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H I G H L I G H T S

• Develop an optimal feature extraction
algorithm to capture the optimal fea-
tures of wind speed fluctuations.

• Introduce an error correction strategy
to improve the prediction precision of
wind speed.

• A innovate hybrid model is success-
fully proposed for multi-step ahead
wind speed prediction.

• Design three experiments from the
real wind farms to validate the avail-
ability and reliability of the developed
model.
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A B S T R A C T

Forecasting wind speed accurately is a key task in the planning and operation of wind energy generation in
power systems, and its importance increases with the high integration of wind power into the electricity market.
This research proposes an innovative hybrid model based on optimal feature extraction, deep learning algorithm
and error correction strategy for multi-step wind speed prediction. The optimal feature extraction including
variational mode decomposition, Kullback-Leibler divergence, energy measure and sample entropy is utilized to
catch the optimal features of wind speed fluctuations for balancing the calculation efficiency and prediction
accuracy. The deep learning algorithm based on long short term memory network, is utilized to detect the long-
term and short-term memory characteristics and build the suitable prediction model for each feature sub-signal.
The error correction strategy based on a Generalized auto-regressive conditionally heteroscedastic model is
developed to modify the above prediction errors when its inherent correlation and heteroscedasticity cannot be
ignored. Three real forecasting cases are applied to test the performance and effectiveness of the developed
model. The simulation results indicate that the developed model consistently has the smallest statistical errors,
and outperforms other benchmark methods. It can be concluded that the developed approach is conductive to
strengthening the prediction precision of wind speed.

1. Introduction

Wind power being one of the most promising renewable energy

sources, has a rapid development throughout the world recently. The
total installed capacity of wind power has been doubled in the past
3 years, and it is estimated that in 2020, approximately 12% of total
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world electricity demands will be supplied from wind power [1]. With
the high integration of wind power into electric power, the power
system is becoming more unreliable because of the intermittent and
stochastic natures of wind speed fluctuations [2]. To guarantee a reli-
able system operation, the power system operator has to schedule suf-
ficient spinning reserve for wind power, which will increase the oper-
ating cost of wind power and limit the large-scale exploitation and
utilization of wind energy [3]. Thus, forecasting wind speed accurately
is indispensable for reducing the operating cost of wind power and
enhancing the efficiency of wind power utilization [4].

In the past few decades, lots of methods have been developed for
wind speed forecasting, which are usually classified into two categories
including physical methods and statistical methods [5]. Physical
methods employ the meteorological parameters and physical laws to
establish the mathematical models for wind speed forecasting, which
usually require substantial computational time and are not good at
short-term prediction [6]. Statistical methods intend to use the histor-
ical samples to simulate the wind speed fluctuations, which have ad-
vantages for short-term prediction. These statistical methods are
usually divided into three groups including time series models, machine
learning models and hybrid models [7]. These time series models in-
clude auto-regressive (AR) model, moving average model (MA) and
auto-regressive moving average model (ARMA). Erdem and Shi [8]
adopted four ARMA models to predict the vector of wind speed and
direction, and the simulate results validated the effectiveness of these
models. Lydia et al. [9] used several AR models to enhance the pre-
diction performance of wind velocity. Cadenas and Rivera [10] predict
the wind speed by an improved ARMA model, and the results showed
that the prediction precision of the proposed model was higher than the
persistence model. Although these time series models have satisfactory
forecasting performance when wind speed signal shows linearity and
stationarity, but they suffer from the disadvantages of nonlinear fitting
capability weakness because of their linear assumption among time
series. To capture these nonlinear characteristics of wind speed change,
lots of machine learning models have been proposed to perform wind
speed prediction. For instance, Ren et al. [11] introduced a particle
swarm optimization (PSO) to improve the prediction performance of a
back propagation (BP) neural network, and the simulate results de-
monstrated the effectiveness of the proposed model. Zhang et al. [12]
presented a radial basis function (RBF) neural network for improving
the prediction performance of wind speed. Santamaría-Bonfil et al. [13]
employed a support vector regression (SVR) to conduct the wind speed
prediction, and the simulate results indicated that the SVR model out-
performed these benchmark models. In addition, numerous hybrid
models have been developed for wind speed forecasting. For instance,
Salcedo-Sanz et al. [14] presented a hybrid model based on fifth gen-
eration mesoscale model and artificial neural networks (ANNs) for wind
speed forecasting. Song et al. [15] developed a novel hybrid model
based on advanced optimization algorithm to improve the forecasting
performance of wind speed. Wang et al. [16] proposed a hybrid system
based on multi-objective whale optimization algorithm for wind speed
prediction. Zhao et al. [17] developed a novel hybrid model based on a
weather research and forecasting (WRF) model and an optimized as-
sociation approach for multi-step ahead wind speed and power pre-
diction. Salcedo-Sanz et al. [18] exploited the input data diversity and
developed a novel hybrid model based on physical models and ANNs to
improve the forecasting performance of wind speed.

