in the north and 600 mm in the foothills
of the Rocky Mountains. The four months of May, June, July and August
provide about double the precipitation amount compared to the other
eight months of the year. Themean daily temperature in January ranges
from−8 °C in the south to−24 °C in the north, whereas in July it ranges
from20 °C in the south to 16 °C in the north (Stamp andWarnell, 2008).
Alberta is a sunny province (on average about 1900–2300 h sunshine
per year; Stamp and Warnell, 2008) but Arctic air masses in the winter
can produce extreme minimum temperatures varying from −54 °C in
the north to−46 °C in the south. However, in the summer, continental
air masses produce maximum temperatures ranging from 32 °C in the
mountains and north to over 40 °C in the southern Alberta (Chetner
and the Agroclimatic Atlas Working Group, 2003).

Alberta's native grasslands, with an area of about 6.5 million ha, are
distributed across distinct natural regions with different climate, soil
and vegetation types (Downing and Pettapiece, 2006). Most of the
northern half of the province is boreal and Mixedwood forests. The
southern quarter of the province is native prairie grasslands, ranging
from shortgrass prairie in the southeastern corner to Mixedgrass and
Fescue prairie grassland in an arc to the west and north of it. The
Aspen Parkland region extends in a broad arc between the prairies
and the boreal forests and the Foothills divide the conifer-dominated
vegetation of the Rocky Mountains and the boreal uplands from the
Aspen Parklands (Downing and Pettapiece, 2006). Most of the unfor-
ested part of the province is converted to annual crops and perennial
forages, while ranching predominates in the south (Stamp and
Warnell, 2008). Alberta has diverse soils that are strongly associated
with variation in climate, vegetation and parent materials (Fig. 1). The
dominant reference soil groups in native grassland areas are Cherno-
zemic and Luvisolic soils (ASIC, 2001). Brown Chernozemic soils are
found in the Southeast part give way to Dark Brown, Black and Dark
Gray Chernozemic soils as one proceeds in a northwesterly direction.
Gray Luvisols are found in boreal Mixedwood forests, and foothills of
Fig. 1. Distribution of native grassland areas (A) and associated regions (B) together w
the Rocky Mountains (Chetner and the Agroclimatic Atlas Working
Group, 2003). The brown Chernozemic soils are the least productive,
while the Black Chernozemic soils are the most productive that are
used to grow a wide variety of agricultural and forage crops (Downing
and Pettapiece, 2006).

2.2. CENTURY ecosystem model

We used the plant-soil ecosystem model, CENTURY (v. 4.6; Parton
et al., 1988; Parton et al., 1989), to simulate SOC and AGB. The
CENTURY model has been identified as one of the most used models
among the existing organic carbon models (Campbell and Paustian,
2015). It was initially developed for northern grasslands based on ex-
periments in Great Plains (Parton et al., 1987), of which Alberta's native
grasslands are a northern extension. The CENTURY model consists of
several interactive sub-models to track organic carbon sequestration
and stock in both grassland soil and plant biomass (Parton et al.,
1988), thus it can estimate the provision of carbon-related ES in grass-
lands. This model has been used to simulate SOC (e.g., Parton et al.,
1995; Gilmanov et al., 1997; Parton et al., 2004; Cerri et al., 2007;
Álvaro-Fuentes et al., 2012; Lugato et al., 2014; Brandani et al., 2015)
and AGB (e.g., Parton et al., 1993; Wang et al., 2008; Feng and Zhao,
2011; Lopez-Marsico et al., 2015; Kwon et al., 2017) across different ter-
restrial biomes and ecoregions, including Canadian Prairies (e.g., Smith
et al., 1997b; Van den Bygaart et al., 2008; Smith et al., 2009;
Oelbermann and Voroney, 2011), but often covering small areas or
site-specific studies over large areas.

The CENTURY model uses empirically derived mathematical rela-
tionships to simulate biophysical processes involved in carbon and nu-
trient dynamics within the top ~20 - ~30 cm of the soil profile and at a
monthly time step (Parton et al., 1988; Parton et al., 1989). It consists
of several interconnected sub-models including soil organic matter
and plant growth. The soil organic matter sub-model contains a surface
microbial pool associated with decomposing surface litter, two above-
ground litter pools (i.e., metabolic: readily decomposable and struc-
tural: resistant to decay), and three SOC pools representing a gradient
in decomposability (i.e., active or microbial biomass and associated
ith the location of AGB and SOC measurement sites across the province of Alberta.



Fig. 2. A schematic diagram of the various modeling tasks and data analysis employed.
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metabolites over months to years, slow over decades, passive over cen-
turies). The sub-model distributes the nongaseous products, formed by
microbially mediated decomposition of plant and soil organic residues,
into either or both the surface microbial pool and the three SOC pools.
The plant growth sub-model simulates plant growth and net primary
production based on vegetation type, temperature, moisture and nutri-
ent availability. It regulates the type and timing of the net primary pro-
duction that is allocated to different litter and SOC pools (Parton et al.,
1988). Primary input variables for the CENTURYmodel are monthly cli-
mate data (e.g., rainfall andminimum andmaximum temperature), soil
properties (e.g., soil texture, depth, bulk density, drainage class and pH),
atmospheric and soil nitrogen inputs, lignin content of plant material
and land management information (e.g., grazing and fire). Additional
details on the model structure and data are given in Parton et al.
(1987), Parton et al. (1988) and Parton et al. (1989).

2.3. Input data and initial model set up

We used the Agricultural Region of Alberta Soil Inventory Database
(AGRASID v. 3.0) to obtain the necessary soil parameters for Alberta's
native grasslands. The AGRASID represents the spatial distribution of
about 2100 soil types within the agricultural extent of Alberta and in-
cludes N28,000 polygons with unique values for soil properties at a
scale of 1:100000 (ASIC, 2001). We extracted soil polygons associated
with native grassland areas (Fig. 1), as determined from the Alberta Bio-
diversity Monitoring Institute's (ABMI) Wall to Wall Land cover (v 1.0;
ABMI, 2012) and Human Footprint maps (v 1.1; ABMI, 2016b). This re-
sulted in 24,731 soil polygons comprising 658 soil types associatedwith
nine distinct grassland regionswith homogeneous vegetation types and
climate conditions (Fig. 1, Table 1). These soil polygons served as the
spatial units and represented in the CENTURY model (Fig. 2). For each
spatial unit, we extracted soil properties (texture, bulk density, rock
content and pH for 0–20 cm depth) and soil layers (depth and drainage
class) from the AGRASID. Historical climate data (1901–2010) were ex-
tracted from ClimateWNA (Wang et al., 2012), which provides gridded
(approx. 4 × 4 km) monthly climate data for Western North America
based on interpolated historical weather station records. To initially
set up the model, we used available literature to define rates for atmo-
spheric nitrogen deposition (Alberta Environment, 2006), biological ni-
trogen fixation (Cleveland et al., 1999) and the carbon-to‑nitrogen ratio
(C/N) in litter andmineral soil (Smith et al., 1997b;Murphy et al., 2002).
We set initial parameter values for Alberta's grasslands, through consul-
tations with the CENTURY Core Group at Colorado State University. All
other model parameters were left to default values or in the case of ini-
tial soil organic matter, established through equilibrium.

We initially ran the CENTURY model (from now on referred to as
“initial simulation”) with the coupled C\\N sub-models
(i.e., simulating nitrogen besides carbon) for three periods. First, we
ran a 4900-year period (3000 BCE to 1900 CE) to reach equilibrium
levels (i.e., initial conditions) of AGB and SOC under a natural distur-
bance regime (Parton et al., 1988), specified as fire event every six
years and a two-month bison grazing event (i.e., shifting annually by
Table 1
Characteristics of nine regions defined for native grasslands of Alberta. Regions are ordered ba

Region Description Area (km2) Pre

GR1 Brown soil of Dry Mixedgrass 23,316.8 344
GR2 Dark Brown soil of Mixedgrass 5547.7 406
GR3 Dark Brown soil of Northern Fescue 7359.6 400
GR4 Black soil of Foothills Fescue 3694.8 467
GR5 Black soil of Central Parkland 2496.4 454
GR6 Black soil of Foothills Parkland 2458.4 569
GR7 Black-Dark Gray soil of Parkland & Mixedwood 2335.9 482
GR8 Dark Gray-Black soil of Mixedwood & Parkland 951.3 466
GR9 Gray-Dark Gray soil of Mixedwood 794.6 459
two months) occurred every year (Wang et al., 2014). For this period,
we used long-term (1901–2010) monthly climate averages (Parton
et al., 1988; Oelbermann and Voroney, 2011; Brandani et al., 2015).
Next, we ran a 60-year period (1901–1960) followed by a 50-year pe-
riod (1961–2010) using actual monthly weather records. For these
two last periods, we replaced bison grazing with cattle grazing during
June–September with high (70% of shoots removed by grazing) and
moderate grazing intensity (50% of shoots removed by grazing), respec-
tively (Wang et al., 2014). Cattle grazing was represented using a qua-
dratic impact on aboveground production and a linear impact on the
root/shoot ratio as incorporated in the CENTURY model (Holland et al.,
1992). We also removed fire events from these two last periods as fire
has been suppressed mainly in Alberta since European settlement
(Wang et al., 2014).
2.4. Model calibration and validation

2.4.1. Measured data
Three different types of measured data were used for model calibra-

tion and validation analysis (Fig. 2). We used measured SOC and AGB
data for model calibration and remotely sensed AGB proxies for model
validation at the regional level. A brief description of each data set is
provided as follow:
sed on their geographic locations (Fig. 1).

cipitation (mm) Temperature (°C) No. soil types No. spatial units

4.8 77 4958
4.9 79 2196
3.4 40 2908
4.3 50 1815
3.0 49 2501
3.2 65 2098
2.7 101 4198
2.1 104 2400
1.6 115 1657



155M. Iravani et al. / Science of the Total Environment 680 (2019) 151–168
Measured SOC data: Through its ongoing monitoring program, the
ABMI has measured (2007–2017) SOC in the top mineral soil layer
(four pooled soil samples from 0 to 5 cm depth) at approximately 330
grassland monitoring sites systematically spaced throughout native
grasslands of the province (ABMI, 2016a; Fig. 1). Because the
CENTURY model simulates SOC at a depth of 0–20 cm, we extrapolate
ABMI's 0–5 cm SOCmeasurements to about 0–20 cmusing SOC data re-
ported in the AGRASID. We extracted SOC data for native grassland soil
types (Table 1)with at least three SOC records in thefirst 30 cmdepth of
mineral soil (391 soil types, 1216mineral soil layers with variable thick-
ness). For each region (Fig. 1), we then employed a bootstrap resam-
pling procedure (R v. 3.1.1 and resample package; R Development Core
Team, 2017) with a resampling size of at least 30 and established the
best-fit regression line for the depth distribution of SOC using the curves
and their associated confidence intervals generated from the resampled
datasets (Fig. A1). We then used regional conversion factors derived
from the established regression models (fitted SOC values at 5 and
20 cm depths) to extrapolate ABMI's SOC measurements to the first
20 cmdepth of grassland soil. The constructed dataset for SOCmeasure-
ments was used for our model calibration analysis.

Measured AGB data: The Range Resource Program of Alberta Envi-
ronment and Parks (AEP) has completed long-term AGBmeasurements
at N100 Rangeland Reference Areas spaced throughout native grass-
lands of the province (AESRD, 2015; Fig. 1). At the beginning of each
growing season, ten cages (each 1.5 m × 1.5 m) were placed at each
rangeland site (moved annually) and then vegetation within each
cage was clipped to the ground level at the end of the growing season
(late August, September). The average AGB in each site was then calcu-
lated based on the dry weight of live plant materials clipped from the
temporary cages (AESRD, 2015). For this study, we had access to time
series of AGB measurements from 93 rangeland sites that date back
from the 1980s to 2000s, mostly to 1990s. The constructed dataset for
AGB measurements was used for our model calibration analysis.

Remotely sensed AGB proxies: The integrated growing season vegeta-
tion greenness data derived from time-series of remotely sensed Nor-
malized Difference Vegetation Index (NDVI) had been frequently used
as a proxy of AGB in grasslands (e.g., Grigera et al., 2007; Gu et al.,
2013; Gu and Wylie, 2015; Cord et al., 2017; Liu et al., 2017). We ob-
tained the 16-day composite MODIS (Moderate Resolution Imaging
Spectroradiometer) NDVI time series (250-m spatial resolutions) for
the entire growing seasons of 2000–2010 period from the Land Pro-
cesses Distributed Active Archive Center (Didan, 2015). We then
employed TIMESAT time-series analysis software (Jönsson and
Eklundh, 2004) to derive pixel-per-pixel proxy measures of annual
AGB (2000 to 2010) which were then aggregated across the soil types
within each grassland region (Table 1) for model validation. The
TIMESAT software applies a number of time-series fitting algorithms
and a range of threshold and parameter settings to derive several phe-
nological metrics from the NDVI time series data including AGB proxy
metrics based on the greenness (NDVI) values integrated over the com-
plete growing season (i.e., the area under the seasonal growth curve).
More details on the TIMESAT software are provided by Jönsson and
Eklundh (2004), and Kariyeva and van Leeuwen (2012). The con-
structed dataset for remotely sensed AGB proxies was used for our
model validation at the regional level.