Recently, numerous feature selection methods have been introduced
to enhance the forecasting ability of the mainstream prediction models.
These methods are usually classified into two categories including
wrapper methods and filter methods [19]. Wrapper methods may re-
quire large amount of computing time and are usually combined with
fast machine learning prediction models, whereas filter methods are
performed based on the data and are usually faster than wrapper
methods [20]. Thus, the filter methods mainly including wavelet de-
composition (WD) and empirical mode decomposition (EMD), have

been widely applied in wind speed prediction issues in recent years. For
instance, Kiplangat et al. [21] utilized the WD to select the features
from original wind speed signal and build the ARMA model for pre-
diction. The results showed the advantages of feature selection method
based on WD. Zhang et al. [22] developed two feature selection-based
hybrid models which combined EMD with machine learning models
(ANN and SVR) for wind speed forecasting, and the simulate results
validated the effectiveness of the proposed models. In general, the WD
technique has advantages for time-frequency analysis [23], while the
EMD has better self-adaptability in handling the chaotic nature and
inherent complexity of original signal [22]. Nevertheless, there are
some drawbacks: (a) the performance of the WD relies on the choice of
wavelet basis and decomposition levels highly; (b) the EMD lacks the
clear physical meaning and strict mathematical theory; (c) these
common WD (or EMD)-based hybrid models may be unreasonable and
cause a big disturbance on the final forecasting because not all sub-
signals obtained by WD (or EMD) are beneficial in wind speed predic-
tion. To overcome these disadvantages, it is necessary to develop an
effective feature selection algorithm for extraction meaningful features
and removing the irrelevant features from original wind speed signal.

The prediction models are the core part of these feature selection-
based hybrid models. Different from the shallow learning models, the
deep learning models, such as deep belief network (DBN), convolu-
tional neural network (CNN) and recurrent neural network (RNN), can
capture the deep inherent features from original data and have been
developed rapidly in recent years [24]. Kuremoto et al. [25] designed a
DBN with restricted Boltzmann machines for time series prediction and
the simulate results validated the effectiveness of the proposed model.
Wang et al. [26] presented a CNN model for probabilistic wind power
prediction and concluded that the proposed model was superior to the
benchmark models. However, these deep learning models are not
widely used for wind speed prediction. Taking into account the long-
term and short-term dependency of wind speed change, a special kind
of RNN called as long short term memory network (LSTMN), is utilized
to detect the long-term and short-term memory natures of wind speed
change in this study.

Additionally, recent studies show that the error correction strategy
(ECS) is also one of the most effective ways to improve the prediction
accuracy of wind speed [27]. In Ref. [28], a Markov model was used to
correct the prediction errors of the SVR and the results verified the
effectiveness of the ECS. Shi et al. [29] employed ANN and SVR to
correct the forecasting errors of the ARMA and the simulate results
validated the contribution of the ECS. However, most of these filter-
based methods neglect the errors of the prediction models because of
the hypothesis of white noise. It is obviously not true.

In this study, a novel filter-based hybrid model is developed for
multi-step ahead wind speed prediction, which combines deep learning
algorithm (DLA) with optimal feature extraction (OFE) and ECS. The
OFE includes variational mode decomposition (VMD), Kullback-Leibler
divergence (KLD), energy measure (EM) and sample entropy (SE). The
proposed model is composed of five steps as follows: (a) the VMD is
utilized to resolve a non-stationary wind speed signal into several more
stationary sub-signals; (b) two feature selection algorithms including
KLD and EM are applied to capture meaningful features from original
wind speed signal and remove the disturbance of illusive components
introduced by filter algorithm itself; (c) the SE is adopted to recombine
the features obtained from two feature selection algorithms for balan-
cing the calculation efficiency and prediction accuracy; (d) the LSTMN
is employed to establish the prediction model for each feature sub-
signal; (e) the hybrid of LSTMN and Generalized auto-regressive con-
ditionally heteroscedastic (GARCH) is adopted to correct the above
prediction errors when its inherent correlation and heteroscedasticity
cannot be neglected. Three real forecasting cases are applied to verify
the performance and effectiveness of the proposed model. The simula-
tion results show that the proposed model consistently has the
minimum statistical errors, and outperforms other benchmark methods.
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It can be concluded that the proposed model is conductive to improving
the accuracy of multi-step ahead wind speed forecasting.

The novelty and innovation of this study can be described as fol-
lows: (a) Unlike the common filter-based forecasting methods which
establish forecasting models for each sub-signal resolved by filter al-
gorithms, this study develops an optimal feature extraction algorithm to
recombine the optimal features for balancing the calculation efficiency
and prediction accuracy; (b) The long-term and short-term memory
natures of wind speed change is often neglected in the most existing
research. In order to predict wind speed more precisely, a special kind
of RNN called as LSTMN is utilized to extract the deep inherent features
and detect the long-term and short-term memory natures of wind speed
change; (c) In the common filter-based forecasting methods, the ana-
lysis of the error component is often neglected because of the hypoth-
esis of white noise, but this may cause a big confusion if the inherent
correlation and heteroscedasticity exist in error component. In this
study, an ECS based on the hybrid of LSTMN and GARCH is developed
to enhance the prediction precision of wind speed. (d) Considering the
upper issues, this study develops a novel hybrid prediction model that
integrates the merits of OFE, DLA and ECS to strengthen the prediction
precision of wind speed.

This paper is organized as follows. Section 2 describes the basic
methods used in the proposed model. Section 3 shows the framework of
the developed model. Section 4 shows the experimental results and
discussion, and Section 5 summarizes the conclusion.

2. Related methodology

This study develops a novel hybrid prediction model that integrates
the merits of OFE, DLA and ECS to enhance the prediction accuracy of
wind speed. In this section, the basic methods used in the proposed
model are introduced as follows.

2.1. VMD algorithm

As a novel filter algorithm, the VMD is often employed to decom-
pose a complicated signal into several quasi-orthogonal intrinsic mode
functions [30]. In this study, the VMD is introduced to conduct the
decomposition of wind speed signal. Suppose that x t{ ( )} is a wind speed
signal, σ t( ) is the Dirac distribution, μk is the k th- mode and ωk is the
corresponding center frequency of the mode ωk. The main steps of the
VMD are demonstrated as follows [31]:

Step 1: Calculate the analytic signal of each mode by Hilbert
transform:
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Step 3: Convert the process of VMD into the constrained optimiza-
tion problem:
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Step 4: Convert the above constrained problem into the un-
constrained problem by introducing the quadratic penalty α and the
Lagrangian multipliers λ t( ):
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Step 5: Employ the alternate direction method of multipliers
(ADMM) to update + +μ ω,k

n
k
n1 1 and +λn 1 in two directions, and solve the

above unconstrained problem:
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where n denotes the number of iterations, τ denotes the update para-
meter, ̂x ω( ), ̂μ ω( )i , ̂λ ω( ) and ̂ +μ ω( )i

n 1 represent the Fourier transforms
of x t( ), μ t( )i , λ t( ) and +μ t( )i

n 1 , respectively.

2.2. Two feature selection algorithms

2.2.1. KLD-based feature selection
In this study, the KLD is employed to extract meaningful features

and remove the disturbance of illusive components from these subseries
decomposed by VMD. Given f x( ) and g μ( )k are the probability density
functions (PDFs) of the original wind speed signal x t{ ( )} and the kth
subseries μ t{ ( )}k decomposed by VMD, respectively. The KLD value
between them can be calculated as follows [32]:
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where the KLD meets two conditions: (a) the larger the value of KLD,
the larger the difference between two signals and vice versa; (b) if the
value of KLD is equal to zero, it indicates that two signals are the same.

This study adopts a symmetric version of KLD to conduct the feature
extraction process, which is defined as:
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In order to determine f x( ) and g μ( )k , we adopt a non-parametric
kernel smoothing approach to estimate them. Take f x( ) estimation as
an example. f x( ) can be estimated as:
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where h and L (·) represent the smoothing parameter and symmetric
kernel function, respectively, which are given as follows:
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where σ denotes the sample standard deviation.
We can obtain the f x( ) by substituting Eqs. (12) and (13) into Eq.

(11). Similarly, we can obtain the g μ( )k . Therefore, we can obtain the
symmetric KLD by Eq. (10). Further, we eliminate the subseries with
the maximum KLD value.
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2.2.2. EM-based feature selection
In this study, the EM of signal strength is utilized to further detect

the illusive components ignored by KLD. The EM value of each sub-
signal can be calculated as follows [33]:

∑=E μ t[ ( )]μ t
t

k( )
2

k
(14)

Here, the sub-signal with the least EM value is removed as the il-
lusive component.

2.3. SE algorithm

In this section, in order to balance the calculation efficiency and
prediction accuracy, a novel approximate entropy called as sample
entropy (SE) is adopted to recombine the optimal features according to
the SE values of the remaining sub-signals by the two feature selection
criteria. In general, the larger of the SE values, the lower sequence
autocorrelation are and vice versa. Suppose that N and σ are the length
and standard deviation of time series x t{ ( )}, r and m represent the si-
milarity tolerance and the dimension, respectively. The SE value
SE N m r( , , ) can be calculated as follows [34]:

Step 1: Convert the time series = …x t x x x N{ ( )} { (1), (2), , ( )} into m-
dimensional vector:
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Step 3: Define B r( )t
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m :
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Step 4: Replace the m as +m 1, and obtain the mean value +B r( )m 1

of +B r( )t
m 1 by repeating the step 1–3.
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Step 5: Calculate the SE value by the following Eqs. (20) and (21).
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Generally, the performance of SE depends on the parameters r and
m. In this study, the similarity tolerance r and the dimension m are set
to σ0.2 and 2, respectively.

2.4. LSTMN model

As a novel deep learning model, the LSTMN with the memory cell
can add or remove information to the memory cell by three controlling
gates including input gate, forget gate and output gate. The input gate is
used to determine whether the new input information is added to the
cell. The forget gate is employed to determine whether the past cell
status is removed from the cell. The output gate is utilized to determine
whether the latest cell output is propagated to the ultimate state. The
structure of the LSTM model can be illustrated in Fig. 1. In this study,
the LSTMN is applied to detect the long-term and short-term memory
natures of wind speed change.

Suppose that xt is the actual wind speed value at time t, ̂xt is the
corresponding prediction value of wind speed xt , it represents the input
gate, ft and ot represent the forget gate and output gate, respectively.
The main process of the LSTMN model can be given as follows [35]:

= + + +− −i σ W x W p W c b( )t ix t ip t ic t i1 1 (22)

= + + +− −f σ W x W p W c b( )t fx t fp t fc t f1 1 (23)
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= ∘y o z c( )t t t (26)

̂ = +x W y bt xy t x (27)

where ‘°’ represents the scalar product, W represents the weight ma-
trices, b represents the bias vectors, ct represents the activation vector of
each cell, yt represents the activation vector of each memory block, σ (·)
represents the standard logistic function = + −σ x( ( ) )e

1
1 x , g (·) represents

the centered logistic function = − ∈ −+ −g x x( ( ) 2 [ 2, 2])e
4

1 x , and z (·)
represents the centered logistic function = − ∈ −+ −z x x( ( ) 1 [ 1, 1])e

2
1 x .

2.5. GARCH model

In this section, the GARCH model is employed to verify the volatility
of the errors and correct the prediction results of LSTMN model. Given
xt and ̂x t( )LSTMN are the actual wind speed value at time t and the
corresponding prediction value of LSTMN model, respectively. The
actual value xt can be described as follows [36]:

̂= +x x t ξ( )t LSTMN t (28)

where ξt denotes the prediction error of the LSTMN model at time t . If ξt
has the time-varying variance, it is given as follows:

=ξ δ εt t t (29)

where εt represents the white noise sequence; δt represents the condi-
tional variance and is given as follows:
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where ηl and ςk are nonnegative varying coefficients; p and q denote the
orders, respectively. Thus, the error ξt follows GARCH p q( , ) model.