2.4.2. Model calibration set up
We used Sequential Uncertainty Fitting (SUFI-2) algorithm for

model calibration through an inverse modeling approach (Abbaspour
et al., 2007; Faramarzi et al., 2015). The SUFI-2 combines calibration
and uncertainty analyses and maps all sources of uncertainty
(e.g., input data, model parameters, model structure and measured
data) onto the parameter ranges. Different combinations of the param-
eter values can lead to a similar model simulation and therefore the so-
lution may not be unique (Wang et al., 2013). However, since an
accepted physically and biologically meaningful range is assigned to
each input parameter, the optimized parameter ranges represent the
narrowest uncertainty ranges that produce the best fit of themodel sim-
ulations to the measurements (Necpálová et al., 2015). In SUFI-2, pa-
rameter uncertainty is described by a multivariate uniform
distribution in a parameter hypercube, while the output uncertainty is
quantified by the 95% prediction uncertainty band (95PPU) calculated
at the 2.5% and 97.5% levels of the cumulative distribution function of
the output variables. The algorithm startswith a large parameter uncer-
tainty range (PUR) so that the measured data initially fall within the
95PPU. It then employs one or more types of objective functions
(i.e., themeasure of the numerical proximity of the simulated andmea-
sured data) allowing users to narrow down the PUR through iterative
steps until a satisfactory model and calibration results are obtained
(i.e., bracketing most of the measured data within the 95PPU while
seeking the smallest possible uncertainty band). The strength of a cali-
bration and uncertainty analysis is assessed using two indices: (i) the
p-factor or the percentage of measured data bracketed by 95PPU
(ranges between 0 and 1; with an ideal value of 1), and (ii) the r-factor
or the average thickness of the 95PPU band divided by the standard de-
viation of themeasured data (ranges between 0 and infinity; a practical
value around 1 is suggested). More details on the SUFI-2 algorithm are
provided by Abbaspour et al. (2007), Faramarzi et al. (2015) and
Faramarzi et al. (2017).

We used available literature (e.g., Parton et al., 1989;Metherell et al.,
1993; Gilmanov et al., 1997; Smith et al., 1997b; Murphy et al., 2002;
Necpálová et al., 2015; Rafique et al., 2015; Sándor et al., 2018) to de-
velop a general list of potentially sensitive input parameters for organic
carbon dynamics in grasslands (Table 1 in Table A1) and to assign each
of them awide relevant PUR (i.e., physically and biologicallymeaningful
minimum and maximum values). Next, we performed a one-at-a-time
sensitivity analysis to come upwith an initial list of potentially sensitive
parameters to SOC and AGB and a reasonable PUR for the selected pa-
rameters (Abbaspour et al., 2007; Faramarzi et al., 2017). Further, we
performed a global sensitivity analysis (Necpálová et al., 2015; Rafique
et al., 2015) to screen and determine the most sensitive parameters to
SOC and AGB and also to consider possible interactions among the se-
lected parameters (Wang et al., 2013; (Fig. 2)). For global sensitivity
analysis, we performed 500 model runs using the input parameter
set-samples generated through a Latin Hypercube Sampling (LHS) pro-
cedure (R v. 3.1.1 and spartanpackage) that uses a stratification strategy
to extract random samples from the entire PUR (Gupta et al., 1998;
Abbaspour et al., 2007; Faramarzi et al., 2015). For a cost-effective sim-
ulation at this level of area coverage and spatial resolution, we
parallelized our simulations in a 48-core advanced computing system.
We then regressed the LHS generated parameter sets against the corre-
sponding simulated SOC and AGB using a stepwise regression sensitiv-
ity analysis (R v. 3.1.1 and MASS package) to determine which of the
tested parameters are sensitive to either or both SOC and AGB across
Alberta's grasslands (Faramarzi et al., 2017).

To account for spatial variations in climate, soil and vegetation across
Alberta's native grasslands,we performed regional (Table 1) parameter-
ization and calibration of the CENTURY model using two different cali-
bration approaches (Fig. 2). First, we performed a single-variable
calibration approach where either SOC or AGB measurements were in-
tegrated into the calibration analysis (i.e., “SOC” calibration approach
and “AGB” calibration approach, respectively). We implemented this
approach to assess if partial calibration of the model against SOC or
AGB measurements alone can provide reliable estimates for both SOC
and AGB across different regions. We then performed a multi-variable
calibration approach where both SOC and AGB measurements were in-
tegrated simultaneously into the calibration analysis (i.e., “Both” cali-
bration approach). We implement this approach to determine if
incorporating both types of spatially and temporally differentfieldmea-
surements (Fig. 1, Table 1) into a calibration scheme can improvemodel
performance and reduce simulation uncertainty for both SOC and AGB
across regions.
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For each calibration approach, we performed multiple model runs
(i.e., 500 simulations for each iteration) using the parameter set-
samples generated through an LHS for the sensitive parameters. For
each region, we then evaluated simulation results of the spatial units
with measured data using two numerical criteria of PBIAS and RSR
(i.e., objective functions), which are among the most recommended
performance criteria for model calibration (Gupta et al., 1998 and its ci-
tations). The PBIAS, expressed as a percentage, is a measure of the devi-
ation of simulation results from theirmeasured counterparts. The RSR is
a measure of the ratio of the standard deviation of the prediction errors
(RMSE) to the standard deviation (SD) of measured values. Therefore,
both PBIAS and RSR can indicate poor model performance. The optimal
value of PBIAS is 0.0, with low-magnitude values indicating accurate
model simulation. RSR varies from the optimal value of 0 to a large pos-
itive value. The lower the RSR, the lower the RMSE and the better the
model simulation performance (Gupta et al., 1998; Abbaspour et al.,
2007; Faramarzi et al., 2017). We calculated PBIAS and RSR using
Eq. (1) and Eq. (2):

PBIAS ¼ 100�
Pn

i¼1 Qm−Qsð ÞiPn
i¼1 Qm;i

� � ð1Þ

RSR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Qm−Qsð Þi2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Qm;i−Qm

� �2
r ð2Þ

where,Q is a variable (i.e., SOC or AGB),m and s stand for measured and
simulated values, respectively and i is the ith measured or simulated
data (Abbaspour et al., 2007). We assigned equal weight to both vari-
ables in multi-variable calibration approach (Faramarzi et al., 2017).
Our regional parameterization, calibration and uncertainty schemes re-
quired a number of iterations to reach a desirable model performance
under different calibration approaches.

2.4.3. Model validation at the regional level
The best performing calibrated models under different calibration

approaches were used to perform model validation at the regional
level. We compared the remotely sensed AGB proxies for the
2000–2010 period and the simulated AGB time series obtained through
different calibration approaches (i.e., “SOC”, “AGB” and “Both” calibra-
tion approach). The simulated AGB time series were based on regional
optimized PUR and 500 model runs per approach for each spatial unit
within each grassland region (Table 1). The performance assessment
of the models for the validation period was based on comparing the
simulated AGB with the corresponding time series of remotely sensed
AGB proxies. For each model run, we conducted a Pearson's correlation
analysis by pairing the data at the identical time points and replicating
the spatial units (R v. 3.1.1). Further, we compared the aggregated
Pearson's correlation coefficients of the nine grassland regions (500 cor-
relation coefficient per region) to evaluate the performance of the three
different calibration approaches across regions (Fig. 2).

2.5. Spatial quantification and uncertainty in SOC and AGB simulation

The best performing calibrated and validated model was used to
quantify spatiotemporal variability of the SOC and AGB for the
2000–2010 period across Alberta's native grasslands (Fig. 2). First, we
employed the regional optimized PUR determined through the multi-
variable calibration approach to obtain time series of simulated SOC
and AGB (annual values for the 2000–2010 period) for 500 simulations
across all spatial units. For each spatial unit, we then obtained median
values for SOC and AGB from the associated 95PPU bands of 500 simu-
lations (i.e., output from the SUFI-2 algorithm) at a yearly time step
(2000–2010 period). We then averaged the annual median values
(i.e., M95PPU) obtained for each spatial unit to illustrate the spatial
distribution of SOC and AGB across Alberta's native grasslands. In addi-
tion, for each spatial unit, we calculated the ratio of the 95PPU thickness
(the difference between the upper and the lower limits) to theM95PPU
at a yearly time step (2000–2010 period). We then averaged the annual
ratios obtained for each spatial unit to illustrate spatial distribution of
the uncertainty prediction in SOC and AGB across Alberta's native
grasslands.

2.6. Recent climate change and its effects on SOC and AGB

We examined the change in annual precipitation andminimum and
maximum temperature between two 20-year periods of the 1970s
(1961–1980) and the 2000s (1991–2010) using historical climate data
(ClimateWNA;Wang et al., 2012).We then used area-weighted average
changes in precipitation and temperature at the township scale to illus-
trate spatial patterns of recent climatic changes across Alberta's native
grasslands.

We used the best performing calibrated and validated model to
assess the effects of recent climatic changes on SOC and AGB across
Alberta's native grasslands. We examined the change in SOC and
AGB between two 20-year periods of the 1970s (1961–1980) and
the 2000s (1991–2010). To assess the effectiveness of grazing man-
agement as a potential climate change adaptation strategy, we
assessed the change in SOC and AGB between these two periods
under baseline grazing intensity regime and a 10% lower grazing in-
tensity regime (Fig. 2). The baseline grazing intensity regime was
represented by the optimized PUR for the fraction of plant biomass
removed by grazing (flgrem parameter) under themulti-variable cal-
ibration approach (Table A2). The 10% lower grazing intensity was
proposed based on personal communications with the beef pro-
ducers in Alberta.

For the baseline grazing intensity regime,we obtained annual values
of SOC and AGB from 500 simulations (i.e., median of 95PPU bands).
These simulations were carried out based on the 500 parameter set-
samples generated from the optimized PUR under the multi-variable
calibration approach (TableA2). We then used these 500 parameter
set-samples to obtain annual values of SOC and AGB (i.e., median of
95PPU bands from500 simulations) under a 10% lower grazing intensity
regime by lowering fraction of plant biomass removed (flgrem parame-
ter) by 10% in all parameter sample-sets, while keeping all other param-
eters constant. For each spatial unit, we obtainedmedian values for SOC
and AGB from the associated 95PPU bands of 500 simulations
(i.e., output from the SUFI-2 algorithm) at a yearly time step, which
were then averaged (i.e., M95PPU) over the two periods.We then com-
pared theM95PPU values obtained for the two time periods to calculate
the change in SOC and AGB under a given grazing intensity regimes.We
used area-weighted average changes in SOC and AGB at the township
scale to illustrate impacts of recent climate change on SOC and AGB
under different grazing regimes across Alberta's native grasslands.

3. Results

3.1. Model parameter estimation

Most of the initially identified input parameters were sensitive to
both SOC and AGB. The global sensitivity analysis indicated that 56 out
of 88 parameters were sensitive to SOC and AGB (Table A1, Table A2).
These were parameters related primarily to soil water (e.g., fwloss(4))
and nutrient dynamics (e.g., riint), litter and soil organic matter decom-
position (e.g., dec1(1)), plant growth and production (e.g., ppdf(1)) as
well as two parameters controlling grazing impacts (flgrem, gret(1)).
The remaining 32 parameters were found to be much less sensitive to
SOC and AGB (Table A1).

The initially suggested values for most of the input parameters were
adjusted through different calibration approaches (Table A2). Across
different grassland regions, the initial values for 22 parameters fell
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outside their optimized PUR obtained based on single-variable calibra-
tion approaches. This pattern was observed for 31 parameters in the
multi-variable calibration approach. 14 of these parameters control
soil nutrient availability (e.g., damr(1,1), favail(1), varat11(1,1), snfxmx
(1)); nine parameters control litter and organic matter decomposition
rate (e.g., aneref(3), dec4, peftxa, teff(1)); five parameters control plant
growth and production (e.g., basetemp(1), ppdf(1), prdx(1)4_5); two
parameters control lignin content of plant materials (fligni(1,1), fligni
(1,2)); and one parameter (fwloss(1)) controls soil water content
(Table A2, Table A1, Table A2).

The optimized PUR for most of the input parameters varied among
calibration approaches (Table A2). Overall, the multi-variable calibra-
tion approach produced the narrowest PUR (on average narrowed 84%
of initial ranges, varied from 56% to 94%), followed by the single-
variable calibration approach of AGB (on average narrowed 80% of ini-
tial range, varied from 30% to 93%) and SOC (on average narrowed
76% of initial range, varied from 33% to 97%). Although the multi-
variable calibration approach reduced the overall uncertainty as com-
pared to the other two calibration approaches, the PUR varied among
grassland regions. There were ten parameters under the multi-
variable calibration approach with a wider PUR across regions as com-
pared to the other parameters. Six of these parameters control plant
growth and production (basetemp(1), ppdf(1), ppdf(2), ppdf(3), ppdf
(4), rdrj); two parameters control litter and organic matter decomposi-
tion rate (dec2(2), teff(2)); one parameter (riint) controls soil nutrient
availability; and one parameter (fwloss(4)) controls soil water content
(Table A1, Table A2).
3.2. Model performance evaluation

The initial simulation was not able to accurately represent the spa-
tiotemporal patterns of SOC and AGB measurements in different grass-
land regions (Fig. 3). Simulated SOCwas smaller and AGBwas greater in
this initial simulation compared to the SOC and AGB measurements in
all regions. Also, the initial simulation resulted in a relatively small cor-
relation between the spatiotemporal patterns of simulated AGB and the
corresponding remotely sensed AGB proxies (average correlation coef-
ficient of 0.18, ranged from 0.10 to 0.25 across regions; Fig. 4).