The Lagrange Multiplier (LM) is usually applied to determine
whether it is essential to construct the GARCH model. The LM statistic
is given as follows [37]:

= ∼LM nr χ q( )2 2 (31)

where r2 denotes the goodness of fit. If >LM value χ q( )2 , the GARCH is
employed to modify the prediction results of LSTMN model. In this
study, the standard GARCH (1, 1) is utilized to correct the prediction
results of LSTMN model.

3. Proposed model

As presented in introduction, this study develops a novel forecasting
model to strengthen the prediction precision of wind speed. This section
gives the main procedure of the developed model. Fig. 1 demonstrates
the flowchart of the developed model and the whole process is in-
troduced as follows:
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Fig. 1. Flowchart of the proposed model.
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(1) The VMD is employed to resolve a multi-component wind velocity
signal into n sub-signals.

(2) Two feature selection algorithms including KLD and EM are applied
to eliminate the illusive subseries and reserve m useful subseries
from all subseries decomposed by VMD, where the m is smaller than
the number n, achieving the goal of getting the initial features from
the original wind speed signal.

(3) The SE algorithm is utilized to recombine the m initial features
subseries and obtain d optimal features subseries by calculating
their SE values, where d is smaller than the number m, achieving
the goal of reducing the workload and saving the computation time
for prediction.

Fig. 2. Three wind farms considered for the experiments.

Fig. 3. The architecture of multi-step ahead prediction.

Table 1
Three statistical measures used in the analysis of prediction results.

Error criteria Definition Equation

MAE Mean absolute error ̂∑ −= x t x t| ( ) ( )|
n t

n1
1 1

1

RMSE Root mean square error ̂∑ −= x t x t( ( ) ( ))
n t

n1
1 1

1 2

MAPE Mean absolute percentage error ̂∑ ×=
−| | 100%

n t
n x t x t

x t
1
1 1

1 ( ) ( )
( )

where n1 denotes the number of prediction samples, x t( ) is the actual wind
speed value at time t and ̂x t( ) is the prediction value of wind speed at the same
time point.
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Fig. 4. The prediction process of the proposed model in Jinta.
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(4) The LSTMN model is built to forecasting these optimal feature
subseries.

(5) An ECS is presented to strengthen the forecasting precision of wind
speed. Both autocorrelation (ACF) and partial autocorrelation
(PACF) are firstly used to analyze the interdependence structure of
the error components and determine whether it is essential to
construct the corresponding prediction model for them. Then, the
LM is applied to examine the heteroscedasticity of error compo-
nents and determine whether it is essential to construct the GARCH
model. In view of the above analysis, there are four different ways
of handling the error components: (i) the hybrid LSTMN-GARCH
model is employed to deal with the error components when there
exists both characteristics of correlation and heteroscedasticity in
error components; (ii) the LSTMN model is applied to modify the
error components when there exists only the correlation in error
components; (iii) the GARCH model is adopted to modify the error
components when there exists only the heteroscedasticity in error
components; (iv) if both characteristics of correlation and hetero-
scedasticity are not obvious in error components, it is not essential
to modify the error components.

4. Case study

4.1. Data collection

The Hexi corridor of China called as “wind corridor”, has abundant
wind resource because of its special geographical location. In this study,
three large hourly wind speed datasets collected from three wind farms
including Jinta, Subei and Jiuquan lying in the Hexi corridor, are
adopted to compare the prediction precision of the developed model
with other benchmark models. Fig. 2 displays three wind farms con-
sidered for the experiments. Each dataset includes 43,824 samples. The
first 35,064 samples of each wind speed dataset are utilized to establish
the model, and the remaining samples are adopted to verify the pre-
diction ability of the developed model. Moreover, a rolling prediction

mechanism is employed to conduct the multi-step prediction. Fig. 3
shows the architecture of multi-step ahead prediction.

4.2. Evaluation criteria

In this study, three statistical measures including MAE, RMSE and
MAPE are adopted to quantitatively assess the forecasting ability of all
involved models, which are listed in Table 1. Generally, the smaller
values of three statistical measures values, the better prediction ability
of the corresponding model is and vice versa.

4.3. Experiment I: test with wind speed from case 1

This section adopts a wind speed dataset measured from Jinta wind
farm to verify the prediction ability of the proposed model thoroughly.
First, the VMD is utilized to resolve the original wind speed into nine
sub-signals including Mod 1, Mod 2, Mod 3, Mod 4, Mod 5, Mod 6, Mod
7, Mod 8 and Mod 9. Then, two feature selection algorithms including
KLD and EM are employed to extract meaningful features from these
sub-signals and remove the disturbance of illusive sub-signals.
According to the above two feature selection criteria, we obtain eight
initial features including Mod 1, Mod 2, Mod 3, Mod 4, Mod 5, Mod 6,
Mod 7 and Mod 8, and eliminate the Mod 9 as noise. Further, in order to
balance the calculation efficiency and prediction accuracy of the model,
the SE algorithm is utilized to recombine the optimal features sub-sig-
nals from these initial features. Four optimal features sub-signals in-
cluding Fea1 (Mod 1), Fea2 (Mod 2, Mod 3 and Mod 4), Fea3 (Mod 5
and Mod 6) and Fea4 (Mod 7, and Mod 8) are recombined by calcu-
lating their SE values. For each feature sub-signal, the LSTMN is used to
establish the corresponding prediction model. The ECS is adopted to
further improve the prediction precision of each feature sub-signal.
Both ACF and PACF are firstly used to analyze the interdependence
structure of the error components between the actual values of wind
speed and prediction values of the LSTMN model, and determine
whether it is essential to construct the corresponding prediction model
for the error components. Then, the LM is applied to examine whether it
is essential to construct the GARCH. In view of the above analysis, we
obtain the prediction values of each feature sub-signal. Further, we
obtain the final forecasting results of raw wind speed by aggregating
the forecasting values of each feature sub-signal. Fig. 4 presents the
forecasting results of the developed model in Jinta. As seen from Fig. 4,
the proposed model can obviously capture the main trends of wind
speed change.