The regionalized grassland carbon models accounted for the vari-
ability in the SOC and AGB measurements. However, model perfor-
mance varied among calibration approaches and grassland regions
(Fig. 3, Table 2). Across different regions, the single-variable calibration
approach produced satisfactory simulation results, but only for the cal-
ibrated output variable (on average 66% and 56% of the SOC and AGB
measurements fell within the 95PPU band, respectively). Besides, this
approach resulted in a relatively greater correlation between simulated
AGB and remotely sensed AGB proxies as compared to the initial simu-
lation (Fig. 4). However, a greater correlation was found in the single-
variable calibration approach of AGB (average coefficient of 0.44, ranged
from 0.31 to 0.55 across regions) than in the SOC approach (average co-
efficient of 0.25, ranged from 0.18 to 0.33 across regions; Fig. 4).

In contrast to the single-variable approach, the multi-variable ap-
proach provided more reliable simulation results for both SOC and
AGB (Fig. 3, Table 2). It accounted for more of the spatiotemporal vari-
ability in the SOC and AGB measurements across different regions (on
average 67% of the total SOC and AGB measurements fell within the
95PPU band). In addition, themulti-variable approach (average R-factor
of 1.36) compared to the single-variable approach of SOC and AGB (av-
erage R-factor of 1.47 and 1.71, respectively) resulted in reduced model
simulation uncertainty across regions (Fig. 3, Table 2). Finally, themulti-
variable approach yielded a considerably greater correlation between
simulated AGB and remotely sensed AGB proxies (average coefficient
of 0.61, ranged from 0.51 to 0.70 across regions) as compared to the
single-variable approach. This pattern was persistent across different
regions (Fig. 4).
3.3. Spatial distribution of SOC and AGB

The simulation results obtained based on themulti-variable calibra-
tion approach showed a pronounced variation in the spatial distribution
of SOC (on average 48.6 ton/ha, ranged from 26.5 to 81.2 ton/ha) and
AGB (on average 1326 kg/ha, ranged from 1031 to 2205 kg/ha) across
different grassland regions (Fig. 5). As expected, a greater SOC (on aver-
age 80.2 ton/ha) and AGB (on average 1916 kg/ha) were estimated for
the majority of spatial units in the Black soils of the Foothills and Park-
lands. However, the majority of spatial units in the Gray soils of the bo-
realMixedwoods and the Brown soils of the prairies were characterized
with a relatively smaller SOC (on average 60.5 and 32.9 ton/ha, respec-
tively) and AGB (on average 1654 and 1148 kg/ha, respectively). The re-
sults of uncertainty analysis also showed a pronounced variation in the
spatial distribution of uncertainty in the simulation of SOC and AGB
across the regions. A smaller uncertainty in the simulation of SOC and
AGB (smaller than 20 and 15%, respectively) was obtained for the ma-
jority of spatial units in the Black soils of the Foothills and Parklands
and the Brown soils of the prairies. Whereas, the majority of spatial
units in the Gray soils of the boreal Mixedwoods were characterized
with relatively greater uncertainty in the simulation of SOC and AGB
(N20 and 15%, respectively). Nevertheless, the spatial quantification of
simulation uncertainty revealed a greater uncertainty in the simulation
of SOC (on average 18.1%, ranged from 15.1% to 20.6%) than in the sim-
ulation of AGB (on average 14.5%, ranging from 11.5% to 18.2%) across
grassland regions (Fig. 5).

3.4. Effects of recent climate change and grazing regimes on SOC and AGB

The spatial quantification of recent climatic changes between the
1970s and 2000s showed diverse patterns of changes in annual pre-
cipitation andminimum andmaximum temperature across Alberta's
grasslands (Fig. 6, Fig. 7). Overall, there was little observed change in
annual precipitation between the 1970s and the 2000s. The annual
precipitation increased slightly in the Brown soils of the prairies
and the Black soils of the Foothills (except the southern part of the
Foothills Fescue region). While, it decreased slightly in Gray soils of
the Parklands and boreal Mixedwoods (Fig. 6, Fig. 7). In contrast to
the annual precipitation, there was an overall increase in minimum
and maximum temperature. The magnitude of this increase in an-
nual temperature was greater for minimum temperature than for
maximum temperature. However, this pattern of change in annual
temperature varied across Alberta's grasslands. Specifically, the in-
crease in minimum and maximum temperature was most apparent
in the Gray soils of the Parklands and boreal Mixedwoods in central
and northern Alberta (Fig. 6, Fig. 7).

The response of SOC andAGB to the recent changes in climate varied
spatially across Alberta's grasslands (Fig. 8, Fig. 9). Under baseline graz-
ing intensity regime, there was an overall decrease in the SOC between
the 1970s and the 2000s. However, the magnitude of this decrease in
the SOC was greater in the Black soils of the Foothills and Parklands
and theGray soils of the borealMixedwoods,while it was least apparent
in the Brown soils of the prairies (Fig. 8, Fig. 9). In contrast to the SOC,
the pattern of change in AGB in response to recent climate change
was less consistent across Alberta's grasslands (Fig. 8, Fig. 9). Under
baseline grazing intensity regime, the AGB decreased between two
time periods in the Black soils of the Foothills and Parklands and the
Gray soils of the Parklands and boreal Mixedwoods located in the cen-
tral Alberta. While, it increased in the Brown soils of the prairies in the
south and the majority of spatial units in the Gray soils of the boreal
Mixedwoods located in the northern Alberta (Fig. 8, Fig. 9).

Under the proposed 10% lower grazing intensity regime, there
was an overall increase or slight decrease in the SOC between the
1970s and the 2000s. The magnitude of increase in the SOC was
greater in the Gray soils of the boreal Mixedwoods in the north,
while a greater magnitude of the decrease in the SOC was observed



Fig. 3. Comparison of measured and simulated average SOC (A) and AGB (B) in spatial units with measured SOC and AGB in different grassland regions (GR). Simulated SOC and AGB are
expressed as 95PPU bands based on the single- (SOC or AGB), and multi-variable (Both) calibration approaches.
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in the Black soils of the Foothills and Parklands in the central Alberta
(Fig. 8, Fig. 9). In contrast to the SOC, the pattern of recent change in
AGB under the proposed lower grazing intensity regime was more
consistent across Alberta's grasslands. Under the proposed 10%
Fig. 4. Correlation between time series (2000−2010) of simulated AGB and the corresponding
average regional correlation values obtained from the simulation results of the single- (SOC or
per region).
lower grazing intensity regime, there was an overall increase in the
AGB between the 1970s and the 2000s, except for the Black and
Gray soils of the Parklands in the central Alberta where the AGB de-
creased between two periods (Fig. 8, Fig. 9).
remotely sensed AGB proxies in different grassland regions. Boxplots show variation in the
AGB) and multi-variable (Both) calibration approaches (500 average values per approach



Table 2
Calibration performance of the regionalized grassland carbonmodels developed using the
single- (SOC or AGB), and multi-variable (Both) calibration approaches.

Region Calibration
variable

No.
sites

No.
measurements

Objective
function

Calibration &
uncertainty
index

PBIAS RSR P-factor R-factor

GR1 SOC 66 264 24.3 1.23 0.67 0.79
AGB 18 302 18.7 1.32 0.57 1.54
Both 84 566 11.7 1.10 0.72 1.27

GR2 SOC 29 116 15.7 1.03 0.69 1.07
AGB 10 205 21.0 1.30 0.59 1.97
Both 39 321 21.9 1.09 0.69 1.18

GR3 SOC 41 164 10.7 0.85 0.68 0.79
AGB 11 203 23.5 1.13 0.57 1.44
Both 52 367 17.7 0.93 0.70 1.14

GR4 SOC 32 128 23.7 1.16 0.63 1.52
AGB 10 181 12.9 1.03 0.56 1.35
Both 42 309 17.4 1.01 0.65 1.50

GR5 SOC 25 100 14.5 0.87 0.65 1.62
AGB 8 192 25.3 1.15 0.59 2.41
Both 33 292 12.0 1.06 0.68 1.34

GR6 SOC 26 104 28.4 0.92 0.66 1.60
AGB 9 157 11.8 1.17 0.53 1.81
Both 35 261 14.2 0.93 0.67 1.29

GR7 SOC 43 172 19.7 0.90 0.69 2.07
AGB 10 211 17.0 0.85 0.55 1.35
Both 53 383 19.9 0.93 0.67 1.78

GR8 SOC 40 160 26.1 1.15 0.61 1.67
AGB 9 156 21.4 1.35 0.56 2.17
Both 49 316 23.3 1.00 0.60 1.54

GR9 SOC 28 112 23.5 0.99 0.64 2.05
AGB 8 176 26.1 1.29 0.52 1.32
Both 36 288 18.5 1.13 0.60 1.47

All
regions

SOC 330 1320 20.7 1.01 0.66 1.47
AGB 93 1783 19.7 1.18 0.56 1.71
Both 423 3103 17.4 1.02 0.67 1.39
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4. Discussion

4.1. Model parameter estimation and performance evaluation

4.1.1. Sensitive model parameters
Overall, most of the initially identified parameters were sensitive to

both SOC and AGB. However, 32 parameters that we found to be less
sensitive to SOC andAGB (Table A1) have been reported in the literature
to be important controllers of SOC dynamics. The results of sensitivity
analysis vary depending on whether multiple (i.e., both SOC and AGB)
or single model outputs (i.e., SOC or AGB only) are considered
(Rafique et al., 2013; Faramarzi et al., 2017). Also, the results of sensitiv-
ity analysis conducted for a specific geographic area may not be directly
applicable to other areas (Gilmanov et al., 1997; Abbaspour et al., 2007;
Wang et al., 2013; Faramarzi et al., 2015; Necpálová et al., 2015; Dimassi
et al., 2018). Nevertheless, different results for sensitive and less sensi-
tive parameters could be obtained if more accurate historic climate
and land use information (i.e., grazing management) were used in the
initial model set up. Also, we are not sure if the results of our sensitivity
analysis would have been different if we had conducted a sensitivity
analysis for each grassland region, separately.

4.1.2. Performance of initial model
Our initial simulation was not able to accurately represent the spa-

tiotemporal patterns of SOC and AGB across different grassland regions.
Inaccurate estimates obtained from the initial simulation points to
shortcomings in prior knowledge and expert opinion as inputs to the
simulation of carbon-related ES in grasslands, particularly under new
ecological conditions (Smith et al., 1997a; Rafique et al., 2015; Kwon
et al., 2017; Dimassi et al., 2018). Our regionalized parameterization
and calibration scheme resulted in adjusted values for most of the sen-
sitive input parameters under different calibration approaches.
Therefore, initial parameter values suggested in the previous modeling
studiesmust be cautiously employed as theymay not necessarily repre-
sent ecological and land use characteristics of other geographic regions
(Smith et al., 1997a; Rafique et al., 2015; Dimassi et al., 2018). Algorith-
mic parameter estimation enables a deeper understanding of the behav-
ior of model parameters and functions through extracting maximum
information from measured data collected under local conditions
(Necpálová et al., 2015).

4.1.3. Model performance under single-variable calibration approach
Compared to the initial simulation, the regionalized carbon models

developed under the single-variable calibration approach of SOC and
AGB produced satisfactory simulation results across different regions,
but conditional on the type of output variable considered in calibration
and validation process. These findings suggest that partial calibration of
an ecosystem carbon model (i.e., against SOC or AGB measurements
alone) cannot provide reliable estimates for other carbon-related ES
across diverse grasslands with a wide range of variation in climate,
soil, vegetation, and land management conditions. In the algorithmic
calibration of complex ecosystem models, a large number of input pa-
rameters are allowed to vary within a wide PUR to achieve the best fit
between simulated and measured values (Abbaspour et al., 2007;
Niquil et al., 2011; Rafique et al., 2015). However, there is a risk of
over calibration with this approach where a wrong model structure
with unrealistic model parameters but with acceptable calibration per-
formance can be achieved (Faramarzi et al., 2015). Precisely, this may
happen in the partial calibration of ecosystem models, when there is a
strong correlation among parameters, so that changes in one parameter
can be compensated by changes in other parameters (Meersmans et al.,
2013; Kwon et al., 2017). Hence, the performance of such partially cali-
brated model, as indicated by the single-variable approach of SOC or
AGB in the present study, is conditional on the type of output variable
considered in calibration and validation process (Gupta et al., 1998;
Faramarzi et al., 2017). In other words, the partially calibrated model
might not necessarily result in a reliable simulation of output variables
representing other interrelated biophysical processes (Niquil et al.,
2011; Rafique et al., 2013).