Table 2
These benchmark models for comparisons.

Model 1 SVR
Model 2 ELM
Model 3 LSTMN
Model 4 VMD-LSTMN
Model 5 VMD-OFE-LSTMN

Fig. 5. Prediction errors comparison of different models in Jinta.
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To further verify the prediction ability of the developed model, five
benchmark models are involved in the comparison of the prediction
performance and are listed in Table 2. Multi-step ahead prediction is
conducted and three corresponding error results are shown in Fig. 5 and
Table 3. As seen from Fig. 5 and Table 3, it can be found as follows:

(1) Compared with Model 1 and Model 2, Model 3 has the smallest
errors for multi-step ahead forecasting including one-step, three-
step and five-step. For instance, the MAPEs of Model 3 are 37.14%,
39.94% and 53.71% in horizons of one-step prediction, three-step
prediction and five-step prediction, while the corresponding MAPEs
of Model 1 are 47.16%, 50.43% and 67.58%. The proposed model
reflects 10.02%, 10.49% and 13.87% improvements, respectively.
This is mainly put down to the fact that the LSTMN model can
capture the deep features in wind speed very well.

(2) Compared with Model 4, Model 5 has the better performance for
multi-step ahead prediction. For instance, the MAEs of Model 5 are
0.62, 0.83 and 0.92 in horizons of one-step prediction, three-step
prediction and five-step prediction, while the corresponding MAEs
of Model 4 are 0.75, 0.88 and 0.98. This indicates that the OFE is
conducive to raising the prediction accuracy of wind speed.

(3) The developed model has the better performance than the Model 5.
For instance, the RMSEs of the developed model are 0.73, 0.85 and
0.98 in horizons of one-step prediction, three-step prediction and
five-step prediction, while the corresponding RMSEs of Model 5 are
0.79, 0.99 and 1.13. This can be attributed to the fact that the ECS is
effective in enhancing the forecasting ability.

(4) The developed model has the best prediction performance than
other five benchmark models in horizons of 1-step prediction, 3-
step prediction and 5-step prediction. This can be attributed to the
fact that the combination of OFE, DLA and ECS is help for enhan-
cing the forecasting accuracy.

4.4. Experiment II: test with wind speed from case 2

The experiment II adopts a wind speed dataset measured from Subei
wind farm to validate the developed model. Fig. 6 indicates the pre-
diction process of the developed model in Subei farm. Fig. 7 and Table 4
present the forecasting results of different models and the corre-
sponding estimated errors results including MAE, RMSE and MAPE. As
seen from Fig. 7 and Table 4, it can be concluded that: (1) the LSTMN
model has precedence to the traditional SVR and ELM models in multi-
step ahead forecasting, which indicates that the LSTMN model can
detect the long-term and short-term memory natures of wind speed
change and strengthen the ability for extracting the deep inherent
features of wind speed; (2) the optimal features extraction algorithm
affords a positive effect in strengthening the prediction performance of
the VMD-LSTMN model; (3) the ECS is conducive to enhancing the
forecasting precision of wind speed; (4) Compared with other bench-
mark models, the developed model consistently has the minimum sta-
tistical errors and is more effective for multi-step ahead wind speed
prediction.

4.5. Experiment III: test with wind speed from case 3

To further verify the stability of the developed model, the experi-
ment III is conducted by the wind speed data from Jiuquan farm. Fig. 8
indicates the prediction process of the proposed model in Jiuquan farm.
Fig. 9 and Table 5 indicate the evaluation procedures. The similar
conclusions can be concluded from Fig. 9 and Table 5.

4.6. Summary based on experiments I-III

Table 6 indicates the average forecasting ability of different models
in three cases. As seen from Table 6, the following conclusions can be
summarized:

(1) The LSTMN model, as an effective DLA, can catch the deep inherent
characteristics of wind speed change and outperform the traditional
SVR and ELM models for multi-step forecasting in three cases.

(2) The OFE algorithm makes a pivotal contribution for multi-step
forecasting in three cases. For instance, the mean MAPEs of Model 5
are 28.34%, 34.07% and 41.45% in horizons of one-step prediction,
three-step prediction and five-step prediction, while the corre-
sponding mean MAPEs of Model 4 are 33.19%, 38.53% and
45.10%, which reflects the improvements of 4.85%, 4.46%, 3.65%,
respectively. This indicates that the OFE is conducive to raising the
precision of multi-step prediction.

(3) The ECS affords a positive effect for multi-step prediction in three
cases. For example, the mean MAEs of the proposed model are 0.43,
0.69 and 0.83 in horizons of one-step prediction, three-step pre-
diction and five-step prediction, while the corresponding mean
MAEs of Model 5 are 0.57, 0.79 and 0.93. This indicates that the
ECS has the ability to strengthen the performance of multi-step
prediction.