Nevertheless, in the present study, calibration based on the SOC
measurements (i.e., SOC approach) produced relatively better simula-
tion results of AGB in the most productive Black soils of the Foothills
and Parklands. Whereas, calibration based on the AGB measurements
(i.e., AGB approach) resulted in relatively better simulation results of
SOC in the least productive Brown soils of the prairies (Table 1,
Table 2). This pattern suggests that in the higher productive grasslands,
the dynamics of organic carbon and its fraction in soil or plant biomass
might be regulated by belowground processes (i.e., decomposition rate
and nutrient availability). However, it might be controlled by above-
ground processes (i.e., plant growth and productivity, biomass removal)
in the lower productive grasslands (Schimel et al., 1994; Cerri et al.,
2007; Adhikari and Hartemink, 2016; Hewins et al., 2018; Wiesmeier
et al., 2019). Further field studies are needed to prove or disprove this
hypothesis. Results from such studies may lead to a more reliable and
efficient field monitoring and assessment of the carbon-related ES in
grasslands distributed over vast geographic areas.

4.1.4. Model performance under multi-variable calibration approach
In contrast to the single-variable approach, the regionalized carbon

models developed under the multi-variable calibration approach pro-
duced satisfactory simulation results and reduced simulation uncer-
tainty for both SOC and AGB across regions. Incorporating additional
variables into calibration scheme has been recommended as one of
the effective approaches to cope with over calibration issue in the algo-
rithmic calibration of complex biogeochemical ecosystem models
(Gupta et al., 1998; Abbaspour et al., 2007; Faramarzi et al., 2015). The
provision of carbon-related ES in grasslands is closely associated with
the historical balance between the rate of plant productivity and the



Fig. 5. Simulated average (2000–2010) SOC (A) and AGB (C) and their associated uncertainties (B, and D, respectively) across Alberta's native grasslands. The boundaries of native
grassland areas are thickened for better visualization (see Fig. 1 for the exact areas of grasslands).
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rate of decomposition of the organic compounds and residues stored in
the soil (Blair et al., 2014; Adhikari and Hartemink, 2016; Hungate et al.,
2017). In our multi-variable calibration approach, we targeted these
two key interrelated biophysical processes by integratingfieldmeasure-
ments data on AGB and SOC into a multi-stage calibration scheme,
where at each stage a specific process was calibrated. In addition, the
provision of carbon-related ES is highly variable in both time
(i.e., much faster rate of change in AGB than in SOC) and space
(i.e., under varying ecological conditions) over a large geographic area
(Parton et al., 1987; Schimel et al., 1994; Van den Bygaart et al., 2008;
Oelbermann and Voroney, 2011; Xiong et al., 2015; Wiesmeier et al.,
2019). The SOC and AGB measurements employed in this study were
at different spatial and temporal resolution; the SOC data were single-
time measurements collected from a greater number of grassland
sites, while the AGB datawere long-term time seriesmeasurements ob-
tained from a smaller number of sites, compared to the SOC measure-
ments. Thus, integrating both types of spatially and temporally
different field measurements into a calibration scheme improved
model performance and reduced simulation uncertainty by proper sim-
ulation of the spatiotemporal dynamics of the relevant biophysical
processes.

Our simulation results showed that on average 67% of spatial and
temporal variability in both SOC and AGB measurements were cap-
tured across regions (Table 2). This imperfection may, to some ex-
tent, demonstrate the lack of high quality measured data, and
limitation in model structure and conceptual assumptions such as
below-ground plant productivity and nutrient availability (Schimel
et al., 1994; Cerri et al., 2007; Adhikari and Hartemink, 2016;
Hewins et al., 2018; Wiesmeier et al., 2019) that we did not include
in our regionalized calibration scheme. Determining key biophysical
processes controlling the provision of carbon-related ES across geo-
graphically wide grassland areas can lead to a more robust calibra-
tion of biogeochemical ecosystem model, thus a more reliable
estimates of carbon-related ES.



Fig. 6. Spatial patterns of change in annual precipitation (left) and minimum (middle) andmaximum temperature (right) between the 1970s (1961–1980) and the 2000s (1991–2010).
Values are area-weighted average changes in precipitation and temperature at the township scale. Dark lines represent the boundary of different grassland regions.
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The multi-variable approach narrowed the initial PUR the most
(Table A2). The algorithmic parameter estimation has been applied to
DayCent ecosystem model (i.e., the daily time-step version of the
CENTURY model) at a much smaller spatial extent, but only optimized
parameter values instead of optimized PUR were reported
(e.g., Rafique et al., 2013). However, the algorithmic parameter estima-
tion with measurements from multiple ES has been employed by re-
searchers in other scientific disciplines to narrow the defined PUR the
most (Gupta et al., 1998 and its citations), thus helping to reduce the
non-uniqueness problem while reducing uncertainty prediction
(Abbaspour et al., 2007).

The optimized PUR obtained through the multi-variable calibration
approach varied amonggrassland regions. Varying ecological conditions
across the province can explain the variation in optimized PUR across
different regions. Alberta's grasslands are characterized by distinct eco-
logical regions with diverse vegetation (Fig. 1, Table 1; Downing and
Pettapiece, 2006), resulting in high spatial variability in the production
of carbon-related ES (Ogle et al., 2007; Hewins et al., 2018). Climatic
(e.g., precipitation, temperature), edaphic (e.g., soil texture, structure,
nutrient availability) and biotic factors (e.g., plant and microbial diver-
sity, grazing) predominantly control the provision of carbon-related
ES in grasslands (Parton et al., 1987; Schimel et al., 1994; Álvaro-
Fuentes et al., 2012; Abdalla et al., 2018; Wiesmeier et al., 2019). In
the CENTURY model, plant growth and production and soil carbon dy-
namics are closely linked through the nutrient and water cycles
(Parton et al., 1988). Besides, the lignin content of plant materials has
Fig. 7. Change in annual precipitation (A) andminimum andmaximum temperature (B) betwe
climatic changes at the regional scale.
significant control over litter and organic matter decomposition rate
(Murphy et al., 2002). Consequently, the processes involved in the pro-
vision of carbon-related ES can be substantially altered by ecological
conditions of the grassland systems (Hou et al., 2013; Xiong et al.,
2015; Hewins et al., 2018). Spatial variation in our optimized PUR repre-
sented such ecological variability, resulting in amore reliable and repre-
sentativemodel than simplifiedmodels in earlier studies. The CENTURY
model has been previously used to assess the dynamics of SOC across a
series of grassland sites with varying climatic conditions, where the in-
teraction of sensitive processes and their spatial variability were not
fully considered (e.g., Schimel et al., 1994; Smith et al., 1997a; Lugato
et al., 2014). To the best of our knowledge, this is the first time this
model has been calibrated by accounting for interaction among model
parameters to achieve optimized PUR for a range of distinct grassland
systems over a large geographic area.

4.2. Uncertainty in SOC and AGB simulation

As expected, our simulation results revealed a pronounced variation
in the spatial distribution of SOC and AGB across different regions. How-
ever, the level of uncertainty in the simulation of SOC and AGB also var-
ied across regions. The variation in simulation uncertainty across
grassland regions can be explained by quantity and quality of fieldmea-
surements used in our regionalized calibration scheme (Abbaspour
et al., 2007; Rafique et al., 2013; Faramarzi et al., 2015; Sándor et al.,
2018). The spatial heterogeneity represented by SOC and AGB
en the 1970s (1961–1980) and the 2000s (1991–2010). Box plots show variation in recent



Fig. 8. Spatial patterns of the simulated change in SOC (top: A, B) and AGB (bottom: C,
D) between the 1970s (1961–1980) and 2000s (1991–2010) under baseline grazing
intensity (left: A, C) and a proposed 10% lower grazing intensity regime (right: B, D).
Values are area-weighted average changes of 500 simulations at the township scale.
Dark lines represent the boundary of different grassland regions.

Fig. 9. Uncertainty in the response of SOC (A) and AGB (B) to the recent climate change
under different grazing intensity regimes. Boxes show variation in the area-weighted
average changes of 500 simulations at regional scale.
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measurements differed among the regions, which significantly affected
our model performance. The poorest model performance that obtained
in the Gray soils of the boreal Mixedwoods in all regions (on average
61% of the total measurements fell within the 95PPU band) was related
to the areas where the smallest proportion of spatial heterogeneity was
represented by SOC and AGB measurements (Table 1, Table 2). As a re-
sult, these regions were characterized by relatively greater uncertainty
in the simulation of SOC and AGB (Table 2, Fig. 5). In contrast, in the
Brown soils of the prairies and in the Black soils of the Foothills and
Parklands, where a greater proportion of spatial heterogeneity was rep-
resented by measured data (Table 1, Table 2), a relatively better model
performance (on average 70 and 67% of the total measurements fell
within the 95PPU band, respectively) and a smaller uncertainty in the
simulation of SOC and AGBwas obtained (Table 2, Fig. 5). Thesefindings
collectively demonstrate the importance of field measurements for SOC
and AGB simulations in regional scale modeling. This calls for a system-
atic monitoring strategy, e.g., based on appropriate land stratification
(i.e., stratified spatial heterogeneity) and sample size allocation to strata
(i.e., efficient sampling design), which is crucial for reliable estimation
of model parameters and supply of carbon-related ES across a wide
range of grassland systems (Hou et al., 2013; Campbell and Paustian,
2015; de Gruijter et al., 2016).
Our spatial quantification of the simulation uncertainty revealed a
greater uncertainty in the simulation of SOC than in the simulation of
AGB across various regions. It is noteworthy that we initially expected
a smaller uncertainty in the simulation of SOC than in the simulation
of AGBdue to a relatively higher spatial resolution and a greater number
of SOCmeasurements within each region. However, the possible trade-
off between the spatial and temporal resolution of two measurement
types and their effects in calibration and simulation procedure resulted
in a smaller uncertainty in the simulation of AGB than that of SOC. In our
multi-variable calibration approach, the lower spatial resolution of AGB
measurement may be compensated by the higher spatial resolution of
SOC measurements. However, the higher temporal resolution of AGB
measurements may not offset the lack of temporal resolution in SOC
measurements to the same extent. Moreover, ambiguity created by ex-
trapolating SOCmeasurements to the first 20 cm depth of grassland soil
may contribute to the resulted error in the simulation of SOC. Therefore,
both spatial and temporal resolution at which the field measurements
are collected play a pivotal role in reliable simulation of carbon-
related ES across a wide geographic area with heterogeneous ecological
conditions (Cleveland et al., 1999; Ogle et al., 2010; Xiong et al., 2015;
Sándor et al., 2018; Wiesmeier et al., 2019). In the past few decades,
the remotely sensed data has been widely integrated with the sparsely
ground-based measurements to obtain high spatiotemporal informa-
tion on ecosystem functioning and services (Cord et al., 2017). In this
study, we integrated remotely sensed AGB proxies for the 2000 to
2010 period in the model validation. Further research studies are
needed for the full integration and assessment of remotely sensed infor-
mation on soil properties and vegetation growth and quality (i.e., lignin
content of plant materials) to improve the spatially-explicit simulation
of carbon-related ES across a wide range of grassland systems.

4.3. Response of SOC and AGB to recent climate change and grazing regimes

Our simulation results under baseline condition (i.e., using the opti-
mized PUR for sensitive parameters) revealed an overall negative effect
of recent climatic changes on the SOC, while a less consistent effect on
the AGB across Alberta's native grasslands. As expected, the magnitude
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of the decrease in the SOC was greater in the Gray soils of the boreal
Mixedwoods in the central and northern Alberta, where recent climatic
changes resulted in a slight dryer but a considerably warmer climate. In
contrast to the SOC, our simulation results of the AGB in this area
showed a wide range of uncertainty in effect of recent climate change,
ranging from a negative effect to a considerably positive impact on the
AGB. The poor regional model performance obtained in the Gray soils
of the boreal Mixedwoods might explain this unexpected pattern of ef-
fect on the AGB. However, our simulation results also revealed an unex-
pected pattern of effect in high productive Black soils of the Foothills
and Parklands in central Alberta, where a satisfactory model perfor-
mance was obtained. Our assessment of recent climate change in this
latter area showed only a slight increase in both annual precipitation
and temperature, but our simulation results overall showed a noticeable
negative impact of recent climatic changes on both SOC and AGB. These
findings collectively suggest that the responses of carbon-related ES to
stressors such as climate change may vary in direction and magnitude
depending on the ecological conditions of grasslands (Lopez-Marsico
et al., 2015; Abdalla et al., 2018). The observed heterogeneity in the
magnitude and direction of the climate change impacts on the SOC
and AGB indicates that the likely climate change risks and opportunities
for carbon-related ES differ spatially across Alberta's grasslands. Previ-
ous studies have also showed a wide-ranging effects of climate change
on different carbon-related ES (Li et al., 2018) mainly related to the di-
rection and magnitude of change in precipitation and temperature pat-
terns, and environmental conditions of sites studied (e.g., Parton et al.,
1995; Smith et al., 2009; Álvaro-Fuentes et al., 2012; Abdalla et al.,
2018)

Land management choices such as changes in grazing intensity re-
gime have been suggested as the primary means of adapting to climate
change-driven alterations in carbon-related ES (Havstad et al., 2007;
Daily et al., 2009; Li et al., 2018; Jellinek et al., 2019). A comprehensive
assessment of the impacts of recent climate change on the provision
of carbon-related ES under alternative grazing practices can help better
understand the effectiveness of such potential climate change adapta-
tion strategies. To examine if grazingmanagement can serve as a poten-
tial adaptation strategy to maintain carbon-related ES in Alberta's
grasslands, we assessed the response of SOC and AGB to recent climatic
changes under baseline grazing intensity regime (i.e., using the PUR ob-
tained for the sensitive grazing parameters) and a proposed 10% lower
grazing intensity regime. In contrast to the baseline grazing intensity re-
gime, our simulation results under the 10% lower grazing regime re-
vealed an overall positive or slightly negative impact of recent climate
change on the SOC and an overall positive impact on the AGB across
Alberta's grasslands. However, the magnitude of the positive impact
on both SOC and AGB was greater in the Gray soils of the boreal
Mixedwoods in the north and in less productive Brown Soils of the prai-
ries in the south, where different patterns of recent climatic changes
were observed. Also, in the high productive Black soils of the Foothills
and Parklands, the 10% lower grazing intensity regime compared to
the baseline grazing intensity regime decreased the negative impacts
of recent climate change on both SOC and AGB, but only in the area
where a slight change in annual precipitation and temperature was ob-
served. These findings collectively demonstrate that grazing manage-
ment has the potential to be a beneficial adaptation strategy to
properly manage the impacts of climate change on the provision of
carbon-related ES. However, the spatial variability in the magnitude
and effectiveness of the proposed 10% lower grazing intensity as a po-
tential adaptation strategy to maintain the SOC and AGB indicates that
best grazing practices to maintain the provision of carbon-related ES
under a changing climate will be region-specific. Inconsistent effect of
grazing intensity management on the SOC and AGB has been reported
from the grassland systems characterized by different grazing history
and ecological and environmental conditions (e.g., Abdalla et al., 2018).

The biogeochemical ecosystem models have been applied in a few
studies to assess the impacts of grazing management on carbon-
related ES across wide geographic areas (e.g., Wang et al., 2008; Feng
and Zhao, 2011; Chang et al., 2015; Lopez-Marsico et al., 2015). How-
ever, the uncertainty related to the spatial variation in grazing intensity
was rarely considered. The CENTURY model deals with the impacts of
grazing on the system through herbage removal and the return of nutri-
ents by animals, both altering the C: N ratio in the soil and plant mate-
rials (Parton et al., 1988). Calibration results of the multi-variable
approach showed a wide PUR for the fraction of shoots removed by
grazing (flgrem parameter) across regions (30–69%), representing vari-
ation in grazing intensity by land tenure and other environmental and
management factors across the landscape (Van den Bygaart et al.,
2008; Blair et al., 2014; Wang et al., 2014; Chang et al., 2015). It is usu-
ally challenging to measure parameters describing grazing impacts di-
rectly and such field data are generally lacking for large-scale
modeling (Feng and Zhao, 2011). Therefore, the algorithmic approach
used in the present study to quantify spatial uncertainty in grazing in-
tensity can be employed as a practical approach to dealwith uncertainty
related to lack of grazing data in the spatially explicit assessment of
carbon-related ES and their associated uncertainty over a large geo-
graphic area.

The proposed 10% lower grazing intensity regime represents one ex-
ample of how our regionalized parameterization and calibration
scheme can be employed to increase the level of confidence in using
the simulation results to inform grazing management decisions in
grassland systems distributed over vast geographic areas. Lowering
grazing intensity by decreasing the cattle stocking rate may reduce a
rancher's income (i.e., via the sale of beef cattle). Therefore, determining
how a rancher's total income would change in response to altering cat-
tle stocking rate help understandbetter if implementing a lower grazing
intensity regime is an appropriate adaptation to maintain carbon-
related ES in Alberta's grasslands under a changing climate (Havstad
et al., 2007; Jack et al., 2008; Li et al., 2018; Jellinek et al., 2019).

5. Conclusion

Through a comprehensive parameterization and calibration of the
ecosystem model CENTURY, we found that simulations based on prior
knowledge and expert opinion alone, or based on partial calibration of
an ecosystem carbon model may not lead to reliable estimates of
carbon-related ES across a diverse range of grassland systems. Instead,
robust simulation results are possible using a regionalized parameteri-
zation and calibration scheme based on a multi-variable calibration ap-
proach in which data and information representing key biophysical
processes are integrated simultaneously into calibration analysis. There-
fore, it is pivotal to obtain spatial and temporal field measurements
through appropriate and efficient sampling design. High spatial and
temporal resolution data produced through the integration of sparse
ground-based measurements with remotely sensed information on
key ecosystem functions and services could lead us to improved
model structure and a more reliable estimation of carbon-related ES
across a diverse range of ecological conditions.

Our assessment of the response of SOC and AGB to recent climatic
changes showed varied patterns of response across grassland regions,
suggesting needs for a range of strategies for adaptation to the likely
risks associatedwith climate change acrossAlberta's grasslands. In addi-
tion, our assessment of the response of SOC and AGB to recent climatic
changes under a proposed 10% lower grazing intensity regime revealed
that the effectiveness of grazing intensity management as a potential
adaptation strategy to maintain and properly manage carbon-related
ES will be region-specific.

This study provides a strong foundation for assessing the current sta-
tus of SOC and AGB and associated uncertainties in grassland systems
across western Canada and other geographically broad areas. The
modeling framework developed in this study provides the basis for fur-
ther assessment of the potential effects of future climate and land use
change in identifying alternative adaptive management scenarios that
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potentially ensure long-term provision of carbon-related ES in grass-
land systems. Other applicable and relevant grazing scenarios, including
those that vary grazing season duration or region of application of dif-
ferent grazing intensity regimes, need to be considered for further
assessments.
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Table A1

The CENTURY input parameters considered for sensitivity analysis (underlined: most sensitive; not underlined: less sensitive) with their initial values (used in initial simulation) and pa-
rameter uncertainty ranges (PUR) defined for Alberta's grasslands.
Parameter
 Type
 Definition
 Unit
 Initial
value
Defined
PUR
Min
 Max
eref(1)
 Fixed
 Ratio of rain or potential evapotranspiration below which there is no negative impact of soil anaerobic
conditions on decomposition
ratio
 1.5
 0.5
 2
eref(2)
 Fixed
 Ratio of rain or potential evapotranspiration above which there is maximum negative impact of soil anaerobic
conditions on decomposition
ratio
 3
 2
 4
eref(3)
 Fixed
 Minimum value of the impact of soil anaerobic conditions on decomposition.
 unitless
 0.3
 0.1
 0.8

amr(1,1)
 Fixed
 Fraction of surface N absorbed by residue
 fraction
 0.03
 0.001
 0.2

amr(1,2)
 Fixed
 Fraction of surface P absorbed by residue
 fraction
 0.03
 0.001
 0.2

amr(2,1)
 Fixed
 Fraction of soil N absorbed by residue
 fraction
 0.02
 0.001
 0.2

amrmn(1)
 Fixed
 Minimum C/N ratio allowed in residue after direct absorption of N
 ratio
 15
 5
 20

ec1(1)
 Fixed
 Maximum surface structural decomposition rate, the fraction of the pool that turns over each year
 g C month−1
 3.9
 1
 7
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able A1 (continued)
Parameter
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p
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rc
ri
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va

va

va

va

b

b

b

b

cf
cf
cf
cf
cr
cr
fa
fl
fl
p

p

Type
 Definition
 Unit
 Initial
value
Defined
PUR
Min
 Max
ec1(2)
 Fixed
 Maximum soil structural decomposition rate, the fraction of the pool that turns over each year
 g C month−1
 4.9
 2
 8

ec2(1)
 Fixed
 Maximum surface metabolic decomposition rate, the fraction of the pool that turns over each year
 g C month−1
 14.8
 10
 20

ec2(2)
 Fixed
 Maximum soil metabolic decomposition rate, the fraction of the pool that turns over each year
 g C month−1
 18.5
 13.5
 23.5

ec3(1)
 Fixed
 Maximum decomposition rate of surface organic matter with active turnover, the fraction of the pool that turns

over each year

g C month−1
 6
 4
 10
ec3(2)
 Fixed
 Maximum decomposition rate of soil organic matter with active turnover, the fraction of the pool that turns
over each year
g C month−1
 7.3
 4.3
 10.3
ec4
 Fixed
 Maximum decomposition rate of soil organic matter with slow turnover, the fraction of the pool that turns over
each year
g C month−1
 0.0045
 0.001
 0.03
ec5(1)
 Fixed
 Maximum decomposition rate of surface organic matter with intermediate turnover which is the fraction of the
pool that turns over each year
g C month−1
 0.2
 0.05
 0.3
ec5(2)
 Fixed
 Maximum decomposition rate of soil organic matter with intermediate turnover rate
 g C month−1
 0.2
 0.05
 0.3

eck5
 Fixed
 Available soil water content at which shoot and root death rates are half maximum
 cm
 5
 3
 7

itst
 Fixed
 Effect of litter on soil temperature relative to live and standing dead biomass
 unitless
 0.4
 0.25
 0.55

vail(1)
 Fixed
 Fraction of N available per month to plants
 fraction
 0.9
 0.1
 0.95

vail(4)
 Fixed
 Minimum fraction of P available per month to plants
 fraction
 0.2
 0.1
 0.4

vail(5)
 Fixed
 Maximum fraction of P available per month to plants
 fraction
 0.4
 0.3
 0.8

vail(6)
 Fixed
 Mineral N in surface layer corresponding to maximum fraction of P available
 g N m−2
 2
 0.5
 5

each(1)
 Fixed
 Intercept value used to compute the fraction of mineral N which will leach to the next layer when there is

saturated water flow The flow depends on the sand content

fraction
 0.2
 0.1
 0.8
each(2)
 Fixed
 Slope value to compute the fraction of mineral N which will leach to the next layer when there is a saturated
water flow
fraction
 0.7
 0.1
 0.8
loss(1)
 Fixed
 Scaling factor for interception and evaporation of precipitation by live and standing dead biomass
 unitless
 0.8
 0.2
 1.4

loss(2)
 Fixed
 Scaling factor for bare soil evaporation of precipitation (H2O loss)
 unitless
 0.8
 0.2
 1.4

loss(3)
 Fixed
 Scaling factor for transpiration water loss (H2O loss)
 unitless
 0.65
 0.2
 1.2

loss(4)
 Fixed
 Scaling factor for potential evapotranspiration
 unitless
 0.8
 0.2
 1.2
mlech(1)
 Fixed
 Intercept for the effect of sand on leaching of organic compounds
 unitless
 0.03
 0.01
 0.1

mlech(2)
 Fixed
 Slope for the effect of sand on leaching of organic compounds
 unitless
 0.12
 0.03
 0.12

abres
 Fixed
 Amount of residue which will give maximum direct absorption of N
 g C m −2
 100
 70
 130

cemic
(1,1)
Fixed
 Maximum C/N ratio for surface microbial pool
 ratio
 20
 15
 25
cemic
(2,1)
Fixed
 Minimum C/N ratio for surface microbial pool
 ratio
 10
 5
 15
eftxa
 Fixed
 Intercept parameter for regression equation to compute the effect of soil texture on the microbe decomposition
rate
unitless
 0.25
 0.1
 1
eftxb
 Fixed
 Slope parameter for the regression equation to compute the effect of soil texture on the microbe decomposition
rate; the slope is multiplied by the sand content fraction
unitless
 0.75
 0.2
 0.9
estr(1)
 Fixed
 C/N ratio for structural material
 ratio
 200
 50
 350

estr(2)
 Fixed
 C/P ratio for structural material
 ratio
 500
 300
 700

int
 Fixed
 Root impact intercept used for calculating the impact of root biomass on nutrient availability
 unitless
 0.8
 0.6
 0.9

ff(1)
 Fixed
 “x” location of inflection point, for determining the temperature component of decomposition factor (DEFAC)
 unitless
 15.4
 5
 20

ff(2)
 Fixed
 “y” location of inflection point, for determining the temperature component of the DEFAC
 unitless
 11.75
 5
 15

ff(3)
 Fixed
 Step size (difference between the maximum point to the minimum point), for determining the temperature

component of the DEFAC

unitless
 29.7
 20
 40
ff(4)
 Fixed
 Slope of line at inflection point, for determining the temperature component of the DEFAC
 unitless
 0.031
 0.01
 0.07

rat11
(1,1)
Fixed
 Maximum C/N ratio for material entering surface som1
 ratio
 14
 8
 30
rat11
(2,1)
Fixed
 Minimum C/N ratio for material entering surface som1
 ratio
 3
 1
 7
rat12
(1,1)
Fixed
 Maximum C/N ratio for material entering soil som1
 ratio
 14
 10
 20
rat12
(2,1)
Fixed
 Minimum C/N ratio for material entering soil som1
 ratio
 3
 1
 9
asetemp
(1)
Crop
 Base temperature for plant growth
 °C
 7
 3
 10
asetemp
(2)
Crop
 Ceiling on the maximum temperature used to accumulate growing degree days
 °C
 30
 25
 40
iok5
 Crop
 Level of aboveground standing dead at which production is reduced to half maximum due to physical
obstruction by dead material
g C m-2
 60
 20
 100
iomax
 Crop
 Biomass level above which the minimum and maximum C/N or P ratios of new shoot increments equal pramn
(*,2) and pramx(*,2) respectively
g biomass
m-2
400
 100
 700
rtcn(1)
 Crop
 Maximum fraction of C allocated to roots under maximum nutrient stress
 fraction
 0.6
 0.3
 1