(4) The developed model indicates the superior and trustworthy ability
than other benchmark models in three cases, and it has great po-
tential for wind speed prediction.

4.7. Analysis and discussion

In this section, OFE and ECS are discussed to uncover their effects
on the developed model, respectively.

4.7.1. Discussion of the advantage of the OFE
In order to further verify the advantage of the OFE, the OFE is used

to improve these common filter-based models for multi-step prediction.
These common filter-based models, mainly including WD-LSTMN-ECS,
EMD-LSTMN-ECS, WPD-LSTMN-ECS and EEMD-LSTMN-ECS, are
chosen as benchmark models to validate the excellent ability of OFE.
Tables 7–9 indicate the errors comparison of different models with
feature selection and without feature selection in three cases. As seen
from Tables 7–9, it can be concluded as follows:

(1) The WD-OFE-LSTMN-ECS is superior to the WD-LSTMN-ECS for
multi-step forecasting in three cases. For example, in Jinta, the

Table 3
Three errors comparison of different models in Jinta (MAE (m/s), RMSE (m/s), MAPE (%)).

Models One-step ahead Three-step ahead Five-step ahead

MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)

SVR 0.95 1.13 47.16 1.01 1.86 50.43 1.51 1.97 67.58
ELM 0.91 1.04 44.71 0.96 1.68 48.42 1.39 1.89 63.45
LSTMN 0.86 0.93 37.14 0.92 1.33 39.94 1.09 1.45 53.71
VMD-LSTMN 0.75 0.86 34.81 0.88 1.16 37.65 0.98 1.35 48.32
VMD-OFE-LSTMN 0.62 0.79 28.33 0.83 0.99 31.64 0.92 1.13 43.87
VMD-OFE-LSTMN-ECS 0.47 0.73 22.16 0.71 0.85 28.59 0.83 0.98 39.32
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Fig. 6. The prediction process of the proposed model in Subei.
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MAPEs of the WD-OFE-LSTMN-ECS model are 27.86%, 31.16% and
43.11% in horizons of one-step prediction, three-step prediction
and five-step prediction, while the corresponding MAPEs of the
WD-LSTMN-ECS are 33.18%, 35.81% and 46.51%, which reflects
the improvements of 5.32%, 4.65%, 3.4%, respectively. This in-
dicates that the OFE is conducive to raising the precision of multi-
step prediction.

(2) The EMD-OFE-LSTMN-ECS outperforms the EMD-LSTMN-ECS for
multi-step prediction in three cases. For example, in Subei, the
MAEs of the EMD-OFE-LSTMN-ECS are 0.48, 0.75 and 0.93 in
horizons of one-step prediction, three-step prediction and five-step
prediction, while the corresponding MAEs of the EMD-LSTMN-ECS
are 0.63, 0.83 and 0.98, respectively. This indicates that the OFE
has the ability to strengthen the accuracy of multi-step prediction.

(3) The WPD-OFE-LSTMN-ECS has better performance than the WPD-
LSTMN-ECS in three cases. For example, in Jiuquan, the RMSEs of
the WPD-OFE-LSTMN-ECS are 0.78, 0.96 and 1.09 in horizons of
one-step prediction, three-step prediction and five-step prediction,
while the corresponding RMSEs of the WPD-LSTMN-ECS are 0.90,
1.05 and 1.18, respectively. This indicates that the OFE has the
ability to strengthen the precision of multi-step prediction.

(4) Similarly, the EEMD-OFE-LSTMN-ECS has better prediction ability
than EEMD-LSTMN-ECS in horizons of one-step prediction, three-
step prediction and five-step prediction. In brief, the OFE is an ef-
fective way to enhance the forecasting ability of these common
filter-based models for multi-step prediction.

4.7.2. Discussion of the advantage of the ECS
In this section, in order to further verify the advantage of the ECS,

the ECS is utilized to strengthen the forecasting ability of these OFE-

based models for multi-step prediction. These OFE-based models
mainly including WD-OFE-LSTMN, EMD-OFE-LSTMN, WPD-OFE-
LSTMN and EEMD-OFE-LSTMN, are chosen as benchmark models to
validate the excellent ability of ECS. Table 10 indicates the errors
comparison of different models with ECS and without ECS in three
cases. From Table 10, it can be concluded that: (1) the WD-OFE-LSTMN-
ECS model is superior to the WD-OFE-LSTMN model in horizons of one-
step prediction, three-step prediction and five-step prediction; (2) The
EMD-OFE-LSTMN-ECS model outperforms the EMD-OFE-LSTMN model
for multi-step prediction; (3) the WPD-OFE-LSTMN-ECS model has the
better forecasting ability than the WPD-OFE-LSTMN model; (4) the
EEMD-OFE-LSTMN-ECS model has the smaller errors than the EEMD-
OFE-LSTMN model in three cases; (5) in short, the ECS is conducive to
raising the multi-step prediction ability of these OFE-based models.

5. Conclusions

Forecasting wind speed accurately is a key task in the planning and
operation of wind energy generation in power systems, and its im-
portance increases with the high integration of wind power into the
electricity market. This research develops an innovative hybrid ap-
proach for wind speed prediction including variational mode decom-
position, Kullback-Leibler divergence, energy measure, sample entropy,
long short term memory network and Generalized auto-regressive
conditionally heteroscedastic model. The variational mode decom-
position is employed to resolve a non-stationary wind speed signal into
several more stationary sub-signals. Kullback-Leibler divergence and
energy measure are applied to extract these meaningful features and
remove the disturbance of illusive components from these sub-signals.
In order to balance the calculation efficiency and prediction accuracy,

Fig. 7. Prediction errors comparison of different models in Subei.