rtcn(2)
 Crop
 Minimum fraction of C allocated to roots with no nutrient stress
 fraction
 0.3
 0.1
 0.6

rtcw(1)
 Crop
 Maximum fraction of C allocated to roots under maximum water stress
 fraction
 0.6
 0.3
 1

rtcw(2)
 Crop
 Minimum fraction of C allocated to roots with no water stress
 fraction
 0.3
 0.1
 0.6

prtf(1)
 Crop
 Fraction of N retranslocated from grass leaves at death
 fraction
 0.3
 0.05
 0.75

prtf(2)
 Crop
 Fraction of P retranslocated from grass leaves at death
 fraction
 0.01
 0.005
 0.15

llrt
 Crop
 Fall rate (fraction of standing dead which falls each month)
 ratio
 0.15
 0.05
 0.25

igni(1,1)
 Crop
 Intercept value used in equation to predict lignin content based on annual rainfall for aboveground material
 unitless
 0.02
 0.01
 0.2

igni(1,2)
 Crop
 Intercept for equation to predict lignin content fraction based on annual rainfall for belowground material
 unitless
 0.2
 0.01
 0.2

pdf(1)
 Crop
 Optimum temperature for parameterization of a Poisson Density Function curve to simulate temperature effect

on plant growth

°C
 18
 15
 25
pdf(2)
 Crop
 Maximum temperature for parameterization of a Poisson Density Function curve to simulate temperature effect
 °C
 35
 30
 40
(continued on next page)
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able A1 (continued)
Parameter
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rd

sn
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fe
fl
g
g
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d
d
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fa
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fl
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p
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Type
 Definition
 Unit
 Initial
value
Defined
PUR
Min
 Max
on plant growth

pdf(3)
 Crop
 Left curve shape for parameterization of a Poisson Density Function curve to simulate temperature effect on

growth

unitless
 0.9
 0.3
 1.3
pdf(4)
 Crop
 Right curve shape for parameterization of a Poisson Density Function curve to simulate temperature effect on
growth
unitless
 4.5
 0.5
 6.5
ramn(1,1)
 Crop
 Minimum C/N ratio with zero biomass
 ratio
 20
 10
 35

ramn(1,2)
 Crop
 Minimum C/N ratio with biomass greater than or equal to BIOMAX
 ratio
 30
 20
 60

ramn(2,1)
 Crop
 Minimum C/P ratio with zero biomass
 ratio
 390
 200
 500

ramn(2,2)
 Crop
 Minimum C/P ratio with biomass greater than or equal to BIOMAX
 ratio
 390
 300
 600

ramx(1,1)
 Crop
 Maximum C/N ratio with zero biomass
 ratio
 30
 20
 80

ramx(1,2)
 Crop
 Maximum C/N ratio with biomass greater than or equal to BIOMAX
 ratio
 40
 30
 120

ramx(2,1)
 Crop
 Maximum C/P ratio with zero biomass
 ratio
 440
 350
 700

ramx(2,2)
 Crop
 Maximum C/P ratio with biomass greater than or equal to BIOMAX
 ratio
 440
 350
 750

rbmn(1,1)
 Crop
 Intercept parameters for computing minimum C/N ratio for belowground matter as a linear function of annual

precipitation

unitless
 40
 10
 60
rbmn(2,1)
 Crop
 Intercept parameters for computing minimum C/P ratio for belowground matter as a linear function of annual
precipitation
unitless
 390
 190
 590
rbmx(1,1)
 Crop
 Intercept parameters for computing maximum C/N ratio for belowground matter as a linear function of annual
precipitation
unitless
 50
 20
 80
rbmx(2,1)
 Crop
 Intercept parameters for computing maximum C/P ratio for belowground matter as a linear function of annual
precipitation
unitless
 420
 220
 620
rdx(1)4_5
 Crop
 Potential aboveground monthly production as a function of solar radiation
 g biomass
m-2 month-1
0.35
 0.1
 0.6
rj
 Crop
 Maximum juvenile fine root death rate at very dry soil conditions (fraction/month)
 ratio
 0.02
 0.01
 0.1

rm
 Crop
 Maximum mature fine root death rate at very dry soil conditions (fraction/month)
 ratio
 0.02
 0.01
 0.15

srfc
 Crop
 The fraction of the fine roots that are transferred into the surface litter layer upon root death while the

remainder of the roots will go to the soil litter layer

fraction
 0.02
 0.01
 0.15
fxmx(1)
 Crop
 Symbiotic N fixation maximum for grass
 g N fixed/g C
 0.005
 0.001
 0.1

grem
 Grazing
 Fraction of standing dead removed by a grazing event
 fraction
 0.065
 0.01
 0.12

clig
 Grazing
 Lignin content of feces
 fraction
 0.25
 0.15
 0.4

grem
 Grazing
 Fraction of live shoots removed by a grazing event
 fraction
 0.5
 0.15
 0.75

fcret
 Grazing
 Fraction of consumed C which is excreted in feces and urine
 fraction
 0.3
 0.1
 0.5

ret(1)
 Grazing
 Fraction of consumed N which is excreted in feces and urine
 fraction
 0.8
 0.6
 0.95

ret(2)
 Grazing
 Fraction of consumed P which is excreted in feces and urine
 fraction
 0.95
 0.7
 0.95

pnfa(1)
 Site
 Intercept value for determining the effect of annual precipitation on atmospheric N fixation
 g N m−2

year−1

0.21
 0.02
 0.5
pnfs(1)
 Site
 Intercept value for determining the effect of annual precipitation on non-symbiotic soil N fixation
 g N m−2

year−1

30
 15
 45
Table A2

Themost sensitive input parameters used in calibration and uncertainty analysis. For each parameter, initial value, defined PUR for Alberta's native grasslands, optimized PUR (aggregated
across nine grassland regions) and the percentage of defined PUR covered by the optimized PUR obtained based on the single- (SOC or AGB) and multi-variable (Both) calibration ap-
proaches are presented. The level of sensitivity is indicated based on the p-value obtained for each parameter (“**”: 0.001 b p-valueb0.01; “*”: 0.01 b p-valuesb0.05).
Parameter
 Initial value
 Defined PUR
 Optimized PUR across nine regions
 % of defined PUR across regions
SOC
 AGB
 Both
 SOC
 AGB
 Both
eref(3)*
 0.3
 0.1–0.8
 0.36–0.61
 0.33–0.51
 0.38–0.48
 36
 26
 14

amr(1,1)*
 0.03
 0.001–0.2
 0.07–0.12
 0.05–0.08
 0.06–0.8
 25
 15
 10

amrmn(1) **
 15
 5–20
 10.1–13.7
 11.4–14.6
 11.7–13.8
 24
 21
 14

ec1(1) **
 3.9
 1–7
 3.7–5.5
 3.7–5.1
 3.9–4.9
 30
 23
 17

ec1(2) **
 4.9
 2–8
 4.8–6.3
 5.0–6.0
 4.8–5.8
 25
 17
 17

ec2(1) **
 14.8
 10–20
 14.0–16.8
 14.2–16.1
 14.2–15.7
 28
 19
 15

ec2(2) **
 18.5
 13.5–23.5
 17.3–21.0
 18.1–20.6
 17.8–19.8
 37
 25
 20

ec3(1) **
 6
 4–10
 6.4–7.5
 5.6–7.0
 6.4–7.2
 18
 23
 13

ec3(2) **
 7.3
 4.3–10.3
 6.7–7.7
 7.2–8.3
 6.9–7.7
 17
 18
 13

ec4**
 0.0045
 0.001–0.03
 0.006–0.01
 0.01–0.02
 0.008–0.013
 14
 34
 17

ec5(1) **
 0.2
 0.05–0.3
 0.14–0.23
 0.15–0.21
 0.17–0.21
 36
 24
 16

ec5(2) **
 0.2
 0.05–0.3
 0.14–0.20
 0.16–0.21
 0.16–0.19
 24
 20
 12

eck5**
 5
 3–7
 5.0–5.9
 4.1–5.1
 4.9–5.6
 23
 25
 18

vail(1)*
 0.9
 0.1–0.95
 0.43–0.64
 0.61–0.77
 0.51–0.64
 25
 19
 15

vail(4)*
 0.2
 0.1–0.4
 0.21–0.27
 0.23–0.26
 0.23–0.26
 20
 10
 10

each(1)*
 0.2
 0.1–0.8
 0.13–0.15
 0.16–0.21
 0.18–0.23
 3
 7
 7

each(2)*
 0.7
 0.1–0.8
 0.51–0.60
 0.43–0.49
 0.38–0.45
 13
 9
 10

loss(1)*
 0.8
 0.2–1.4
 0.50–0.87
 0.61–0.86
 0.57–0.77
 31
 21
 17

loss(2)*
 0.8
 0.2–1.4
 0.63–0.93
 0.67–0.90
 0.69–0.89
 25
 19
 17

loss(4) *
 0.8
 0.2–1.2
 0.76–0.96
 0.77–0.97
 0.76–0.96
 20
 20
 20
cemic(1,1) *
 20
 15–25
 18.7–22.6
 18.3–21.6
 18.7–20.6
 39
 33
 19

cemic(2,1) *
 10
 5–15
 8.2–11.7
 9.7–12.5
 9.2–10.9
 35
 28
 17

eftxa**
 0.25
 0.1–1
 0.42–0.60
 0.5–0.6
 0.48–0.61
 20
 11
 14

eftxb**
 0.75
 0.2–0.9
 0.45–0.67
 0.43–0.54
 0.45–0.58
 31
 16
 19

estr(1) *
 200
 50–350
 165.6–196
 173.7–211
 170.6–200.4
 10
 12
 10
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able A2 (continued)
Parameter
ri
te
te
te
te
va
va
va
va
b
cf
cf
fl
fl
p
p
p
p
p
p
p
p
p
p
p
rd
sn
fl
gr
ep
Initial value
 Defined PUR
 Optimized PUR across nine regions
 % of defined PUR across regions
SOC
 AGB
 Both
 SOC
 AGB
 Both
int*
 0.8
 0.6–0.9
 0.68–0.88
 0.71–0.92
 0.79–0.85
 67
 70
 20

ff(1) **
 15.4
 5–20
 13.6–16.4
 9.9–12.8
 10.6–13.4
 19
 19
 19

ff(2) **
 11.75
 5–15
 8.7–11.4
 9.5–11.1
 8.8–10.8
 27
 16
 20

ff(3) **
 29.7
 20–40
 29.3–35.3
 28.5–33.0
 28.9–32.3
 30
 23
 17

ff(4) **
 0.031
 0.01–0.07
 0.036–0.05
 0.043–0.05
 0.039–0.050
 23
 12
 18

rat11(1,1) *
 14
 8–30
 16.1–20.3
 17.3–20.8
 16.9–20.1
 19
 16
 15

rat11(2,1) *
 3
 1–7
 3.6–5.3
 3.8–4.2
 3.6–4.6
 28
 7
 17

rat12(1,1) *
 14
 10–20
 13.9–16.4
 14.1–15.9
 14.3–16.0
 25
 18
 17

rat12(2,1) *
 3
 1–9
 3.0–4.9
 3.9–4.9
 3.5–4.9
 24
 13
 18

asetemp(1) **
 7
 3–10
 5.2–7.4
 4.8–7.1
 4.9–6.7
 31
 33
 26

rtcn(1) *
 0.6
 0.3–1
 0.59–0.75
 0.51–0.66
 0.64–0.71
 23
 21
 10

rtcw(1) *
 0.6
 0.3–1
 0.55–0.70
 0.59–0.69
 0.61–0.71
 21
 14
 14

igni(1,1) **
 0.02
 0.01–0.2
 0.05–0.08
 0.062–0.09
 0.061–0.075
 16
 15
 7

igni(1,2) **
 0.2
 0.01–0.2
 0.131–0.19
 0.071–0.10
 0.081–0.101
 31
 15
 11

pdf(1) **
 18
 15–25
 18.7–20.9
 18.5–20.6
 18.4–20.7
 22
 21
 23

pdf(2) **
 35
 30–40
 32.8–36.3
 33.3–35.7
 32.9–35.4
 35
 24
 25

pdf(3) **
 0.9
 0.3–1.3
 0.70–1.00
 0.71–0.90
 0.72–0.93
 30
 19
 21

pdf(4) **
 4.5
 0.5–6.5
 3.5–4.5
 3.4–4.6
 3.6–4.5
 17
 22
 20

ramn(1,1) *
 20
 10–35
 20.1–25.9
 19.8–24.6
 23.1–26.1
 23
 19
 12

ramn(1,2) *
 30
 20–60
 35.1–40.0
 32.5–40.8
 35.0–37.8
 12
 21
 7

ramx(1,1) *
 30
 20–80
 33.6–44.9
 38.7–55.3
 38.6–45.9
 19
 28
 12

ramx(1,2) *
 40
 30–120
 63.1–73.7
 63.7–86.3
 62.9–76.7
 12
 25
 15

rbmn(1,1) *
 40
 10–60
 39.3–45.3
 35.0–40.1
 38.3–41.3
 12
 10
 06

rbmx(1,1) **
 50
 20–80
 39.4–53.7
 43.7–53.8
 38.9–50.7
 24
 17
 20

rdx(1)4_5**
 0.35
 0.1–0.6
 0.37–0.43
 0.36–0.42
 0.39–0.43
 12
 12
 08

rj*
 0.02
 0.01–0.1
 0.051–0.07
 0.046–0.05
 0.048–0.066
 21
 21
 20

fxmx(1) **
 0.005
 0.001–0.1
 0.06–0.08
 0.050–0.07
 0.058–0.071
 20
 20
 13

grem**
 0.5
 0.15–0.75
 0.30–0.64
 0.37–0.59
 0.48–0.69
 57
 37
 35

et(1) *
 0.8
 0.6–0.95
 0.75–0.82
 0.74–0.84
 0.79–0.84
 20
 29
 14

nfa(1) **
 0.21
 0.02–0.5
 0.18–0.27
 0.20–0.25
 0.20–0.26
 19
 10
 13

nfs(1) **
 30
 15–45
 28.2–30.7
 28.0–31.0
 27.9–30.7
 8
 10
 9
ep
References

Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J.,
Srinivasan, R., 2007. Modeling hydrology and water quality in the pre-Alpine/
Alpine Thur watershed using SWAT. J. Hydrol. 333, 413–430.

Abdalla, M., Hastings, A., Chadwick, D.R., Jones, D.L., Evans, C.D., Jones, M.B., Rees, R.M.,
Smith, P., 2018. Critical review of the impacts of grazing intensity on soil organic car-
bon storage and other soil quality indicators in extensively managed grasslands.
Agric. Ecosyst. Environ. 253, 62–81.

ABMI (Alberta Biodiversity Monitoring Institute), 2012. ABMI Wall-to-Wall Land Cover
Map Circa 2010, Version 1.0. Alberta Biodiversity Monitoring Institute, Alberta,
Canada https://abmi.ca/home/data-analytics/da-top/da-product-overview/GIS-
Land-Surface/Land-Cover.html.

ABMI (Alberta Biodiversity Monitoring Institute), 2016a. Terrestrial Field Data Collection
Protocols (Abridged Version; 2014-03-21). Alberta Biodiversity Monitoring Institute,
Alberta, Canada http://www.abmi.ca/home/publications/1-50/46.html.

ABMI (Alberta Biodiversity Monitoring Institute), 2016b. 2014 Human Footprint Map
Layer Version 1.1- Metadata. Alberta Biodiversity Monitoring Institute, Alberta,
Canada http://abmi.ca/home/data-analytics/da-top/da-product-overview/GIS-Land-
Surface/HF-inventory.html.

Adhikari, K., Hartemink, A.E., 2016. Linking soils to ecosystem services – a global review.
Geoderma 262, 101–111.

AESRD (Alberta Environment & Sustainable Resource Development), 2015. 2014 Range
Reference Area Report for the Grasslands. AESRD Range Resource Management Pro-
gram, Alberta, Canada (unpublished report).

Alberta Environment, 2006. 2004 Acid Deposition Assessment for Alberta. A Report of the
Acid Deposition Assessment Group. Prepared by. WBK & Associates Inc, Edmonton,
Canada (93 pp).

Álvaro-Fuentes, J., Easter, M., Paustian, K., 2012. Climate change effects on organic carbon
storage in agricultural soils of northeastern Spain. Agric. Ecosyst. Environ. 155, 87–94.

ASIC (Alberta Soil Information Centre), 2001. In: Brierley, J.A., Martin, T.C., Spiess, D.J.
(Eds.), AGRASID 3.0: Agricultural Region of Alberta Soil Inventory Database (Version
3.0). Agriculture and Agri-Food Canada, Research Branch; Alberta Agriculture, Food
and Rural Development, Conservation and Development Branch http://www1.
agric.gov.ab.ca/$department/deptdocs.nsf/all/sag3253?opendocument.

Blair, J., Nippert, J., Briggs, J., 2014. Grassland ecology. In: Jonson, R.K. (Ed.), Ecology and
the Environment, pp. 389–423.

Brandani, C.B., Abbruzzini, T.F., Williams, S., Easter, M., Pellegrino Cerri, C.E., Paustian, K.,
2015. Simulation of management and soil interactions impacting SOC dynamics in
sugarcane using the CENTURY model. GCB Bioenergy 7, 646–657.

Brown, J., Angerer, J., Salley, S.W., Blaisdell, R., Stuth, J.W., 2010. Improving estimates of
rangeland carbon sequestration potential in the US south-west. Rangel. Ecol.
Manag. 63, 147–154.
Campbell, E.E., Paustian, K., 2015. Current developments in soil organic matter modeling
and the expansion of model applications: a review. Environ. Res. Lett. 10, 123004.

Cerri, C.E.P., Easter, M., Paustian, K., Killian, K., Coleman, K., Bernoux, M., Falloon, P.,
Powlson, D.S., Batjes, N., Milne, E., Cerri, C.C., 2007. Simulating SOC changes in 11
land use change chronosequences from the Brazilian Amazon with RothC and
CENTURY models. Agric. Ecosyst. Environ. 122, 46–57.

Chang, X., Bao, X., Wang, S., Wilkes, A., Erdenetsetseg, B., Baival, B., Avaadorj, D.,
Maisaikhan, T., Damdinsuren, B., 2015. Simulating effects of grazing on soil or-
ganic carbon stocks in Mongolian grasslands. Agric. Ecosyst. Environ. 212,
278–284.

Chetner, S., the Agroclimatic Atlas Working Group, 2003. Agroclimatic Atlas of Alberta,
1971 to 2000. Alberta Agriculture, Food and Rural Development, Agdex 071–1. Ed-
monton, Alberta.

Cleveland, C.C., Townsend, A.R., Schimel, D.S., Fisher, H., Howarth, R.W., Hedin, L.O.,
Perakis, S.S., Latty, E.F., von Fischer, J.C., Elseroad, A., Wasson, M., 1999. Global pat-
terns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob.
Biogeochem. Cycles 13, 623–645.

Cord, A.F., Brauman, K.A., Chaplin-Kramer, R., Huth, A., Ziv, G., Seppelt, R., 2017. Priorities
to advance monitoring of ecosystem services using Earth observation. Trends Ecol.
Evol. 32, 416–428.

Cuddington, K., Fortin, M.J., Gerber, L.R., Hastings, A., Liebhold, A., O'Connor, M., Ray, C.,
2013. Process-based models are required to manage ecological systems in a changing
world. Ecosphere 4, 1–12.

Daily, G.C., Polasky, S., Goldstein, J., Kareiva, P.M., Mooney, H.A., Pejchar, L., Ricketts, T.H.,
Salzman, J., Shallenberger, R., 2009. Ecosystem services in decision making: time to
deliver. Front. Ecol. Environ. 7, 21–28.

de Gruijter, J.J., McBratney, A.B., Minasny, B., Wheeler, I., Malone, B.P., Stockmann, U.,
2016. Farm-scale soil carbon auditing. Geoderma 265, 120–130.

Didan, K., 2015. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN
Grid V006, Distributed by NASA EOSDIS Land Processes DAAC. https://doi.org/
10.5067/MODIS/MOD13Q1.006.

Dimassi, B., Guenet, B., Saby, N.P.A., Munoz, F., Bardy, M., Millet, F., Martin, M.P., 2018. The
impacts of CENTURY model initialization scenarios on soil organic carbon dynamics
simulation in French long-term experiments. Geoderma 311, 25–36.

Faramarzi, M., Srinivasan, R., Iravani, M., Bladon, K.D., Abbaspour, K.C., Zehnder, A.J.B.,
Goss, G.G., 2015. Setting up a hydrological model of Alberta: data discrimination anal-
yses prior to calibration. Environ. Model Softw. 74, 48–65.

Faramarzi, M., Abbaspour, K.C., Adamowicz, W.L., Lu, W., Fennell, J., Zehnder, A.J.B., Goss,
G.G., 2017. Uncertainty based assessment of dynamic freshwater scarcity in semi-arid
watersheds of Alberta, Canada. J. Hydrol. Reg. Stud. 9, 48–68.

Feng, X.M., Zhao, Y.S., 2011. Grazing intensity monitoring in Northern China steppe: inte-
grating CENTURY model and MODIS data. Ecol. Indic. 11, 175–182.

Gibson, D.J., 2009. Grasses and Grassland Ecology. Oxford University Press, Oxford, UK.

http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0005
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0005
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0010
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0010
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0010
https://abmi.ca/home/data-analytics/da-top/da-product-overview/GIS-Land-Surface/Land-Cover.html
https://abmi.ca/home/data-analytics/da-top/da-product-overview/GIS-Land-Surface/Land-Cover.html
http://www.abmi.ca/home/publications/1-50/46.html
http://abmi.ca/home/data-analytics/da-top/da-product-overview/GIS-Land-Surface/HF-inventory.html
http://abmi.ca/home/data-analytics/da-top/da-product-overview/GIS-Land-Surface/HF-inventory.html
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0030
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0030
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0035
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0035
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0035
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0040
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0040
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0040
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0045
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0045
http://www1.agric.gov.ab.ca/0epartment/deptdocs.nsf/all/sag3253?opendocument
http://www1.agric.gov.ab.ca/0epartment/deptdocs.nsf/all/sag3253?opendocument
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0055
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0055
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0060
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0060
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0065
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0065
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0065
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0070
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0070
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0075
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0075
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0075
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0080
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0080
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0080
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0085
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0085
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0085
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0090
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0090
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0090
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0095
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0095
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0095
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0100
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0100
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0105
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0105
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0110
https://doi.org/10.5067/MODIS/MOD13Q1.006
https://doi.org/10.5067/MODIS/MOD13Q1.006
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0120
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0120
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0120
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0125
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0125
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0130
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0130
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0135
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0135
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0140


168 M. Iravani et al. / Science of the Total Environment 680 (2019) 151–168
Gilmanov, T., Parton, W., Ojima, D., 1997. Testing the 'CENTURY' ecosystem level model
on datasets from eight grassland sites in the former USSR representing a wide cli-
matic/soil gradient. Ecol. Model. 96, 191–210.

Grigera, G., Oesterheld, M., Pacin, F., 2007. Monitoring forage production for farmers' de-
cision making. Agric. Syst. 94, 637–648.

Downing, D.J., Pettapiece, W.W., 2006. Natural Regions and Subregions of Alberta. Natural
Regions Committee, Government of Alberta Pub. No. T/852.

Gu, Y., Wylie, B.K., 2015. Developing a 30-m grassland productivity estimation map for
central Nebraska using 250-m MODIS and 30-m Landsat-8 observations. Remote
Sens. Environ. 171, 291–298.

Gu, Y., Wylie, B.K., Bliss, N.B., 2013. Mapping grassland productivity with 250-m eMODIS
NDVI and SSURGO database over the Greater Platte River Basin, USA. Ecol. Indic. 24,
31–36.

Gupta, H.V., Sorooshian, S., Yapo, P.O., 1998. Toward improved calibration of hydrologic
models: multiple and noncommensurable measures of information. Water Resour.
Res. 34, 751–763.

Havstad, K.M., Peters, D.P.C., Skaggs, R., Brown, J., Bestelmeyer, B., Fredrickson, E., Herrick,
J., Wright, J., 2007. Ecological services to and from rangelands of the United States.
Ecol. Econ. 64, 261–268.

Hewins, D.B., Lyseng, M.P., Schoderbek, D.F., Alexander, M., Willms, W.D., Carlyle, C.N.,
Chang, S.X., Bork, E.W., 2018. Grazing and climate effects on soil organic carbon con-
centration in northern grasslands. Sci. Rep. 8, 1336.

Holland, E.A., Parton, W.J., Detling, J.K., Coppock, D.L., 1992. Physiological responses of
plant populations to herbivory and their consequences for ecosystem nutrient flow.
Am. Nat. 140, 685–706.

Hou, Y., Burkhard, B., Müller, F., 2013. Uncertainties in landscape analysis and ecosystem
service assessment. J. Environ. Manag. 127, 117–131.

Howe, C., Suich, H., Vira, B., Mace, G.M., 2014. Creating win-wins from trade-offs? Ecosys-
tem services for human well-being: a meta-analysis of ecosystem service trade-offs
and synergies in the real world. Glob. Environ. Chang. 28, 263–275.

Hungate, B.A., Barbier, E.B., Ando, A.W., Marks, S.P., Reich, P.B., van Gestel, N., Tilman, D.,
Knops, J.M.H., Hooper, D.U., Butterfield, B.J., Cardinale, B.J., 2017. The economic
value of grassland species for carbon storage. Sci. Adv. 3, e1601880.

Jack, K., Kousky, C., Sims, K., 2008. Designing payments for ecosystem services: lessons
from previous experience with incentive-based mechanisms. Proc. Natl. Acad. Sci.
105, 9465–9470.