Table 4
Three errors comparison of different models in Subei (MAE (m/s), RMSE (m/s), MAPE (%)).

Models One-step ahead Three-step ahead Five-step ahead

MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)

SVR 0.97 1.24 50.13 1.28 1.67 54.04 1.49 1.89 59.23
ELM 0.91 1.18 47.46 1.14 1.53 51.29 1.31 1.71 56.48
LSTMN 0.82 1.01 42.84 0.98 1.33 46.72 1.17 1.52 49.16
VMD-LSTMN 0.67 0.96 35.23 0.87 1.18 42.94 1.02 1.36 45.91
VMD-OFE-LSTMN 0.51 0.84 31.92 0.81 0.98 38.83 0.96 1.15 43.05
VMD-OFE-LSTMN-ECS 0.37 0.73 27.15 0.72 0.86 33.14 0.85 0.97 40.71
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Fig. 8. The prediction process of the proposed model in Jiuquan.
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Fig. 9. Prediction errors comparison of different models in Jiuquan.

Table 5
Three errors comparison of different models in Jiuquan (MAE (m/s), RMSE (m/s), MAPE (%)).

Models One-step ahead Three-step ahead Five-step ahead

MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)

SVR 1.04 1.42 39.25 1.21 1.58 46.92 1.44 1.81 50.62
ELM 0.92 1.31 36.13 1.14 1.45 43.12 1.29 1.67 48.05
LSTMN 0.81 1.08 33.71 0.99 1.27 39.98 1.14 1.42 45.11
VMD-LSTMN 0.73 0.97 29.54 0.84 1.11 35.01 1.03 1.27 41.07
VMD-OFE-LSTMN 0.59 0.85 24.78 0.73 1.02 31.73 0.91 1.13 37.42
VMD-OFE-LSTMN-ECS 0.44 0.71 20.51 0.65 0.93 28.95 0.81 1.07 33.14

Table 6
Average errors comparison of different models in three Cases (MAE (m/s), RMSE (m/s), MAPE (%)).

Models One-step ahead Three-step ahead Five-step ahead

MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)

SVR 0.99 1.26 45.51 1.17 1.70 50.46 1.48 1.89 59.14
ELM 0.91 1.18 42.77 1.08 1.55 47.61 1.33 1.76 55.99
LSTMN 0.83 1.01 37.90 0.96 1.31 42.21 1.13 1.46 49.33
VMD-LSTMN 0.72 0.93 33.19 0.86 1.15 38.53 1.01 1.33 45.10
VMD-OFE-LSTMN 0.57 0.83 28.34 0.79 1.00 34.07 0.93 1.14 41.45
VMD-OFE-LSTMN-ECS 0.43 0.72 23.27 0.69 0.88 30.23 0.83 1.01 37.72

Table 7
Three errors comparison of different models with feature selection and without feature selection in Jinta (MAE (m/s), RMSE (m/s), MAPE (%)).

Feature selection Models One-step ahead Three-step ahead Five-step ahead

MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)

Yes WD-OFE-LSTMN-ECS 0.62 0.78 27.86 0.82 0.98 31.16 0.90 1.11 43.11
EMD-OFE-LSTMN-ECS 0.59 0.77 26.51 0.81 0.95 30.94 0.88 1.08 42.29
WPD-OFE-LSTMN-ECS 0.58 0.75 25.01 0.79 0.91 30.07 0.86 1.03 41.42
EEMD-OFE-LSTMN-ECS 0.49 0.74 23.83 0.78 0.88 29.14 0.85 0.99 40.53

No WD-LSTMN-ECS 0.72 0.84 33.18 0.86 1.09 35.81 0.97 1.29 46.51
EMD-LSTMN-ECS 0.69 0.81 30.53 0.85 1.05 32.75 0.95 1.17 45.13
WPD-LSTMN-ECS 0.67 0.78 29.23 0.84 1.01 32.05 0.93 1.14 44.54
EEMD-LSTMN-ECS 0.65 0.78 28.91 0.83 0.99 31.74 0.91 1.12 43.98
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the sample entropy is adopted to recombine the optimal features ac-
cording to the sample entropy value of each sub-signal. Considering the
long-term and short-term memory characteristics of wind speed change,
the long short term memory network is used to build the prediction
model for the optimal feature sub-signals. The error correction strategy
based on Generalized auto-regressive conditionally heteroscedastic
model is developed to correct the above prediction errors when its in-
herent correlation and heteroscedasticity cannot be ignored. Three real
forecasting cases are applied to verify the performance of the developed

approach. The simulation results demonstrate that: (a) the optimal
feature extraction is conductive to strengthening the forecasting pre-
cision of wind speed with noise; (b) the long short term memory net-
work has a perfect performance in capturing the long-term and short-
term memory characteristics of wind speed fluctuations; (c) the error
correction strategy is helpful for strengthening the forecasting ability of
the model; (d) the proposed model consistently has the minimum sta-
tistical error and outperforms other benchmark models; (e) the devel-
oped model is suitable for wind speed prediction.

Table 8
Three errors comparison of different models with feature selection and without feature selection in Subei (MAE (m/s), RMSE (m/s), MAPE (%)).

Feature selection Models One-step ahead Three-step ahead Five-step ahead

MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)

Yes WD-OFE-LSTMN-ECS 0.50 0.82 30.23 0.77 0.96 37.14 0.94 1.12 42.87
EMD-OFE-LSTMN-ECS 0.48 0.80 29.88 0.75 0.93 36.56 0.93 1.10 42.13
WPD-OFE-LSTMN-ECS 0.45 0.78 28.15 0.74 0.90 35.01 0.90 1.02 41.03
EEMD-OFE-LSTMN-ECS 0.39 0.75 27.89 0.73 0.87 33.86 0.87 0.99 40.99

No WD-LSTMN-ECS 0.65 0.94 34.02 0.85 1.15 42.03 0.99 1.31 45.02
EMD-LSTMN-ECS 0.63 0.91 33.92 0.83 1.11 41.01 0.98 1.28 44.87
WPD-LSTMN-ECS 0.60 0.89 32.02 0.81 1.06 39.82 0.97 1.21 43.99
EEMD-LSTMN-ECS 0.53 0.85 30.99 0.80 1.02 38.07 0.95 1.18 43.16

Table 9
Three errors comparison of different models with feature selection and without feature selection in Jiuquan (MAE (m/s), RMSE (m/s), MAPE (%)).

Feature selection Models One-step ahead Three-step ahead Five-step ahead

MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)

Yes WD-OFE-LSTMN-ECS 0.57 0.84 24.29 0.72 0.99 31.01 0.90 1.11 37.02
EMD-OFE-LSTMN-ECS 0.55 0.82 23.04 0.71 0.98 30.76 0.88 1.10 36.11
WPD-OFE-LSTMN-ECS 0.51 0.78 22.49 0.70 0.96 30.17 0.86 1.09 35.33
EEMD-OFE-LSTMN-ECS 0.46 0.75 21.01 0.69 0.95 29.23 0.84 1.08 34.64

No WD-LSTMN-ECS 0.71 0.96 29.14 0.82 1.09 34.51 1.02 1.25 40.01
EMD-LSTMN-ECS 0.69 0.93 28.06 0.79 1.07 33.35 0.99 1.20 39.42
WPD-LSTMN-ECS 0.65 0.90 27.11 0.77 1.05 32.94 0.95 1.18 38.75
EEMD-LSTMN-ECS 0.60 0.86 25.92 0.75 1.03 32.19 0.92 1.15 37.99

Table 10
Three errors comparison of different models with ECS and without ECS in three cases (MAE (m/s), RMSE (m/s), MAPE (%)).

Cases Models One-step ahead Three-step ahead Five-step ahead

MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)

Jinta WD-OFE-LSTMN 0.73 0.85 33.12 0.87 1.12 36.01 0.98 1.28 47.04
EMD-OFE-LSTMN 0.71 0.84 32.45 0.86 1.08 34.15 0.97 1.21 46.67
WPD-OFE-LSTMN 0.68 0.83 30.98 0.85 1.05 33.06 0.96 1.17 45.82
EEMD-OFE-LSTMN 0.65 0.82 29.02 0.84 0.99 32.38 0.95 1.15 44.16
WD-OFE-LSTMN-ECS 0.62 0.78 27.86 0.82 0.98 31.16 0.90 1.11 43.11
EMD-OFE-LSTMN-ECS 0.59 0.77 26.51 0.81 0.95 30.94 0.88 1.08 42.29
WPD-OFE-LSTMN-ECS 0.58 0.75 25.01 0.79 0.91 30.07 0.86 1.03 41.42
EEMD-OFE-LSTMN-ECS 0.49 0.74 23.83 0.78 0.88 29.14 0.85 0.99 40.53

Subei WD-OFE-LSTMN 0.65 0.94 34.91 0.85 1.15 41.73 1.01 1.33 45.12
EMD-OFE-LSTMN 0.60 0.91 34.09 0.85 1.11 41.05 0.99 1.28 44.99
WPD-OFE-LSTMN 0.57 0.89 33.11 0.84 1.06 40.11 0.98 1.22 44.08
EEMD-OFE-LSTMN 0.52 0.85 32.28 0.83 0.99 39.04 0.97 1.16 43.94
WD-OFE-LSTMN-ECS 0.50 0.82 30.23 0.77 0.96 37.14 0.94 1.12 42.87
EMD-OFE-LSTMN-ECS 0.48 0.80 29.88 0.75 0.93 36.56 0.93 1.10 42.13
WPD-OFE-LSTMN-ECS 0.45 0.78 28.15 0.74 0.90 35.01 0.90 1.02 41.03
EEMD-OFE-LSTMN-ECS 0.39 0.75 27.89 0.73 0.87 33.86 0.87 0.99 40.99

Jiuquan WD-OFE-LSTMN 0.71 0.95 28.02 0.81 1.10 34.87 1.01 1.25 40.27
EMD-OFE-LSTMN 0.68 0.92 27.19 0.78 1.07 34.01 0.99 1.22 39.87
WPD-OFE-LSTMN 0.61 0.89 26.53 0.76 1.05 33.92 0.97 1.19 38.56
EEMD-OFE-LSTMN 0.58 0.87 25.29 0.74 1.03 33.86 0.95 1.14 38.02
WD-OFE-LSTMN-ECS 0.57 0.84 24.29 0.72 0.99 31.01 0.90 1.11 37.02
EMD-OFE-LSTMN-ECS 0.55 0.82 23.04 0.71 0.98 30.76 0.88 1.10 36.11
WPD-OFE-LSTMN-ECS 0.51 0.78 22.49 0.70 0.96 30.17 0.86 1.09 35.33
EEMD-OFE-LSTMN-ECS 0.46 0.75 21.01 0.69 0.95 29.23 0.84 1.08 34.64
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