Jellinek, S., Wilson, K.A., Hagger, V., Mumaw, L., Cooke, B., Guerrero, A.M., Erickson, T.E.,
Zamin, T., Waryszak, P., Standish, R.J., 2019. Integrating diverse social and ecological
motivations to achieve landscape restoration. J. Appl. Ecol. 56, 246–252.

Jönsson, P., Eklundh, L., 2004. TIMESAT—A program for analyzing time-series of satellite
sensor data. Comput. Geosci. 30, 833–845.

Kariyeva, J., van Leeuwen, W.J.D., 2012. Phenological dynamics of irrigated and natural
drylands in Central Asia before and after the USSR collapse. Agric. Ecosyst. Environ.
162, 77–89.

Kwon, H., Ugarte, C.M., Ogle, S.M., Williams, S.A., Wander, M.M., 2017. Use of inverse
modeling to evaluate CENTURY-predictions for soil carbon sequestration in US rain-
fed corn production systems. PLoS One 12, e0172861.

Lapp, S.L., St. Jacques, J.M., Sauchyn, D.J., Vanstone, J.R., 2013. Forcing of hydroclimatic var-
iability in the northwestern Great Plains since AD 1406. Quat. Int. 310, 47–61.

Li,W., Li, X., Zhao, Y., Zheng, S., Bai, Y., 2018. Ecosystem structure, functioning and stability
under climate change and grazing in grasslands: current status and future prospects.
Curr. Opin. Environ. Sustain. 33, 124–135.

Liu, S., Cheng, F., Dong, S., Zhao, H.D., Hou, X.Y., Wu, X., 2017. Spatiotemporal dynamics of
grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated
MODIS NDVI. Sci. Rep. 7, 1–8.

Lopez-Marsico, L., Altesor, A., Oyarzabal, M., Baldassini, P., Paruelo, J.M., 2015. Grazing in-
creases below-ground biomass and net primary production in a temperate grassland.
Plant Soil 392, 155–162.

Lugato, E., Panagos, P., Bampa, F., Jones, A., Montanarella, L., 2014. A new baseline of or-
ganic carbon stock in European agricultural soils using a modeling approach. Glob.
Chang. Biol. 20, 313–326.

Meersmans, J., Martin, M.P., Lacarce, E., Orton, T.G., De Baets, S., Gourrat, M., Saby, N.P.A.,
Wetterlind, J., Bispo, A., Quine, T.A., Arrouays, D., 2013. Estimation of soil carbon input
in France: an inverse modeling approach. Pedosphere 23, 422–436.

Metherell, A.K., Harding, L.A., Cole, C.V., Parton, W.J., 1993. CENTURY Soil Organic Matter
Model Environment, Agroecosystem Version 4.0. GPSR Tech. Report No. 4. United
States Department of Agriculture, Agricultural Research Service, Fort Collins, CO, USA.

Murphy, K.L., Burke, I.C., Vinton, M.A., Lauenroth, W.K., Aguiar, M.R., Wedin, D.A., Virginia,
R.A., Lowe, P., 2002. Regional analysis of litter quality in the central grassland region
of North America. J. Veg. Sci. 13, 395–402.

Necpálová, M., Anex, R.P., Fienen, M.N., Del Grosso, S.J., Castellano, M.J., Sawyer, J.E., Iqbal,
J., Pantoja, J.L., Barker, D.W., 2015. Understanding the DayCent model: calibration,
sensitivity, and identifiability through inverse modeling. Environ. Model Softw. 66,
110–130.

Niquil, N., Saint-Béat, B., Johnson, G.A., Soetaert, K., van Oevelen, D., Bacher, C., Vézina, A.F.,
2011. Inverse modeling in modern ecology and application to coastal ecosystems. In:
Wolanski, E., McLusky, D.S. (Eds.), Treatise on Estuarine and Coastal Science. Vol 9,
pp. 115–133.

Oelbermann, M., Voroney, R.P., 2011. An evaluation of the century model to predict soil
organic carbon: examples from Costa Rica and Canada. Agrofor. Syst. 82, 37–50.
Ogle, S.M., Breidt, F.J., Easter, M., Williams, S., Paustian, K., 2007. An empirically based ap-
proach for estimating uncertainty associated with modeling carbon sequestration in
soils. Ecol. Model. 205, 453–463.

Ogle, S.M., Breidt, F.J., Easter, M., Williams, S., Killian, K., Paustian, K., 2010. Scale and un-
certainty in modeled soil organic carbon stock changes for US croplands using a
process-based model. Glob. Chang. Biol. 16, 810–822.

Parton, W.J., Schimel, D.S., Cole, C.V., Ojima, D.S., 1987. Analysis of factors controlling soil
organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J. 51, 1173–1179.

Parton,W.J., Stewart, J.W.B., Cole, C.V., 1988. Dynamics of C, N, P and S. in grassland soils: a
model. Biogeochemistry 5, 109–131.

Parton, W.J., Cole, C.V., Stewart, J.W.B., Ojima, D.S., Schimel, D.S., 1989. Simulating regional
patterns of soil C, N, and P dynamics in the US central grasslands region. In: Clarholm,
M., Bergstrom, L. (Eds.), Ecology of Arable Lands. Kluwer Academic Publishers,
Amsterdam, Netherlands, pp. 99–108.

Parton, W.J., Scurlock, J.M.O., Ojima, D.S., Gilmanov, T.G., Scholes, R.J., Schimel, D.,
Kirchner, T., Menaut, J., Seastedt, T., Moya, E., 1993. Observations andmodeling of bio-
mass and soil organic matter dynamics for the grassland biome worldwide. Glob.
Biogeochem. Cycles 7, 785–809.

Parton, W.J., Scurlock, J.M.O., Ojima, D.S., Schimel, D.S., Hall, D.O., Scopegram Group
Members, 1995. Impact of climate change on grassland production and soil carbon
worldwide. Glob. Chang. Biol. 1, 13–22.

Parton, W., Tappan, G., Ojima, D., Tschakert, P., 2004. Ecological impact of historical and
future land-use patterns in Senegal. J. Arid Environ. 59, 605–623.

R Development Core Team, 2017. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna http://www.R-project.org.

Rafique, R., Fienen, M.N., Parkin, T.B., Anex, R.P., 2013. Nitrous oxide emissions from crop-
land: a procedure for calibrating the DAYCENT biogeochemical model using inverse
modeling. Water Air Soil Pollut. 224, 1–15.

Rafique, R., Kumar, S., Luo, Y., Kiely, G., Asrar, G.R., 2015. An algorithmic calibration ap-
proach to identify globally optimal parameters for constraining the DayCent model.
Ecol. Model. 297, 196–200.

Sándor, R., Ehrhardt, F., Brilli, L., Carozzi, M., Recous, S., Smith, P., Snow, V., Soussana, J.F.,
Dorich, C.D., Fuchs, K., Fitton, N., Gongadze, K., Klumpp, K., Liebig, M., Martin, R.,
Merbold, L., Newton, P.C.D., Rees, R.M., Rolinski, S., Bellocchi, G., 2018. The use of bio-
geochemical models to evaluate mitigation of greenhouse gas emissions from man-
aged grasslands. Sci. Total Environ. 642, 292–306.

Schimel, D.S., Braswell, B.H., Holland, E.A., McKeown, R., Ojima, D.S., Painter, T.H., Parton,
W.J., Townsend, A.R., 1994. Climatic, edaphic, and biotic controls over storage and
turnover of carbon in soils. Glob. Biogeochem. Cycles 8, 279–293.

Schulp, C.J.E., Burkhard, B., Maes, J., Van Vliet, J., Verburg, P.H., 2014. Uncertainties in eco-
system service maps: a comparison on the European scale. PLoS One 9, e109643.

Smith, P., Smith, J.U., Powlson, D.S., McGill, W.B., Arah, J.R.M., Chertov, O.G., Coleman, K.,
Franko, U., Frolking, S., Jenkinson, D.S., Jensen, L.S., Kelly, R.H., Klein-Gunnewiek, H.,
Komarov, A.S., Li, C., Molina, J.A.E., Mueller, T., Parton, W.J., Thornley, J.H.M.,
Whitmore, A.P., 1997a. A comparison of the performance of nine soil organic matter
models using data sets from seven long-term experiments. Geoderma 81, 153–225.

Smith, W.N., Rochett, P., Monreal, C., Desjardins, R.L., Pattey, E., Jaques, A., 1997b. The rate
of carbon change in agricultural soils in Canada at the landscape level. Can. J. Soil Sci.
77, 219–229.

Smith, W.N., Grant, B.B., Desjardins, R.L., Hutchinson, Qian, Gameda, B.J., 2009. Potential
impact of climate change on carbon in agricultural soils in Canada: 2000-2099.
Clim. Chang. 93, 319–333.

Stamp, R.M., Warnell, D., 2008. Alberta. The Canadian Encyclopedia. Historica Foundation
of Canada. http://www.thecanadianencyclopedia.com/en/article/alberta/, Accessed
date: 1 October 2008.

Van den Bygaart, A.J., McConkey, B.G., Angers, D.A., Smith,W., de Gooijer, H., Bentham, M.,
Martin, T., 2008. Soil carbon change factors for the Canadian agriculture national
greenhouse gas inventory. Can. J. Soil Sci. 88, 671–680.

Wang, Y., Zhou, G., Jia, B., 2008. Modeling SOC and NPP responses of meadow steppe to
different grazing intensities in Northeast China. Ecol. Model. 217, 72–78.

Wang, T., Hamann, A., Spittlehouse, D.L., Murdock, T.Q., 2012. ClimateWNA – high-
resolution spatial climate data for western North America. J. Appl. Meteorol. Climatol.
51, 16–29.

Wang, F., Mladenoff, D.J., Forrester, J.A., Keough, C., Parton, W.J., 2013. Global sensitivity
analysis of a modified CENTURY model for simulating impacts of harvesting fine
woody biomass for bioenergy. Ecol. Model. 259, 16–23.

Wang, X., VandenBygaart, A.J., McConkey, B.C., 2014. Land management history of Cana-
dian grasslands and the impact on soil carbon storage. Rangel. Ecol. Manag. 67,
333–343.

Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van
Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H.J.,
Kögel-Knabner, I., 2019. Soil organic carbon storage as a key function of soils - a re-
view of drivers and indicators at various scales. Geoderma 333, 149–162.

Xiong, X., Grunwald, S., Myers, D.B., Kim, J., Harris, W.G., Bliznyuk, N., 2015. Assessing un-
certainty in soil organic carbon modeling across a highly heterogeneous landscape.
Geoderma 251, 105–116.

http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0145
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0145
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0145
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0150
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0150
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0155
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0155
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0160
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0160
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0160
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0165
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0165
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0165
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0170
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0170
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0170
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0175
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0175
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0180
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0180
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf5000
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf5000
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf5000
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0185
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0185
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0190
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0190
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0190
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0195
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0195
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0195
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0200
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0200
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0205
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0205
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0210
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0210
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0210
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0215
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0215
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0215
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0220
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0220
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0225
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0225
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0225
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0230
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0230
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0230
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0235
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0235
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0235
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0240
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0240
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0240
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0245
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0245
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0250
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0250
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0250
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0255
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0255
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0260
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0260
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0260
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0265
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0265
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0265
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0270
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0270
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0275
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0275
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0275
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0280
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0280
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0280
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0285
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0285
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0290
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0290
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0295
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0295
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0295
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0295
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0300
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0300
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0300
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0305
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0305
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0310
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0310
http://www.R-project.org
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0320
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0320
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0320
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0325
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0325
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0325
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0330
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0330
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0330
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0335
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0335
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0340
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0340
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0345
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0345
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0350
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0350
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0350
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0355
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0355
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0355
http://www.thecanadianencyclopedia.com/en/article/alberta/
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0365
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0365
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0370
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0370
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0375
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0375
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0375
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0380
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0380
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0380
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0385
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0385
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0385
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0390
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0390
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0395
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0395
http://refhub.elsevier.com/S0048-9697(19)32101-1/rf0395

	Assessing the provision of carbon-�related ecosystem services across a range of temperate grassland systems in western Canada
	1. Introduction
	2. Material and methods
	2.1. Description of the study area
	2.2. CENTURY ecosystem model
	2.3. Input data and initial model set up
	2.4. Model calibration and validation
	2.4.1. Measured data
	2.4.2. Model calibration set up
	2.4.3. Model validation at the regional level

	2.5. Spatial quantification and uncertainty in SOC and AGB simulation
	2.6. Recent climate change and its effects on SOC and AGB

	3. Results
	3.1. Model parameter estimation
	3.2. Model performance evaluation
	3.3. Spatial distribution of SOC and AGB
	3.4. Effects of recent climate change and grazing regimes on SOC and AGB

	4. Discussion
	4.1. Model parameter estimation and performance evaluation
	4.1.1. Sensitive model parameters
	4.1.2. Performance of initial model
	4.1.3. Model performance under single-variable calibration approach
	4.1.4. Model performance under multi-variable calibration approach

	4.2. Uncertainty in SOC and AGB simulation
	4.3. Response of SOC and AGB to recent climate change and grazing regimes

	5. Conclusion
	Acknowledgments
	Appendix A
	References


